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Abstract. The connection between the exchange algebra in the SU(2) Wess-
Zumino Novikov-Witten model and the quantum group SU(2) is discussed. It
is shown that on the quasiclassical level this connection has the simple
interpretation in terms of the Lie-Poisson action of 5(7(2) on the chiral
components of the fields in the WZNW model.

Nowadays a new tendency proclaims itself in 2d conformal field theory. In contrast
to the pure bootstrap program of the original proposal by Belavin, Polyakov and
Zamolodchikov [1] it is based on more traditional methods of quantum field
theory. We see the return of the lagrangian formulation with the beautiful
geometric interpretation of corresponding action (see i.e. [2]), use of the functional
methods [3], etc. In view of the exact solvability of CFT, it is natural to invoke the
approach of quantum integrable models [4]. In fact, it was extensively used in the
beginning of 80-ties in connection with the Liouville model [5-7]. Moreover, the
quantum group attributes already appeared in these papers. Now, when the
quantum group methods are coming to fashion it is only reasonable to return to
this approach and take off the mystery from the relations between conformal field
theory and quantum groups.

A recent preprint by Gervais [8] on the Liouville model is one of the first steps
in this direction. My note contains some results obtained independently. I have
taken as a representative example the Sl/(2) Wess-Zumino-Novikov-Witten
model rather than Liouville (which is a reduction of noncompact s/(2, R) WZNW)
because the peculiarity of the elliptic monodromy is clearer there.

I shall work in the hyperbolic space time with the simplest topology of a
cylinder,

-oo<ί<oo.

The classical field variable g(x, ί) is a 2 x 2 unitary unimodular matrix, periodic in x



132 L. D. Faddeev

The action functional

Λ = ~ J tr(δμgg~ l)2dxdt+ ±jj trd- \dgg- ')3

leads to the equation of motion

a+(g'13-g)=o
with solution

g(x,t) = u(x + t)v(x-t) (1)

and Poisson bracket relations most readily written in terms of currents

R+=ufu-1; L_ = -ιΓV, (2)
namely

y)}=yr5Xx-tf (3)+

)} = -yrδ'(x-y) + ̂ L_(x)®I-I®L.(y\r^δ(x-y). (3)_

Here u and v are unitary unimodular matrices (R + and L_ being antihermitian,
traceless); in writing (3)+ and (3)_ I use the convenient notations (® } for the
Poisson brackets of matrices with an evident definition; 4 x 4 matrix r is given by

where σt are Pauli matrices.
Matrices u(x) and v(x) will be called the chiral components. They can be also

called chiral vertex operators, when quantized. If we normalize them by some
appropriate initial conditions in the equations

u' = R+u; v'=-vL_ (4)

then the monodromy - an elliptic matrix S such that

u(x + 2n) = u(x)S; v(x + 2n) = S~ X*)

is a dynamical variable.
All this is very well known and explicitly explained by Witten in [9]. However

the natural question about the brackets of matrices u and v as well as their
quantization was not answered until recently. Led by the Liouville example
investigated by Gervais and Neveu [6] with important clarification by Babelon
[10], one could suspect that these brackets must look like this (in the following we
shall consider only one chiral component, say u(x))

{u(x)^u(y)} = u(x)®u(y)q±, (5)

where ± correspond to x>y and x<y and q± being classical r-matrices,

/-I 0 0 0 ^

= 0 1-4 0
q 2j ' 0 0 1 0

0 0 0 - 1
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Here P is a permutation matrix, P=^(/ + r). Some arguments were given recently
by Block [11] who used the canonical variables introduced in [2].

However these relations being good for the s/(2, R) case cannot be used directly
in the unitary case. Indeed, if u(x) is unitary in (5) then q± are to be hermitian 4 x 4
matrices.

The quantum generalization of (5)

) = u(y)®u(x)Q± , (6)

where Q is a s/(2) K-matrix

0

0

0 \
Q

0

and

has the same drawback: in su(2) case the matrix Q is to be unitary.
The way out of this difficulty is to observe, that relations (5) or (6) depend on the

boundary conditions for solving Eq. (4). In particular, for the Floque solution UF

with the diagonal monodromy

s=
eip 0
o .-

the matrix Q must depend on the quasimomentum p. We can hope that among
such admissible matrices we are able to find a suitable one. The message of this
paper is that it is indeed the fact.

I shall discuss the quantum version from the beginning. Suppose that
1. The matrix elements of UF(X) have simple commutation relations with
quasimomentum: for any arbitrary function f(p) we have

ιW ? (8)

2W, (9)

(10)

(11)

(12)

i = l,2. (The reason will be clarified later.)
2. Matrix UF(X) satisfies the commutation relations

PuF(x)®uF(y) = uF(y)®uF(x)Q£(p)

with unknown unitary matrix Qp(p) and a linear combination

u = uFΩ(p)

satisfies the relation (6) with Q± given by (7).
It turns out that these conditions define Ω and Qp(p) almost uniquely.
Indeed, substituting (11) into (6) and using (10) we find relation

Af(p)Q±=Qί(p)M(p),
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where 4 x 4 matrix M(p) is written in terms of the matrix elements of matrix Ω

^α

as follows
' α + α α+y y+α y+y

α_£ y_j? y _ £

β+y <5 + α δ+γ

β_δ δ.β δ.δ

Here α+ =α(p + y), α_ =α(p — y), etc.
We shall look for Qp (p) in the form

'

/ 0 0

o

0 0

and chose f = eίy/2 - the same as in Q + . Then (12) gives 12 equations for 8
unknowns, α, j?, y, (5, α, b, c, d. Fortunately some equations are dependent and we
end with the result:

c , e - w a -
smp smp h(p)

where

is not fixed by the equations. We can choose it to make Qp unitary so that b and c
become

b(-p). (13)

Matrix £F is given by Qp =(Qp)~ί.
It is gratifying to observe that the matrix Qp obtained coincides with 6j symbol

of slq(2) introduced by Kirillov and Reshetikhin in [12] for the spin 1/2 case if we
identify

q = e21?; p = (2/+l)y. (14)

Since this object (and its generalization to other groups and representation) is the
main ingredient of the modern treatment of the bootstrap program (see survey
[13] and numerous literature there) its appearance in our treatment shows its most
natural place in QFT: it is an exchange matrix for chiral component up of a field
operator g(x, t) with diagonal monodromy S.
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The quantization j = 0, 1/2, . . . inherent in (14) is a natural consequence of the
compactness of the portion of the phase space for p and conjugate q, entering into
UF as

and having relation

[p,<i] = -iy
with p.

The component VF of opposite chirality with diagonal monodromy

satisfy the relation

Components UF and VF need not commute among themselves due to the
appearance of e±ίq factors; however the relation of the form

(φc)® /) (I®u(y)) = (J® ttOO)C(φc)® /)

ensures that the local field

) = u(x)v(x)

(defined with an appropriate renormalization) is commutative.
I finish with several comments.

1. The main formula (10) makes it clear how the quantum group acts in QFT.
Writing down (1) as

gate 0 = Σ "*(* + t)v«k(* - 0 (1 5)
α

with enforced distinction in writing the indices we can say that the quantum group
acts on the α-index. This action is seen only after the chiral components are
introduced and it is hidden when one considers only local field variables (cf. [14,
15]).
2. We did not give any direct derivation of the relation (10). To do it one is to make
control of the quantum expressions of the sort

X

u = P exp J R + (x)dx u(0)
o

with proper quantization of the classical relation (3)+. Instead several consistency
checks are available.
i. From (10) it follows, that if /+ =eiyl2 and

ι*Ϊ!(2π) = 11
then

which (with analogous formulas for other matrix elements) confirms (8).
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ii. Classical limit of (10) looks as follows

{uF(x)®uF(y)} = uF(x)®uF(y)q*(p),

where qF(p) is given by quasiclassical expansion of QF(p)

and have the form

/-ε 0 0 0
0 ε -2(ε + ίctgp) 0
0 -2(ε-ϊctgp) ε 0
0 0 0 -ε/

where ε = ε(x—y). The differential equation, satisfied by qF

<lF

Xy=-yrδ'(x-y)

ensures that R+ introduced in (2) satisfies the relations (3).
iii. The Yang-Baxter relation, satisfied by Q± makes the Poisson bracket or
commutation relations consistent (Jacobi identity or associativity).
iv. It is plausible that the properties listed above define QF(p) essentially uniquely.
3. In the Liouville model the role of Eq. (4) is played by

where S(x) comprises the generators of the Virasoro algebra, i.e. classically

= y(S(x) + S(y))δ'(x - y) + yδ'"(x - y) .

For two linearly independent solutions ιp1? ψ2 combined in a row ψ = (φl9 ψ2) we
should have (in quantum version)

ψ(x)®ψ(y)=ψ(y)®ψ(x)Q± , (16)

where Q± coincide with (7) for a particular choice of ψ. For other choices Q will
depend on p.

In the original paper of Gervais and Neveu the matrix Q(p) appeared
corresponding to the choice

_ -u- . ,/π)Γ(l-p/π)
W Γ(-p + y/π)Γ(l+p/π)

Recently Gervais preferred the choice h = ί. However for the effective su(2) case
(c<l or O^y^π) when the quasimomentum entering through

is real the choice corresponding to my QF(p) is more appropriate. In the s/(2, R)
hyperbolic case (c>25 or — π^y ̂ 0)p must be changed p-*ip (I don't agree here
with Gervais [8]) and the classical analoque of (16) with Q = QF follows from
identification [6, 7, 15],
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where u have Poisson brackets

HX), u(y)} = yε(x - y) )u(x) - u(y))2 + y cthp(u2(x) - u\y)) .

Note that the quantum lattice analogues are also proposed in [7, 15]. It is still
unclear which y correspond to the s/(2, R) elliptic case. Naive continuation hints
that y is complex, |y| = π.
4. Due to the simple relation

it is usually proposed to parametrize uΐim terms of a free field (oscillators and zero
modes). This is essentially the origin for free fields in CTF. However it seems to me
that the quantum group relations (10) are to be used directly for the calculation of
the Green functions. The implementing of such a program is now in progress.
5. The expression under the square root in (13) vanishes for p = y and p = π—y.
This shrinks the interval for admissible π from p to π — 2y. It can be compared with
the famous renormalization y-+πy/π — y characteristic of the Sine-Gordon model
(see [1 7, 1 8]). This also explains why p gets K + 1 different values when y is given by

> namely j = 0, -, . . . — in (14).

6. It is worthwhile to mention that CFT models should be understood as the
particular limits of quantum magnetic chain models, delat with in the general
scheme of algebraic Bethe-Ansatz [4]. The works of Volkov [16, 19] are
indications of this in the Liouville case. The works of F. Smirnoff [20] show the
same from another point of view.
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