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Abstract. We give a sequence of criteria (of increasing complexity) for the expo-
nential ergodicity of discrete time interacting particle systems. Each criterion
involves estimating the dependence on initial conditions of the process on finite
space-time volumes. It generalizes and improves the existing single site condition
and is the analog of the Dobrushin-Shlosman Cv condition in equilibrium
statistical mechanics. Our "dynamic" criterion may also be used to prove the
uniqueness of Gibbs state in situations where the Cv condition fails. As a converse
we prove that if there is a certain form of convergence to the stationary measure
faster than n~d, where n is the time and d is the dimension of the lattice, then
our condition holds for some space-time volumes and hence the convergence must
be exponentially fast.

1. Introduction

It is well known that finite state space Markov chains have a unique stationary
measure whenever there is a strictly positive probability to go from one state to
any other in a finite time not depending on the pair of states (irreducible and
aperiodic Markov chains), [F,Ge]. The situation is very different for the so-called
Probabilistic Cellular Automata (PCA) - Markov chains, for which an infinite
collection of cells, each assigned to the vertex of some lattice and taking on a finite
number of positions, evolve under a discrete time stochastic dynamics. There exist
in fact many examples of PCA with strictly positive transition probabilities which
are not ergodic. Even so, it is in general rather easy to give sufficient conditions
which ensure the ergodicity of a PCA, see for example [V, LMS, KMPSTV, Fe, S].
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For simplicity consider a system of Ising spins σi = ± 1, associated to the sites
of the d-dimensional lattice Zd. We define a Markov process {σn fί, zeZd, n ̂  0} by
giving the transition probabilities Prob(σni = 1 for all it A given that σπ_ lt. = η) =

(1-1)

for A c Zd, finite. The spins are simultaneously and independently updated. It is
natural to expect that if Pi( \η) depends sufficiently weakly on η, then the system
will forget exponentially fast about the initial state, and will converge to the unique
stationary state. One form of this weak dependence is given (in the translation
invariant case) by

£ sup Ipo(lto)

where (ηj\ = ηt if i Φj, and = — ηt if i =j. This condition is sufficient to produce
such (ergodic) behavior, [V], [LMS]. Equation (1-2) is the well known M<ε
condition, [L], or "Dobrushin's condition," [D], for interacting particle systems
applied to the PCA (1-1).

At this point it is instructive to compare the situation with the one in equilibrium
statistical mechanics (ESM), where the question concerns the uniqueness of Gibbs
states for some interaction H ([Ge]). The role of the transition probabilities (1-1)
is now played by the specifications Qv, for local functions/,

v°) = Σ f(°v> σv<)Qv(σv' > °v<)

with probability kernel

n , β / r ^ c
Qv(σv, σVc) = - — — - - , (1-3)

Δv\σVc)

for finite V c TLά and Vc = Zd\V. This specification is called self-consistent because
Qv°Qw = Qvτ f°r W c V, and a Gibbs state p is a probability measure associated
to it in the sense that its conditional probabilities are exactly given by the
Boltzmann factor (1-3), i.e.

P°Qv = p. (1-4)

"Dobrushin's single site condition," [D2], in ESM is the equilibrium analog
of (1-2) and has often been used to define the high temperature regime of some
equilibrium system. This condition is very similar to (1-2): it suffices to replace
Po(l\η) by the one-site specification for the corresponding Gibbs state, where now
η stands for the configuration surrounding the origin. In fact, it is known how to
construct PCA for which the Gibbs measures with respect to some interaction are
invariant (see also (4-5)) and one can then verify that Dobrushin's ESM condition
is identical to Dobrushin's PCA condition. Alternatively, it is easy to see that for
any stationary measure of a PCA with strictly positive transition probabilities
(1-1) the associated space-time measure (the Markov shift) is a Gibbs measure
on { — 1, + l}zd+1 in d + 1 dimensions, [GKLM], with specifications given by

Qv(σv; σvc) =
 xe — - - , (1-5)

Zv(σVc)



Ergodicity of Probabilistic Cellular Automata 235

or Hamiltonian

Hv(σv;σvc) = - £ logpx(σx\σu(x)). (1-6)
xeV

Here, px(σx\σu(χ)) = Pi(σn,ί\σn-ι, ) f°Γ x = (w> Oe^ x ^d> σu(χ) *s ώe configuration of
spins in the set l/(x) in the pαsί of x on which σx depends, and V = {xeZd+1:xe V
or I7(x)n V φ 0}. Therefore, in the language of ESM, (1-2) is "Dobrushin's single
site condition" for the process {σntί9ieZd

9neZ} with the modification that in the
supremum only the configuration η in the past (and not all surrounding) is varied.

The single site condition for ESM was extended and generalized into a
constructive criterion by R. L. Dobrushin and S. B. Shlosman, [DS]. The single
site is replaced by a finite volume V and the corresponding condition Cv requires
that there is a sufficiently good bound on the Vasserstein distance between the
conditional probabilities Qvt σ1) and Qv(",σ2) for any two boundary
configurations σ1 and σ2. The DS-criterion then takes the form: if for some finite
volume V condition Cv is satisfied, then all the nice properties of high temperature
fields hold, see [DS2]. The analog of exponentially weak memory of PCA has here
the following form: if condition Cv holds, then there is an ε > 0 and a constant c
such that for finite regions M c= 7ίd large enough and all local /,

(5x/exp(-εdist(x,δM)), (1-7)
σ,σ' xeM

with δxf = sup\f(η)—f(ηx)\. Formulation (1-7) was given by E. H. Lieb and
η

M. Aizenman.
It is easy to show that this bound implies that there exists at most one Gibbs

state, that the correlations decay exponentially fast in this state and that Gibbs
states corresponding to small perturbations of the interaction have the same
properties. In particular, when applied to the interaction (1-6) for the space-time
measure of a PCA, the condition CF, if it holds, implies the uniqueness of the
invariant measure. However, it is interesting to investigate whether here also, as
was the case for the single site condition, there exists a corresponding condition
similar to Cv but which involves only the dependence of the spins in a certain
region of the past. Having to consider only the influence of boundary spins in the
past (and not all around) constitutes an important advantage in computer assisted
proofs of the uniqueness of the invariant state.

The main purpose of this paper is to present such an extension of the condition
(1-2). Our criterion has roughly speaking, the following form:
a) Take some finite set R a Zd at time zero and choose a time interval N > 0.
b) Use the Markov process to construct, for any initial configuration ηR on jR, the
corresponding space-time measure μ f̂ in the appropriate trapezoid-like volume
Λ = ΛNtR with (largest) base equal to R, and with height N in the time direction.
c) If the measures μ*Jf for different ηR do not differ too much (in a sense to be
defined), then the criterion (which we will call CN)R) is satisfied.

This criterion has the following properties:

1. It is constructive in the sense that it uses only finite volumes and requires a
finite calculation to check it. If it is satisfied, then the corresponding PCA is
exponentially ergodic.
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2. It is natural from the dynamical point of view in the sense that it requires to
consider only the conditions in the past (and not at present or in the future).
3. The condition improves if the space-time volume (for which the criterion is
investigated) is sufficiently enlarged. Moreover the condition is sensitive to a change
in lattice or dimension (which is not the case for the single site condition (1-2); we
will come back to this point in Sect. 5).
4. If the process is exponentially ergodic then, under some additional assumption,
the criterion CNίR must be satisfied for some choice of N and R. Therefore our
new condition is also close to being necessary.

In the next section we introduce some definitions and notation. We explain
the construction in which terms we formulate, in Sect. 3, the main theorem. It is
shown how the criterion characterizes the high noise regime of a PC A. In particular
in Theorem 2 we show that the criterion is very effective in doing so since it turns
out to be also a necessary condition for a certain form of rapid convergence; this
is then used to derive a proof that if the convergence to the stationary state is
faster than n~d, then it must be exponentially fast. Section 4 is devoted to
applications. We give examples of how to apply the method to various specific
models. We point out that our new (dynamical) condition can be used to prove
uniqueness of Gibbs measure for some equilibrium models in situations where the
Cv condition fails. Finally Sect. 5 discusses some further aspects of our condition
and relates it to other existing criteria.

2. Definitions and Notation

The State Space. We restrict ourselves to the case of spins η^Xi taking values in
the finite set Xi9 a copy of the individual spin space X0, and associated to the sites
i of the d-dimensional lattice Zd. More generally, (X0, δ) is a compact metric space
equipped with a metric δ. The state space ( = the set of all possible spin
configurations at any given time) is X = X^d. If /is a function on X, then its
sup-norm is defined as

| | / H = sup |/fo)| (2-1)
n

and the set of all continuous (with respect to (2-1)) real- valued functions on X is
denoted by C(X). For/eC(X), put

δtf = sup > n = *l' except at i (2-2)

the variation of/ and let

be its variational (semi-) norm. We write D(X) = {feC(X): |||/||| < 00} for the set
of all "sufficiently local" functions. η,η',...eX will be used to denote spin
configurations at one given time, and r)A9η

f

AeXA = X^ their restrictions to the set
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The Process. The process is a measure μ on the space-time configurations,
σ,σ',...eί2 = X^xZd. A general configuration is denoted by σ = {σx = σπ>ί; x =
(n, z)elN x Zd} and its restriction to the equal time-layer TLά

n = {n} x Zd is written
as crπ?., while σn>A indicates a further restriction to the set A ^Zd at time n. More
generally, if B c= N x TLά is a general space-time volume, then σB is the restriction
of σ to this set B. The measure μB on ί2β are defined analogously. In particular,
μn will denote the measure at time n on Ωn, a copy of the state space X.

We consider discrete time Markov processes (see also [La]) μ = μv indexed by
a probability measure v on ί20, which plays the role of initial data,

/V = Mo = v, (2-3)
έL0

and determined by transition probabilities

i.e. normalized functions of ηt and the spin configuration η'u+ί in 17 -H, the
translation over lattice vector / of a fixed finite neighborhood U aZd of the origin,
taking on a finite number of different values λl9 . . . , λM9 M < oo:

+ί)eUι,...^M}c:[0,l], (2-4)
and

Σ pjηt\η'i + ϋ)=l. (2-5)

We assume translation invariance by requiring that if ή0 = ηt and ή'u = η'u + ί, for
all ueU, then Pi(ηi\η'u + i) = PoWol^i/)- For example, if X0 = { - 1, + 1}" then

+7i Σ λA Π ff'Λ (2-40
A^V jeA + i JJ

is parametrized by the coupling coefficients {λA} with A c ί/. Analogous expressions
can be obtained for other Jf0.

For a given configuration σ π _ l t . of spins at time rc-1 the conditional
probability distribution at time n is given by the measure p(dσn,.|σπ_1>.) which is
the product of the probability measures p{(- \ σn-lti+υ)9 ieTLd. We define the transition
operator P as

} (2-6)

on functions feC(X) and if p is a probability measure on X, then pP is defined by

J f(η)PP(dη) = J Pf(η)p(dη\ (2-7)

and the time evolved measure is μn = μn_lP = vPn, n^O. Obviously, with some
abuse of notation, if/eC(Jf), then

(2-8)

(this is not true for more general /eC(β)!)
We say that the measure p on X is invariant or stationary for the dynamics

(2-3) iff ρP = p. There is always at least one such measure p ([L]). The
dynamics is said to be ergodίc iff vP"-»p weakly as n too for any initial measure
v. Ergodicity implies having a unique invariant measure but not vice versa.
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As a final remark: we have implicitly assumed that the Markov chain is time
homogeneous. Our results will apply to the more general case where the transition
probabilities may also depend on time (and space) in a periodic way.

The Coverings. To state the results we need some geometric objects.
a) Trapezoids: Let A c N x Ίίd be any finite non-empty subset. A point (n, i)eΛ is
called a base point iΐn = Min{m:(mj)e/l}. B(Λ) is the set of all base points of A.
We call its complement the set of inner points denoted by I(Λ) = Λ\B(Λ). For each
point x = (n, ΐ)eN x 7Ld, n > 0 we write U(x) = {n - 1} x (U + i) (see (2-4)) for the
set of all relevant points for x.

Definition 1. A is called a trapezoid, if

i) for each xel(A) U(x) c Λ,
ii) for each xeB(Λ) xεU(y)for some ye!(Λ).

The sets Λx = {x} u U(x), x = (n, /), n > 0, are the simplest trapezoids from which
all others are built, i.e. if A is a trapezoid, then A = (j Λx. We call the Ax unit

• i xeΙ(Λ)
trapezoids.

From (2-8), if A is a trapezoid, then given the configuration σ on B(A\ the
conditional probabilities qΛ(σI(Λ)iσ) on I(Λ) are

4>/(Λ);<7)= ΓΊ />>>ί/(*))]σ = σon*(Λ) (2-9)
xeΙ(Λ)

with pJίσx\σu(χ)) = Pi(0n,i\σn-ι,u+i) f°r * = (M)> the conditional probability of σx

given the configuration in U(x).

b) Admissible Coverings: Let N ̂  1 be a fixed integer. Let R c TLd be a finite region
containing the origin for which there exists a tiling of the lattice, i.e. associated to
the fundamental cell R there is a sublattice 1L of TLά of finite index such that each
site jeZd belongs to R(i) = R + i for exactly one ielL. Choose ΓRN = {ΛΛ}ΛeJ a

finite collection of trapezoids contained in the strip SN = [0, N] x TLd such that for
N

any n, 0 ̂  n ̂  N, there exists i(n)eZd for which (j {(nj + i(n)): jeR} c (J Λα.
n = 0 α

Definition 2. VFe sαj; ί/iαί ΓRN generates an admissible covering Π of SN with

\Λ7
>e V ^V "< V'

"

. >^ .̂  \^ \ ^ .̂  \^ \^ .̂

. . . ^\X ^ \

• χx ^/

Fig. 1. N = 6; t/ = { -1,0,1}; d = 1; i(w) = rc; time is downward
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fundamental cell R if Π = Mα(ι)}ίe]LjαeJ, ΛΛ(i) = Λa + (0, i) c SN is a covering of SN

such that
iii) each point xeSN\Zd

0 is an inner point of exactly one trapezoid ΛΛ(ϊ)eΠ.

We will write qΛ9Ia and Ba instead of qΛa9I(ΛJ and B(Λa). If feC(Q is a
function on /α, then

The simplest example of admissible covering in all dimensions and for all
neighborhoods U is 77= {Λ(1>ί),zeZd} with JV=1, £ = {0} and ΓRN = {Λ(lf0)}.
Our construction is dimension- and neighborhood-dependent and can be thought
of as a generalization of this example. See Fig. 1.

3. Main Result

The Dependence Matrix. We suppose that for any'αeJ there is given a matrix
kχy,xεIΛ,yeBa. Its purpose will be to measure the dependence of the measure
<?α(σ/α; σB) on σB , see further (3-3).

Let Λα(i)e/I be any trapezoid in the admissible covering Π generated by ΓRtN.
For any xeI(Λj(i)) we draw arrows / from x to all yeB(Λa(ί)) and associate with
the arrow l:x-*y from x to /(x) = y the value

*ι = *;c-(o,i),y-(o,i) (3-1)

By property iii) (definition of admissible covering) the trapezoid ΛΛ(i) with
xe/(/lα(z)) is uniquely defined given xeSN\Zd

0. Let 'x9yeSN. An oriented path
ω:x-*y:xQ->Xι-+ ---- >xm, is a sequence of arrows l'.xk-*Xk+ι with xk+16£(Λα(i))
if xke/(Λα(ϊ))> 0 g fc ̂  m — 1 starting at x0 = x and ending at xm = y. We assign to
it the value

leω

Finally, we define the dependence matrix

«w= Σ k<*> UeZd, (3-2)
ω:(N,i)^(0,j)

where the (finite) sum is over all oriented paths ω from (N9 i) at time AT to (Oj) at
time 0. The dependence matrix X ίj = Xί+ίtJ.+ί,/e]L, is periodic with the period of
the lattice ΊL and, for fixed ίεZd, is non-zero for only a finite number

Constructive Criterion. We say that the process defined by (2-4)-(2-8) satisfies
condition CN R if the following three properties hold:

1. There exists an admissible covering {ΛJβ} of the strip SN with fundamental cell #.
2. There exist numbers fc* y,xe/α,ye#α,αeJ such that for any two configurations
σl,σ2 in 5α there exists a coupling Pf^2 for the conditional measures
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3. The dependence matrix K defined through the {ka

xy} via (3-l)-(3-2) satisfies the
inequality

y = — Σ Σ Kit<i. (3-4)
' I Γ) I /-I /-I 1J *• '

\R\ ί

As a reminder: the measure P( , •) on a space Y x Y is called a coupling for the
measures g1,*?2 on Y if for any measurable A c Y,P(A, Y) = q1(A) and

For the simplest admissible covering ylα(0 = ̂ Λ,x = (l,Oj f°r example in the
case X0 = { - 1, + 1} of Ising spins, we can choose fc^0) = sup \p£l \η) — Pi(l\ηj)\

t]
iϊx = (1, i), y = (0 J). Note that here (3-4) reduces to the single site condition (1-2).

Main Theorem. Condition CN R implies that the process defined in (2-4)-(2-8) is
ergodic and that for allfeD(X\ 0<a,Q<,b<N,

, (3-5)

where p is the unique invariant measure.

Proof. The crucial observation is that the process can be reconstructed from the
conditional measures qΛ alone. Call first generation trapezoids Al

Λ(ΐ) those
trapezoids of the covering having their base points

B(Λ*(ί))c:Zd

0

on the initial time layer. Given the trapezoids up to the n-th generation, n ̂  1, we
define the (n+ΐ)th generation trapezoids {Λ"+1(0} of the covering by the
condition

jeJLk=l

In this way, with a finite number of generations, one has classified all of the
trapezoids covering the strip SN. Moreover, given the spin configuration σ in the
trapezoids up to the nth generation, the measure induced by the process on the
(n + l)th generation is a product over the trapezoids it contains and, inside each of
such trapezoid /I, is of the form qΛ(dσI(Λ)\σB(Λ)) with probabilities as in (2-9).
Therefore, we obtain a coupling Pη'η' for the processes μη,μη' with initial
configurations η,ηf by taking products of translates of the couplings Pf'σ2 of (3-3).
This implies that, writing

for xeSN\Zo, we have

<v pη,η' <
UxΓ =

where the sum is over all arrows / going out from x. If l(x)eSN\Zd

0, then we can
again apply the same inequality and continue doing so until we reach as endpoint
of an arrow an element y of the initial time layer TLά^. Take now η = ηf except on
jeZd. Of course, if y = (0, k\ then
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Hence, if x = (N9 i)e%d

N, then

Fix geD(X). The dependence of the time evolved function PNg on the spin at site
j is now estimated by

W0)^ Σ *ι0Ztj (3-7)
ieZd

We can repeat the derivation of (3-7) for different translates of the fundamental
cell R (it does not matter which point in R we call the origin). Therefore, using
the periodicity of the dependence matrix K,

>
\R\teR

and we obtain the [|| Hi-contraction of PN by summing (3-8) over j:

\\\PNg\\\ £y\\\g\\\. (3-9)
The rest of the proof is standard and we only sketch the main steps referring the
reader to [L, LMS or'M] for further details. We have from (3-9) that, for any
a' > a > 0, b ̂  0,

I pa'N + b r paN + b f \\ —
α'-l

(pN-i)p»N+bf ^ Σ \\\pnN+bn\

l -y

Hence, lim P"/ exists and must be constant. It follows that for a\\feD(X)

(3-10)

(3-11)

for any invariant measure p. But the space D(X) is dense in C(X\

The High Noise Regime. The results above allow one to derive a characterization of
the process in the so-called high noise regime and we therefore say that the criterion
CNίR defines this region in the parameter space of coefficients λm appearing in the
transition probabilities (2-4). One of the most important implications from having
exponential decay in time is

Corollary 1 (Exponential Decay of the Space-Correlations). Let /, g be any two
functions depending on the configuration of spins in the finite regions A, respectively
Bc:Zd

9 a distance d(A, B) = vN apart. Condition CNtR implies that in the invariant
measure p

-\f(η)p(dη)\g(η}p(dή)\ £ 3|||/||| |||0||| -, (3-12)

where the integer r is such that pQ('\η) does not depend on any ηt for which
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Idea of Proof. At any fixed time, spins in the regions A and B communicate with
each other only via events which happened at least at time vN/2r in the past. But
the dependence on this history is exponentially small (with factor γv/2r). The actual
proof is very similar to the one of Theorem 2 in [LMS].

Condition CN R can be viewed as prescribing a region in the parameter space
(λ1,..., λM} (or, for (2-4'), in the space of coupling coefficients {λA}A c v\ in which
the corresponding process is ergodic. In that sense, the set of Markov processes - of
finite range - satisfying CN R is an open set. Hence, small perturbations of the
process will also fall into the high noise regime.

Effectiveness. We ask here whether our criterion is also necessary to have fast
convergence to the unique invariant measure.

Definition 3. The process defined in (2-4)-(2-8) is uniformly exponentially ergodic
(UEE) if there is a probability measure p and a constant λ > 0 such that for n large
enough and all local functions f'(having finite support)

\\P"f-\f(η)p(dη)\\^c(f)e-^, (3-13)

for some constant c(f) < oo.

Clearly, (3-5) says that the condition CN R implies UEE with constants
c(f) = 1/(1 — y) sup |||P&/III an<l ^ = ~ I/N logy, but we also have a converse:

0^b<N

Theorem 2. If the process is UEE with c(f) ^ c|||/||| in (3-13), then for some N and
R the condition CN R holds.

Proof. We can restrict ourselves to the case where U is a cube centered around
the origin of sidelength 2r (r as in (3-12)). For L, N integers such that L > 2Nr, let
T c R c 2£0 be two cubes centered around the origin of sidelengths L — 2Nr and
L. We consider the trapezoid Λ with base B(Λ) = R and top T(Λ) =TN=T + (N, 0),
the set of points (N,i)eΛ with maximal time coordinate. To construct a covering
of SN with fundamental cell R, we take this large trapezoid Λ together with its
translates Λ(i) = Λ+ Li,ieZd, and add unit trapezoids Λx for each point in the
strip not covered by the large ones. The coupling Px in the unit trapezoids can

be chosen more or less arbitrary except for the fact that P*u<*>'σu<*>(σ* = σ^) = 1
whenever σ\j(x} = σ£(JC). For the points xe/α not belonging to the top T(Λ(i)\ ieZd,
of any of the large trapezoids, we consider the smallest trapezoid M(x) c Λ(i) which
contains x and which has its base B(x) c BΛ9 and put fc* y = 1, yeB(x\ = 0, otherwise.
To find a good coupling in the large trapezoids we consider for any two initial
configurations η1 and η2 the restrictions qΛ(σT(Λ}'9η^(Λ)) and qΛ(σT(Λ);η

2

B(Λ)) on
T(Λ) of the conditional measures (2-9). By hypothesis, for N sufficiently large,

sup \qΛ(f)(η1)-qΛ(f)(η2)\^2c\T(Λ)\e-λN, (3.14)
/eL»(Γ(Λ))

where Ll(T(Λ)) = {feC(ΩT(A}):δxf£l, for all xeT(Λ)}. Equation (3-14) is the
Vasserstein distance between the two conditional measures on T(Λ) ([Du]) and
therefore, there exists a coupling Pη^η2 on Λ (which is the extension of a coupling
on T(Λ)) for which

Σ δxP^2^2c\T(Λ)\e~λN. (3-15)
xεΓ(Λ)
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Hence, by taking for xeT(Λ), yeB(Λ),

k*y = sup{δxP
η^η\η1 = η2 except on y},

we get
Σ Σ * u = Σ Σ k^2c\T(A)\e-λN(Nr)d. (3-16)

jeZd ieT yeRxeT(Λ)

On the other hand, for all (N, ϊ)eRN\TN, we have the bound Kitj ^ Wifj the number

of oriented paths from (N9 i) to (OJ) via arrows / with fc, φ 0. Clearly, £ Wtj ^ (2r)dN

and therefore JeE*

'-- (3-17)-.
i Li

Choosing L = 2(2r)dNNr and letting N become very large, we get 7 < 1 as desired.

•
The assumption in Theorem 2 that c(f) ^c\\\f \\\ doesn't seem to be just technical

but there are cases in which it is automatically satisfied. That happens for the
so-called attractive Ising spin systems, i.e. monotone processes in which the spins
can only take the two values + 1, see [AH and KRS].

Corollary 2. If the process is UEE and attractive with spin space X0 = { — 1, + 1},
then for some N and R the condition CN R is verified.

Furthermore, inspection of the estimate in (3-17) shows that we don't really
need an exponential convergence: we just have to beat the Nd factor. This leads
us to the following

Corollary 3. If for any two initial configurations η1 =η2 except in one point, and
for all finite cubes T c=Zd,

where Rτ is the Vasserstein distance for two measures on T, then, condition CN R is
satisfied for some choice of N and R and the process is UEE.

Remark. In particular, if we consider an attractive Ising spin system, then we have
here a discrete time version of the results in [H, AH and HS] on the possible rates
of convergence to the stationary measure. More precisely, if for the function

f(η) = ±η0,P
nf( + )-Pnf(-) = o(n-d) with ± the all plus or all minus

configuration, then condition CN R holds for some N, R and the process is UEE.

4. Applications

Applying criterion CN R to specific models gives rise to at least three practical
problems. The first is geometric in nature: finding a covering. In general, there is
a lot of choice - as a rule, the larger N and R the better, but also, the harder it
becomes to deal with the next two problems. The second is probabilistic: we have
to find the couplings Pα and the corresponding numbers fc* y satisfying (3-4). There
is an immediate candidate for the coupling PΛ on a trapezoid A suggested by
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formula (2-9). We can take the product of couplings Px on the unit trapezoids, i.e.
if σ1(σ2) is a configuration in I(Λ) being equal to σl(σ2) on B(A\ then

P^»2)= Π -̂> <->(σi,σί). (4-1)
xeΙ(Λ)

If X0 = { — !,+!}, and the dynamics is attractive (that is, p0(l \ηυ) is non-decreasing
in η, see [LMS] ), then using Holley's coupling P**y (see [KRS] or [L] ) for which

Pγy(σ^σ2

Λ)=l, if σ>σ>,
we have

and we can choose the numbers

= 1; σ) - ία(σx = 1; <T) | . (4-2)

Finally, the third problem may involve some combinatorics: we have to compute
the dependence matrix and (at least an upper bound to) the corresponding γ.

For the sake of simplicity, both examples below are for attractive dynamics
with individual spin space X0 = { — 1, -{- 1} so that we can use formulae (4-1) and
(4-2). The third example is related to the problem of uniqueness of Gibbs measure
and uses (4-1).

Examples.

Example 1: Stavskaya's Model. Consider the one-dimensional PC A on{-l, + l}z

with neighborhood U = (0, - 1}, defined by

Po(l|*?)=l if fo = *?-ι = l> ,4_3)

= ε else,

where 0 ̂  ε ̂  1 is a parameter. There exists a critical εc for which the process is
ergodic if ε > εc and has another invariant state, besides the trap η = 1, if ε < εc.
The single site condition (1-2) gives the bound εc5^. The simplest illustration of
our method is to take N = 2, R = {0, 1}, IL = 2Z, ΓNR = {Λl9Λ2} with

Λ, = {(2, 0),(1, -!),(!, 0),(0, -2),(0, -1),(0,0)},

for the first generation, and

Λ2 = {(2,1), (1,0), (1,1)}

for the second generation trapezoids. It is easy to check that this choice generates
an admissible covering of the strip S2, see Fig. 2.

We choose the numbers fc" y according to (4-2),

— k1 — k1 — k1 — 1 —
"~ * "~ * ' - - ~~ Λ - - ~ L

k2 —k2 —\—F
^(2, !),(!, 0) ~~ Λ(2,l),(l,l) ~~ '

so that condition (3-4) is satisfied. We then get the dependence matrix K determined
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-2 -1

Fig. 2. Stavskaya's model

whose sum is equal to (1 — ε)2(7 + ε) and condition (3-3) becomes γ = |(1 — ε)2(7 4- ε) <
1 from which the bound εc ̂  0.484. It is straightforward to find better bounds
using another covering but we will not pursue this issue here further given that
for this model a very good bound εc ̂  0.323 (numerically εc « 0.31) already exists,
see [KMPSTV].

Example 2: Toonίs Model. For Ising spins on the square lattice 7L2, choose the
transition probabilities

Po(ί\η) = 1 - ε if signfo(0,o) + %,i
= ε else, (4-4)

0 ̂  ε g \. It was proven by Toom, [T], that this two dimensional majority vote
model with neighborhood U = {(0,0), (0,1), (1,0)} has a phase transition in the
sense that for ε small (ε < εc) the all + and all — state (which, obviously, are
invariant states for ε = 0) are both stable (yielding two different invariant states).
For ε > εc, there is a unique invariant state. The single site condition (1-2) gives
εc ̂  f. To apply our criterion, we choose N = 2,R = {(0,0),(1,0),(0, !),(!, 1)} and
generating trapezoids

Λ! = {(2, O^XίlΛ.Oλ^O, !),(!, 0,0),(0, 2,0),

(0, 1, 1),(0,0,2),(0, 1,0), (0,0, 1), (0,0,0)},

Λ2 = {(1,1,1), (0,1,1), (0,2,1), (0,1, 2)}

for the first generation, and

Λ3 = {(2, 0,1), (1,0, !),(!, 1,1), (1,0, 2)},

Λ4 = {(2, 1,0), (1,1,0), (1,1, !),(!, 2,0)},

Λ5 = {(2,1, !),(!, 1,1), (1,2, !),(!, 1,2)}

for the second generation.
The numbers k*xy can be computed from (4-2), with m = 1 — 2ε,

2

]Λ -\Λ -]Λ -lΛ(2,0,0),(0,2,0) ~" K(2,0,0),(0,0,2) ~~ Λ(2,0,0),(0,0,0) ~"

kl
Λ(2,0,0),(0,l,0) t(2,0,0),(0,0,l)

-m2

~ '
- Π -m2}

,0),(0,l,l) ~ 9

α — k α — tα — w fπr ry — 9 λ 4
(»,U),(«-l,i,j) ~ l t(n,U),(w-l,i+l,J) ~~ Λ(w,i,j),(«- 1.U+ 1) — ~ ' ' '
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and satisfy (3-4). They give rise to a dependence matrix K for which γ = 8m2 + |m4.
Hence, the bound εc ̂  0.324.

Uniqueness of Gibbs State. An immediate application to ESM is to consider PCA
for which all Gibbs states pH with respect to some translation invariant finite range
Hamiltonian H are invariant measures. This, in general, can be easily done by
slightly changing the updating mechanism and to construct a PCA-like dynamics
which is reversible (or, satisfies the condition of detailed balance) for the Gibbs
measure pH. One way to do this is to take a periodic (in the time direction) stacking
of lattices, for example, a partition {Sq} q = 1 of Zd into sublattices, and to apply
successively a simultaneous updating on all spins of the sublattices Sq. Examples
and details can be found in [LSM, LSM2, KMPSTV]. Equivalently, we can make
the updating mechanism periodic in time, that is, at any given time n, only the
spins in a given sublattice Sq(n) with q(n) = q(n + T) periodic, can change while the
others spins remain unchanged with probability one. The partition {Sq} of Zd has
to be such that, for all q and all ieSq the conditional probabilities β^ = a;ηzd^)9

aeXt effectively depend on the spin configuration in 1d\Sq only. It is then
easy to check from the definition (1-4) that choosing at time n the transition
probabilities,

= δ , else, (4-5)
fitfy

leaves the corresponding Gibbs measures invariant (here, δpjq is one if p = q and
zero otherwise). The (appropriately rephrased) criterion CNιR then implies that
there can only be one such Gibbs measure. As mentioned in the Introduction of
this paper, [DS] have derived a constructive criterion Cv (V<=Zd finite) for
uniqueness of Gibbs measures in terms of the self-consistent specifications (1-3). For
every jεVc and ήεXvc, consider the pair of conditional distributions Qv('\ή x ηj)
and Qy(", ή x ί/?), where ή x η* = ή except at j where it is equal to η*, α =1,2. Let
Rv(ή x ηj,ή x η?) be the Vasserstein distance between these two conditional
measures (see [DS]) and define

k]= sup Rv(ήxηj,ήxηϊ). (4-6)
W]*n]

Condition Cv holds if

— Σ kv<l. (4-7)
J

Comparing their condition with ours, it is particularly interesting to see if there
are systems for which Cv fails for any arbitrary volume V, while CNfR works, thus
implying uniqueness of Gibbs measures. Such an example in fact exists.

ExampleS: The Chech Model (see [Sh], [Sh2]). The single spin space is
χo = (o, 1,2, 3}. The interaction is defined by a self-energy

(4-8a)
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and a pair interaction

ΓO α = 6,

v(a, b) = υ(b, a) = < 1 α = 1,2,6 = 0,3, (4-8b)

Let AL = {(ι\,...,id)eZd:|iJ : g / , α = l,...,d} be a cube of side length 2L,
L= 1,2,.... The energy of the configuration ηALeXAL in the box AL for given
boundary condition r\A^ on its complement, is

HAL(ηAL I A/XC ) = ^ /ί(τ/ί) -f- ]̂ v(ηi9 η^ (4-9)
ίe^L l | i ~ j H = l

where | | z | | =max{|iα |, α = l,...,d} for ί = (il,...,id)eZd. Consider the following
two configurations on A°L:ηAC = 3 (all spins outside equal 3) and ηa

AC = 3 except

at one given point j with | | y | | = L + l , where it is equal to α,α=l,2. The
characteristic feature of this Chech model can be discovered by comparing the
groundstates in AL for these two boundary conditions. In the first case (all spins
outside AL equal to 3), the energy (4-9) is minimized by the two configurations
γ\ ,b = 1,2,

, _ f θ i f I I i l l <L,„ , „ ,_

' \b if | | i | |=L.

In the second case only the configuration with b = a minimizes the energy. In
other words, modifying the boundary condition in just one point has a rather
drastic effect: the low temperature conditional distribution changes along the whole
boundary of AL. Therefore, (4-6) is of order Ld~l and the left-hand side of (4-7)
becomes proportional to Ld~2 and is always larger than 1 if d^3. Similar
considerations can be made for other volumes V instead of AL, so that condition
Cv of (4-7) is never satisfied. There exist other types of Chech models for which the
[DS] criterion works by choosing the appropriate volume V but for (4-9) the
uniqueness of the low temperature Gibbs states had to be proven separately, see
[Sh] . The last statement also follows from our criterion CN R as we will now show.

The dynamics is of the type (4-5) with neighborhood U = {iεZd: \\ i\\ = 1} and
sublattices

Sq = 2Z' + eq9 4=l , . . . ,Γ = 2d, (4.11)

where the {ej[ = {ieZd:ia = 0, 1; α = 1 , . . . , d} in arbitrary order. Let q(n) = n mod T,
n > 0. At time n all spins in the sublattice Sq(n) are simultaneously updated, keeping
the other fixed. The transition probabilities are obtained by combining (4-5), (4-9)
and (1-3):

exp-j8[Λfoi)+ Σ vtoi'Ί'jK

= V, else- (4-12)

The β-dependence of the dynamics is explicitly indicated.
Let N = 2T and R = AL, JL = (2L+ l)Zd. The covering of the strip SN is

generated by ΓN R containing one "large" trapezoid A and lots of unit trapezoids:
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the large trapezoid A c SN is the maximal (in the sense of inclusion) trapezoid
with base B(Λ) = R<^%d; the unit trapezoids are used to fill the rest of the strip,
i.e. for each point xeSN which is not covered by A + / for any /elL, we add the
unit trapezoid Ax. To construct the couplings we proceed as in (4-1): we begin

with the unit trapezoids. For each x = (n,ί)eSN we define the coupling

Pχu<χrσu(X)(σ^σl) of the two conditional distributions P*(0"* I σ J,(jc)), px(Vχ \ 0 (̂JC)) (see
(4-12)) to be

i) arbitrary, if for some point yeU(x), σ^(x) Φ σ^(x) or if iφSq(n)9 and
ii) diagonal in all other cases: P^<*>'^(*>(σ* ^σx) = 0. For xe/(Λ), let

B(x) c: B(A) be the base of the smallest trapezoid with the base in Zd

0 which contains
x. Then, for any ε>0, there is a β0 = β0(L,ε) such that for all β>β09 for all
x = (N9 ϊ)εΛ and any two initial data σ1, σ2,

^ Σ a,v>
σ°2

with pσ^°2 the coupling (as in (4-1)) on the trapezoid Λ. The proof of (4-13) is
easy and amounts to inspecting the one-point conditional Gibbs distributions

0 GΓfa/ = 3^t/+i) = ° for any 1u+ι>
ϋ) Q?(η. = Oιηu+i) = 1 provided that nj Φ 3 for all je U + i. (4-14)

That means that in the middle level M(Λ) = Λ c\TLά

τ the probability

q*{σεΩΛ:σx = 3 for some xeM(Λ)} = 0, (4-15)

which follows from (4-14i), and then, from (4-14U),

q™{σεΩΛ:σx = 0 for all x = (N, i)eΛ} = 1. (4-16)

Of course, the measure qβ

Λ depends continuously on β for βe[Q, oo] and hence,
by construction of the coupling, (4-13). We conclude that (3-4) is satisfied for
x = (N, ΐ)eΛ with kxy = ε if yeB(x\ = 0 else. For the other points xeI(A\ we simply
put kxy = 1 for yeB(x), = 0 else. Finally, for all other (unit) trapezoids, we take

We come now to the third problem, that of estimating the elements of the
dependence matrix. By definition, for (N, ί)eΛ, Ktj = ε if (QJ)eB(N,ϊ)9 = Q else.
For the other ίeR we have the bound KitJ ^ Witj ifjeB(N, i\ = 0 else; Witj is the
number of paths from (TV, i) to (Oj). Finally, (3-3) is verified since there are constants
c(d) and c'(d) such that

(4.17)

Choosing L large enough, and then, ε small enough, we get y < 1 as desired.

5. Discussion

We mention various aspects of our criterion:

1. Better estimates on the critical parameters can be obtained by applying our
criterion using "bigger" trapezoids. In particular, CNtR is always better (in the sense
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of "not worse") than the single site condition (1-2). The reason for this can be seen
from formula (2-9): any "sub"-coupling on smaller trapezoids "admissibly covering"
(in the sense of Definition 2) the bigger trapezoid Λ, can be used to construct the
coupling for the conditional probabilities qΛ. More precisely, let ΓN R generate an
admissible covering Π of the strip SN with fundamental cell R and consider an
admissible sub-covering Π' in which every trapezoid A e Π is covered by trapezoids
A'eΠ', Λ'ciΛ such that each point xεΙ(Λ) is an inner point of exactly one
trapezoid A1. Then, we can construct a coupling pσ^σ2 for the conditional measures
qA(",σl) and qΛ("9σ

2) from the corresponding couplings on the trapezoids Λ' (as
was done to construct the coupling Pη'ηJ in the proof of the Main Theorem). The
simplest example is to consider the unit trapezoids {Ax}xeS χzd as sub-covering.

The y (in (3-3)) it produces will just be the Nth power of (1-2). In Example 1, it
would be y = 4(l-ε)2; in Example 2, y = 9m2. We may expect that such a
sub-coupling is increasing y, as it should if the original construction was done in
an efficient way. An unefficient way to apply our criterion would be to take N = 1
whatever we choose for fundamental cell R, since in this way we cannot really
exploit the weak dependence on the initial conditions, beyond what is already
contained in the single site condition (1-2).

2. The estimates we get from CNtR for a given PCA rule, depend on dimension
and lattice. In a certain sense it is of course impossible to describe the same PCA
rule on different lattices, but we will illustrate the meaning of our claim by
considering Example 2 and comparing it with the Majority Vote model in one
dimension. The latter is the PCA with transition probabilities identical to (4-2)
but with neighborhood U = { — 1,0,1}: the spin at site zero takes on the value of
the majority vote in U, with probability 1 — 2ε and becomes ± 1 each with
probability ε. While the rule looks similar, the dynamics it produces, are totally
different. Toom's model satisfies the so-called "eroder condition" (see [LMS]) and
its one dimensional counterpart certainly does not. In fact, it was recently proven
by Gray that this one-dimensional Majority Vote model is ergodic for all 0 < ε ̂  \
(the samll ε version can be found in [G]). Still the single site estimate (1-2) gives
the same bound as in the Toom model, εc ̂  |, because there is no information on
the lattice contained in it. Taking however a covering of the strip S2 already shows
a difference: at time N = 2 a spin depends on the configuration in 6 spins at time
0 for the Toom model and on 5 spins for the one-dimensional Majority Vote
model. The estimates we get for the latter will therefore be better as can be checked
by applying the analogous construction to Example 2, see Fig. 3. We find the
corresponding y = ^-m2 — ̂ m4 implying the bound εc^0.317. For larger N the
difference becomes of course more outspoken.

3. As we saw in the previous section, CN R is also useful for proving uniqueness
of Gibbs states in ESM. Example 3 shows that CN R does not imply the Cv condition
of [DS]. It remains an open question whether the opposite holds true, see [AH]
for a related question. However, comparing (1-2) with (4-5), it is obvious that the
Dobrushin single site condition for the uniqueness of Gibbs measures is equivalent
with the corresponding one site criterion for PCA. We conjecture that in general
the CNR criterion is less restrictive, i.e. if for some interaction the condition Cv

holds for some finite Fez TLd, then criterion CN R is verified for a dynamics which
leaves the corresponding Gibbs measures invariant.



C. Maes and S. B. Shlosman

2 1 0 1 2 3 4 5 (2)

Fig. 3. Majority vote model

4. A more general setting of the problem is of course possible. First of all, there
are the generalizations to compact metric state spaces, to the non-translation
invariant case, to the non-finite range case, etc. which we consider doable. We are
also optimistic about a continuous time formulation (the single site condition (1-2)
is the M < s condition in [L]) and are encouraged by Theorem 2-12 in [AH]. An
interesting generalization may also be found in the context of random fields
possessing a global Markov property. Note that the PCA processes, as random
fields on Zd+1, of course have this property, see also [GKLM]. The solution of
the problem as presented here, indicates that the global Markov property may be
the only natural condition for applying our method, just as the local Markov
property (or, DLR-equation, cfr. (1-4)) is the crux in the methods of [DS] to
establish uniqueness of Gibbs states.
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