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Abstract. We give an alternative geometrical proof of asymptotic complete-
ness for an arbitrary number of quantum particles interacting through short-
range pair potentials. It relies on an estimate showing that the intercluster
motion concentrates asymptotically on classical trajectories.
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1. Introduction

The first task of quantum scattering theory is to give a classification of the possible
large time behaviours of Schrδdinger orbits e~itHψ. In this paper we study this
problem for an arbitrary number of particles interacting via short range
interactions. In the intuitive picture of the scattering process, this system is well
described at large times by a number of bound clusters which do not feel each
other. This statement is called asymptotic completeness. For ΛΓ = 2,3 it was proved
by several authors (see [2, Sect. 5.7] for a review), and in particular using geometric
ideas by Enss [6-8]. For arbitrary N the proof is due to Sigal and Soffer [22].

Our main intermediate result is a propagation estimate showing that
asymptotically 2pa« xjt on that part of configuration space, which corresponds to
a given cluster decomposition a. Here we have used the notation of [22] which is
reviewed at the end of this section. Such a property in fact is typical for the clusters
of a moving freely. This result is not new, since it was derived earlier in [23] (with
the only modification that the partition of unity used there is in phase space).
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Somewhat similar results relying on a spectral rather than on a geometrical break-
up were derived in [9]. New, however, is our approach for proving this property,
where a boosted Hamiltonian

is the main propagation observable. Boosted Hamiltonians have been used in
[1, 3] to establish exponential bounds on bound state wave functions of ΛΓ-body
systems. The difference here is that the function φ is no longer imaginary, but real.
This is related to the analogous change of the phase of the wave function, when
passing from an energetically forbidden to an energetically allowed region. The
propagation estimate we mentioned is based neither on channel expansions, nor
on local decay, nor on the Mourre estimate. Yet, the latter becomes crucial when
proving asymptotic completeness.

The hypothesis on the pair potentials VtJ as real multiplication operators on
L2(X(ij)) are grouped according to their different role in the theory.

Decay Assumption.

(1.1)

(1.2)

for R>R0 and some R& μ: = min(μ1,μ2)
>0

Short-Range Assumption.

μι>\. (1.3)

Compactness Assumption.

^<p2 + l)-1,(p2 + l)-1

}; ί7^)(P2 + l)"1 are compact. (1.4)

The Hamiltonian of the ΛΓ-particle system is

H=p2 + V: = p2 + ΣVij{x(ij}) (1.5)
<y>

on L2(X), where X is the N-body configuration space with center of mass motion
removed.

We now define the wave operators

Ωa: = s- lim j™e-mapa (1 6)
f-» + oo

for all cluster decompositions α with Φ(α)^2. Here Pa = \®Pa with respect to
L2(X) = L2(Xa)®L2(Xa) is the bound state projection for Ha. States in the range of
Ωa are asymptotic to bound non-interacting clusters of α.

Theorem 1.1. Assume the pair potentials V^ are infinitesimally small with respect to
p2 on L2(X(ij)\ and satisfy (1.!)-(!.3). Then the wave operators (1.6) exist, their ranges
are closed, mutually orthogonal, and satisfy

0 RanΩαcRan(l-P).
#(β)£2

These facts are rather well known [15,12,14,19,20]. Nevertheless we include a
proof, because the ones we are aware of make assumptions on the potentials in
terms of Lp-spaces. Our aim, however, is to prove
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Theorem 1.2. The quantum N body system (1.5) satisfying (1. !)-(!. 4) is asymp-
totically complete, i.e.

= Ran(l-P). (1.7)

The proof we present is self-contained, except for the Mourre estimate [16, 17,
10, 2]. By the same techniques some related results can be proved:

- Inclusion of 3- (or more) body potentials.
- Inclusion of permutation symmetry [21].
- Propagation theorem [22, 5] for a time-dependent propagation set.
- Asymptotic clustering for Coulomb-type potentials [23].
We now introduce a number of notions and notations pertaining to N-body

systems. The physical space is Rv, v ̂  1. The configuration space of N mass points
m{ > 0 in the center of mass (CM-) frame is the real vector space

equipped with the metric

χ.y: = 2^

where x1 yl is the scalar product on 1RΛ We will also use the notation x2 = x - x and
\x\ = (x x)if2. The Hubert space of the quantum mechanical AΓ-body system is
L2(X), where the volume element of X is defined by the metric.

Clusters are nonempty subsets Cc{l , . . . ,N}. The subspace

Xc:={xeX\xl = Q if iφC}

represents the configuration space of the cluster C in its own CM-frame. Evidently
XCl _L XC2 if CΊ n C2 = 0. A cluster decomposition a = (C l5..., C#(fl)) is a partition of
{1,..., N} into clusters. We thereby set # (a) to be the number of clusters C e a. We
define

χ*:= 0 χc= JxeX £ m^O for Ceαj. (1.8)
CeQjQ 1 ie[F| J

The meaning of this notation [17] is that variables within boxes are kept fixed, i.e.
that the sums are ranging over the other variables only. We also write (ij) for the
cluster decomposition (ij) = (1)... (i)... (/')... (N) (ij), where A indicates omission.
Then X(ij) is the configuration space for the relative coordinate of the pair ij. The
orthogonal complement of Xa is

Xa:= {xeX\xί = xj if ij'eC for some Ceα}.

We denote the orthogonal projection onto Xa, Xa by lα, lα respectively, and set the
shorter notations x f l:=lαx, xα:=lαx. The splitting X = Xa®Xa induces the
factorization

L2(X) = L2(Xa)®L2(Xa), (1.9)

whereas (1.8) induces

L2(Xa)= (x) L2(XC). (1.10)
Ce[α]
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The cluster decompositions are partially ordered by αCb, expressing that each
cluster of a is a subset of a cluster of b. By αub we mean the smallest cluster c with
a C c, b C c, whose existence and uniqueness is readily verified. The relation a C b
implies l f l^l& (in the sense of orthogonal projections and hence of quadratic
forms), as well as xb

a = xa

b = : xb

a.
The operators describing the particle velocities are the components of

2p = (2/ί) V, where V is the (contravariant) gradient. The operator

(ij)c OH

on L2(Xa) then describes the internal motion of a system of non-interacting
clusters. With respect to the factorization (1.10) it has the structure

Ha= Σ !®...®#c(g)...®l, (1.11)

where Hc is the Hamiltonian of the cluster C in its own CM-frame. By Pa we denote
the bound state projection of Ha. In particular, the Hamiltonian (1.5) is
H = H(ΐ N\ and P: = P(1-N) is its bound state projection.

The free intercluster motion of the non-interacting clusters is included in the
description when considering

(1.12)

on (1.9). Alternatively, it can be written as Ha = H—Ia, where

/ : = y F {X(IJ))
(ij) Φ 0

are the intercluster interactions. Under the assumptions used in this paper the
Hamiltonians above are selfadjoint on the domain D((pa)2\ respectively D(p2) of
the kinetic energy.

We use the notation F(xeA) for the (sharp) characteristic function of AcX.

2. The Partition of Unity and the Vector Field

In this section we will construct a partition of unity as characteristic functions of a
partition of theJV-body configuration space X. Like for other partitions of unity
indexed by cluster decompositions, each member has a support designed to "kill"
intercluster interactions, but in addition the normal to its boundary is at any point
orthogonal to the motion within those clusters, which are compatible with this
point Related to this is the construction of a vector field, whose derivative (as a
matrix) has suitable positivity properties.

The seminorm ((xa)2 + (xb)2)1/2 is a norm on Xaub, hence

104 - (xαu»)2 <(xa)2 + (xb)2 (2.1)
for all α, b and xa^b Φ 0, provided q > 0 is small enough. We also require 5q g 1 and
set

if

if a =
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and ql: = qa — qb. The separate definition if α = (1)... (N) is not essential, but it eases
the notation due to ^i)...(^> = ̂ α, in imitation of xj^ w = xα. We will frequently
use (2.1) in the form of

Lemma 2.1. Assume that aζbandbζa, and letcCa,cCb. If (xa

c

ub)2 ;>(l/2)qa

a

u b and

(xb)2>2qb. (2.2)

Proof. Notice that if #(/)> #(g), then q-qβ^qf. Moreover, like in set theory,
= b, hence under our assumptions α u f c j f c and avb^a. By (2.1)

(x*)2 > lOήf - (1/2) (q™b - qa) - 2qa ̂  5q - q™b -qa- 2qa

= 2q - <T * + 3(q <f»*-<f * 2qb ̂  2(qb - qc) ,

where we used 5q ̂  1 in the second step. Π

For the rest of this section we will use this lemma in the weaker version with
factors 1/2 and 2 dropped.

We can now define our partition of unity {Ja}a, which is not smooth and which
is indexed by all cluster decompositions of {1, ...9N}, including the trivial one
(1.. .JV):

ΛW : = Γ Π F((x{)2 > q{)] Γ Π F((x°)2 ^ <Q\ . (2.3)
L / U l J U E J

Related ideas in the construction of the partition of unity were used in [22].

Lemma 2.2.

ΣΛ(*) = 1 (2.4)
α

Proof. We define

and prove (2.4) by showing

(a) For each xeX there is at least one α with xeΣa,
(b) For each x e X there is at most one α with x e Σa.

Fig. 1. The configuration space X for N = 3, with subspaces Xa and subsets Σa
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Proof of (a). Let xeX be given. Choose a maximal a such that (xa)2 — qa

^ (xb)2 — qb for all cluster decompositions b (i.e. an a such that no a' J a enjoys this
property). We claim x e Σa. Indeed, for / J α, (x{)2 - <?{ = (x')2 - qf - ((xa)2 -qa)>0
by the maximality of a. Similarly, (Xg)2 — <fg^ for gζα.

Proof of (b). Let α φ £. We have to show ΣanΣb = 0. We distinguish between i) a C b
or bCa, and ii) a§.b and b([a.

i) It is enough to consider aCb. xeΣa implies (xb)2>qba, and xeΣb implies
(xb)2^qb

a. Hence ΣαnΣb = 0.
ii) Here αufc J α. Thus for x e Σα we have (xaub)2 ^ (xa

a

ub)2 > q™b and (xa)2 ^ qa.
This proves (x6)2 > qb by (2.2), which implies xφΣb. Π

Another property we will use is

Lemma 2.3. For xeΣa and (ij)<ta

(x(ij))2>q(ij) = qN~2. (2.5)

Proof. Since αu(y) J α, we see that (xβυ(ίΛ)2 ̂  (x^(ίj))2 > βSυ(ίΛ, as well as (xα)2 ̂  gfl.
If α ί (ij)9 we get (2.5) from (2.2); otherwise α = (1) . . . (N) and (2.5) is included in the
definition of Σa. Π

We now define the basic vector field on X:

W(x):=ΣJa(x)*a (2.6)
α

One of the reasons for our choice of the partition of unity lies in

Theorem 2.4. As a distribution, the derivative W^(x) is symmetric and satisfies

iα. (2.7)

Proof. In the following we consider products of distributions. It is not difficult to
see that they are always well defined, since their singular supports are manifolds
which intersect transversally. Evidently

since (x J^ = lα. We thus have to show that the first term on the right-hand side is
positive semidefinite. Applying the product rule to (2.3), we obtain

where

^ βί)l Γ Π F(W)2 ^ (©] PJW2 ̂  ώ (2.8)
U$Ξ -IJ

for fc J α, and similarly for b ξ α (for the sake of interpretation, Jflaf, is a term related
to the boundary between Σa and Σb). It will be enough to show

^Q (2 9)
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for all α,ί> with 6Jα, since then

) = Σ *a®JaSb+ Σ

+ Σ
ij>β fcja

where we interchanged the names of the variables in the second step. We now prove
(2.9) by performing some replacements in (2.8), so to make JαSb comparable with

Λ0α

1 1 1 For g ζ b with g <f α, g J) α we have either i) αug = b or ii) αυg φ b. In case i)
we have

F((x°)2 ^ q") FF((x£)2 ̂  $ = F((x£)2 ί <$ F((x")2 ̂  <

while in case ii) we have

F((x°)2 ^ q") F(x™*

(lϋ)

In fact in both cases we have on the support of the left-hand side (x*)2 = q*, as well as
(χ υ )2^(x:υ )2^β:u and (x")2^ga, hence (xa)2>qβ by (2.2). Since (x*)2+(x9)2

= (xfc)2 = (x*)2 + (x")2, we obtain (x*)2 g «* + «•-«• = q"g.
ί For α

F((x»)2 ̂  ̂  FF((x*)2 ̂  ql) = F((x*)2 ̂  <fy FF((x£)2 ̂  ώ , (2)

since for (x£)2=<& (xa)2^qfl iff (x^)2^, due to (x*)2=(x*)2+K)2

00 For f^α with

(3)

since for x in the support of the right-hand side (x*υ/)2 ̂  gju/ > qjυ/, (x*)2 = qb

α ̂  q6,
and hence (x{)2^qί by (2.2).

[4] For/J fe

(4)

since for (x*)2 = <& (x{)2^^ iff (x{)2 {̂, due to (x{)2 = (x{)2 + (x*)2.
[5] Finally, for b^f^α

F((x{)2 ^ q{) FF((x*)2 ̂  ή*) = F((x^)2 5Ϊ ̂ ) FF((x*)2 ̂  ίa) , (5)

since for (x*)2 = <zfl, (*ί)2 £ βί iff (*/)2 ̂  & due to (xj)2=(x^)2+(xί)2.
Performing successively the replacements (1) up to (5) in (2.8), we get

L/2 fe] -Jl 0£L£J J

This is, up to a reversal of the inequality in the argument of PF, equal to Jbdα.
Disregarding the common nonnegative factors, we obtain for the left-hand side of
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(2.9)

)2 ̂  qfi) = 2<5((xα)
2 = $ (xa® xfl -

since xa — xb = xb — xa = xb

a. Π

We conclude this section by proving some further properties of the vector
field W(x).

Lemma 2.5.

W(xflJ> = 0 for (x(ί»)2<qN-2, (2.10)

||x_p^^|| < oo ? (2.11)

||(x-^(x)) x | | G O <oo. (2.12)

Here || H^ for vector fields is the norm on L°(X,X).

Proof. Let (x(ίj})2<qN~2 and (ϊ/Kα. We then have xφΣ~a = suppJa by (2.5), and
hence

W(γ}— V 7 ΓxflxV" V-*y — 2-i α\Λ7 *'ίi

Thus (2.10) follows from x£j) = 0 for αD ((/'). We compute

Λ r Γ V / / > *̂  Λv*^/ v ̂  O/ ~~~ / .. ** Λ\ / '
α α

where we used (2.4), and

r Y _ w/^ γγι. Y — v 7 ί vWα Y — V / f v^ ί γαϊ2

\^Λ r r \Ajj Λ — / a »/ Λ\^ΛyΛ Λ- — / ; «/ aV"^/ v*1 / '
α α

Thus (2.11), (2.12) follow from (xa)2 <; qa on Γ^=supp Ja. Π

3. Smearing Them Out

We will need the partition of unity and the vector field to be smooth. This will be
obtained by taking convolutions with a smooth φ. We list the required properties
of the mollifier:

fφ(x)dx = l, $xφ(x)dx = Q, (3.1)

supp φ C {x E XI |x| ̂  σ}, σ > 0.

We will refer to σ as the sharpness. The fact that the smeared quantities will have a
slightly larger support than the original ones motivates the following definition:
for a set AcX we define
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We now define smooth partitions of unity, Ja and ja

[see (2.3) for the definition of Jα], and state

Lemma 3.1. Jaja are smooth with bounded derivatives, and

1/2 = 1. (3.5)
α

Furthermore, for y e suppjα = supp/α, and (y) £ a

I/ΛI^/JΓ, (36)

provided the sharpness σ>0 is sma// enough.

Proof. £/a = ΛΓ Ja W = 1 * φ = 1 by (2.4); (3.5) follows from (3.3) and from the fact

that the denominator there never vanishes by (3.4).
N-2

We impose σg(l/2)g 2 . For yE$uppJacΣ* there is anxeϊ^with |>; — x|^σ.
Hence

N-2 N-2
2

by (2.5). Π

The next two lemmas will be needed in the proof of two further important
properties of our partitions of unity.

Lemma 3.2. Given fe0 > 1 and provided the sharpness σ>0 is small enough,

Σ'an(Σ'b.k-1) = 0 (3.7)

for bζa and k^k0. (By this we mean that σ depends on k0 but not on b,a,k.)

Proof. By taking σ > 0 small enough, we can impose

for all αξfe; and

for all feΦ(l) ... (N) and all α with αuft Jα.
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From b <$. a it follows b φ (1) . . . (JV). We distinguish between i) α C b, and ii) α φ b.

i)

Hence
ii) In this case we also have αφ(l)...(A/). Let xeΓ£. Since

'
1/2

and |xa|^(4°)1/2 + ff^|/2(fla)1/2. Together with (2.2) this proves

\kx"\ > |x*| > ]/2(q")112 > (qb)ίlz + σ ,

thusxφΣΪ k-1. Π

Lemma 3.3. Given k> 1 and provided the sharpness σ>0 is small enough,

(3.8)

Proof. By taking σ>0 small enough we can impose

for all g^b. We may assume b Φ (1) . . . (JV), since otherwise (3.8) coincides with (2.3).
|T| For gξα with feφg, b])g we have either i) bug = a or ii) bug^α. For

x e (Σl - k~ l)σ we have in case i)

F((x*)2 ^ q") F((x$2 ^ q°) = F((xa)2 ̂

while in case ii)

F((x")2 g <f) F((x^β)
2 ί fa) F((xtf ^ <Q = F((x°)2 ^ <f) F((xjυf)

2 ̂  fa) .

(lii)

Assume the contrary, i.e. that there is an xe(Σ£ /c~1)σ in the support of the right-
hand side of (1 i) or of (1 ii), such that (xJJ)2 > <fg. In case i) this is equivalent to
W)2 > ίju', but also in case ii) we have (x*^2 = (jcp2 - (xa

bug)
2 >qa

g- qa

bug = <$»,
which in both cases implies (xbu9)2^(xb

g

ug)2>qb

g

ug.
On the other hand (x9)2 = (xa)2 - (xβ2 ^qa-qa

g = q9, and hence (xb)2 > qb by (2.2).
This contradicts jc 6 (Σl - k~ lγ, since for y e Σσ

b k~ 1 we have |/| ̂  k~ l((qb)ί/2 + σ\
and thus \xb\^k-\(qb)i/2 + σ) + σ^(qbY/2.

\2\ For g^α with gξb and for xe(Σl-k'l)σ

9

ί (Q = F((xl)2 ^ <β . (2)

c'1 we have l^fc-^^ + σ), hence \xb\^k-ί((qb)ίl2

= (<?α)1/2 If we restrict x further to the support of the right-hand side of (2), we get
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Performing successively the replacements (1) and (2) in (2.3) we arrive at
(3.8). D

Lemma 3.4. Given k0>ί and provided the sharpness σ>0 is small enough,

y) = 0 for bζa, (3.9)

ja(y)=ja(y) Σ ΛίM, (3.10)

(3.1 1)
be [5] .

Vja(y)=Vja(y) Σ ΛM2 (3.12)
be 0

/or fe^fe0.

Proo/. Equations (3.10), (3.1 1), (3.12) would hold by (3.4), (3.5), if the sums extended
to all b. We have to show that (3.9) (and similar terms) vanish for bξa:

y supp Pjα, supp Vja C Σσ

a ,

supp Jb(k ), supp jb(k

Lemma 3.5. Given k > 1 and provided the sharpness σ > 0 is sma/ί enough,

(3.13)

(3.14)

/or b C a.

Proo/ For y e suppjb(k ) C Σb k ~ 1 we have

where y — z e (I£ fe " 1)<r for z in the support of the integrand. Then Pjα(;y) = Vbja(y\
since on (££ k ~ 1)σ (which is the closure of its interior) Jα(x) is a function of xb alone
by (3.8). We now prove (3.14). Let c$b. Since suρpJccΓ?, we have Jc(y) = 0 for

k'1 by (3.7). Thus

Σ /

and (3.14) then follows from (3.13), which also holds for a replaced by cDb. Π

We now turn to the smoothing of the vector field W. We define

w:=W*φ (3.15)

[see (2.6) for the definition of W}.

Lemma 3.6. Given fc0 > 1 and provided the sharpness σ > 0 is small enough,

ja(y)w(ky)a=ja(y)kya (3.16)
for k 5: fc0.
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Proof. We first prove

= kya (3.17)

for yeΣ2σ and fe^fe0. By definition W(ky)=^Jb(ky)kyb, but for beta, suppjb(fc )
b

CΣb'k~1cΣ^σ-k~1 is disjoint from Σ2

a

σ by (3.7), hence

W(ky)= Σ
be \a\

and(3.17) holds becausey b > a=y a ϊorbCa and Jb(ky) = 0for b ί α. We can now prove
(3.16): for yεsuppjacΣσ

a '

w(ky) = j Wflty-z) <p(z)dz- J W(k(y-zk'1)) φ(z)dz,

where y — zk~^ eΣΰ

a

+σk~l cΣlσ for z in the support of the integrand. Therefore

w(Mα = J (% - zk- ̂  φ(z) dz = kya,

by (3.17), (3.1). Π

Finally, we carry over to w the properties of W derived in Sect. 2.

Lemma 3.7. For sufficiently small sharpness σ > 0, w has bounded derivatives (of
degree ^lj, w^ is symmetric, and

^=0 /or ιy/Λι^-
2

N-2

(3.20)

(3.21)

JV-2

Proo/. We impose σ< (1/2) <2 2 .

JV-2 J V - 2

where \(y — z)(ij)\ ^ (l/2)^f 2 + σ < q 2 for z in the support of the integrand. Thus
(3.18) follows from (2.10).

w* = ̂ * * Ψ ^s symmetric since W^ is, and (3.19) follows from (2.7) by φ ̂  0.
W e h a v e y * φ = yby(3.1);||^

lows from (2.11).
From w= W*φ = (W— y)*φ + y we see that w has bounded derivatives,

because 3; has, and by (2.11).
By explicit computation, ((3; — W) - y) * φ = ((y — W) * φ) - y — (y — W) * (yφ).

This proves

L«>(X,X) (3.22)

by (2.11), (2.12). Using again y* φ=y, we get for any tangent vector X

l((y-W) * φ) y]. (X)=((y-w) y), (X)=(y- w) X + y (1 - w.(y))(X)
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where we used that w^y) is symmetric. By (3.20), (3.22) we conclude
11(1-^(^Hoo < oo and
<oo. Π

4. Propagation Estimates

The purpose of this section is to show that, roughly speaking, the intercluster
motion concentrates asymptotically on classical trajectories. Throughout this
section we will assume that the pair interactions V^y) on L2(X(ij}) are infinitesi-
mally small with respect to p2 and satisfy (1.1) and (1.2). The Hamiltonian H is
of course (1.5), and the basic propagation observable is

K(t) : = {p — v(x, t))2 + V(x), (4.1)

where the vector field υ(x, t) will be specified later as a mild modification of x/2t.
The starting point of our propagation estimates are the Heisenberg equation of
motion. We thus define

A straightforward computation leads to

1 dv
^-^}'P

(4.3)

where v^ is the x-derivative of v, and ι̂  its transpose. Since K(t) is not bounded one
can either derive propagation estimates holding on a time invariant dense set only,
or introduce some cutoffs, thus replacing K(t) by a bounded operator. We will
follow the latter alternative and borrow the maximal velocity bound of [23] :

Theorem 4.1. Let Ωc^be bounded and measurable, and λ>0 large enough. Then

J \\F(λ^\X/t\^2λ)e-itHEΩ(H)ψ\\2^- ίgconst|MI2 (4.4)

for all ψ e L2(X), where EΩ(H) is the spectral projection for H associated with Ω and
the constant depends on Ω, λ.

Proof. We take /ιeC°°(]R) with λ'^0, (/01/2eQ?(R), and

^l for l^;μ^4, (4.5)

eIR|i^j^9}. (4.6)

For the propagation observable Φ= —h((x/λt)2) we compute

- (Vp EΩΦEΩψt) = (ιpt9 EΩ(DΦ)EΩψt) , (4.7)

DΦ~t(λt h' λtΓλt^^ λt'
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where yt = e~itHv, EΩ=EΩ(H) and h' = h'((x/λt)2). We have (x/λt)2h'^(ί/2)h' by
(4.6), and

(h')112 PEΩ+0(Γ ')

0+ 0(t- 1),

where we took χeC$(R) with χ(x) = l for xeΩ, and we used [(/ι')1/2> x(HJ]
= 0(ί~1), which is proved at the very end of this section. This shows

since \x/λt\^3 for xesupph'(( /λt)2), and thus

'=2ί

provided λ>0 is large enough. By integrating (4.7) we conclude

fίY^E^ΈβV^^s^

and (4.4) then follows by (4.5). Π

In the sequel /, g will denote two fixed functions with /, g e C%(X\ 0 ̂  /, g ̂  1,
/(x) = 0 for |x|^2, /(x) = l for |x|^l, suppgc{xe^ί|l ^|x|^2}, and g = l on
supp F/.

We also define the vector field υ in (4.1) by

t<x,ί):=f~M

with ^>0, which will be adjusted later [see (3.15) for the definition of w].

Proviso. From now on the clause "provided the sharpness σ > 0 is small enough"
will be omitted in the propositions, although it is assumed whenever quantities
depending on σ are involved.

Theorem 4.2. Let δ>0be small enough, ΩcR bounded and measurable, and λ>0
large enough. Then

1
(4.8)

for all ψ = EΩ(H)ψ, where \pt = e~itH\p and f = f(x/λt).

Proof.
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We first show that the terms in (4.9) arising from

87

λt λt 2tJ (λt)2 λt

are integrable in time. Since g(7/= Vf and since K(t) is a local operator, we have
fK(Df)=gfK(Df)g, where g=g(x/λt). Then, setting EΩ=EΩ(H),

=0(r1)

=(H-i)EΩg(H-iΓ (4.10)

=0(1) =o(r1)
where the 0(1) estimates will be proved below. This proves

f Kφ^

by (4.4). We estimate

^IΛ^ const f \\gEΩ(H + i)ιpt\\2^ + const ||φ||
1 t

~*\v(x,t)\ W( X \
\2t 1 Sj *r 1 const +

X

2tl-δ

\ .
1 ^ const t δ +

X

2t

by (3.20), proving fv, fv2, (F/) v = 0(ί),

. f X
t-°w. — ̂

1 1 ( x \
. . — w I . 1

Since w has bounded derivatives, we get K = H — 2p-v + v2 + O(t l); by /p ι>
=p fv + 0(t ~l) we then see (H — ί) ~x /K = 0(1), as announced. Next we show that
the terms on the right-hand side of (4.3), up to the first one, lead to integrable
contributions to (4.9),

i^25ί

2tl~

By (3.20), (3.21) we thus obtain

= O(ί~(3~2ί)). Finally,
2 dt\

, and \\Δ(V v)

ΊV
l ^constί1 -*)
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by (3.18). /£β = ((p^>)2 + l)-1B, where B=f((p^^\)EΩ^(p^)2,nEΩ

Thus

EΩfv VVijfEa = EΩfv(iί)F(\x(ii)\ ^ const ί1 ~δ) F% Cx(ω) ((p(ij))2 + 1)~ *

by (1.2). The claimed integrability thus holds, provided min(l+(5, 3 — 2<5,
(1 — <5)(1 + μ2))> 1. Integrating (4.9) we then obtain

2 J (v» /(P - *) K + *4) (P ~ Ό/Vi) Λ ̂  2 sup |(Vί, EΩfKfEΩψt)\ + const || φ || 2
1

since swptzι\\Eaf(x/λt)K(t)f(x/λt)E0\\ <oo, and t;1|t=(l/2)(j;1(t+ι4)^0 by
(3.19). D "

Theorem 4.3. Let ΩcRbe bounded and measurable, λ>0 large enough, and v>0.
Then

(4.11)

for all ψ = EΩ(H)ψ, where ψt = e IίHφ, f = f(x/λt) andja=ja(x/vt).

Proof. [See (3.3) for the definition of y'J,

/ x\2 / x \ / x\ 1
fJ.lP-£\ JJ=f\P-^il P-~ /-τi/(^)7«/. (4.12)

We claim that for large ί

/ v λ v / v \
x,t)a, (4.13)

(4.14)
I

In fact

where we took fc0>l and used (3.16), since vtδ/2^k0 for large t. By (3.19),

Thus

2 = Σ

[α]
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where we used successively u^O, (3.9), lb^la for bCa, and (3.10). Using (4.12),
(4.13), and (4.14) we obtain

~fja(p- ΐY;α/= /(P-tOj
3)

Thus (4.1 1) follows from (4.8). Π

As a first illustration of the importance of the boundaries of the partition of
unity, we improve (4.11).

Theorem 4.4. Let ΩcΉίbe bounded and measurable, λ>0 large enough, and v>0.
Then

$\Ψt,fJaP-^

K vX 2 ! 1 /^

'-i)J

X

pt = e~

Jafψt}— ^ const II
/ t

<V f=f(x/λt), ja

Ψ\\2

=ja(x/vt), and

(4.1ί

P~Έ

Proof. Since certain commutators of are not well behaved, due to the

singularity of ]/s at 5 = 0, we resort to the regularization of [23],

(4.16)

for β > 0. We compute

WjA1/2λ/)=/^X/2;J/+Φ/)7X/2y./+/;X/2/^/), (4.ιτ)
and again we first prove that the terms arising from Df are integrable:

/;X/2;ΛAfl=/ΛA1/2jΛ^^
where g = g(x/λt), with

(4.18)

The estimate of [Λ*'2, g] is deferred after the conclusion of this proof [see (4.24)].
The result is (for 0 </?<!)

0(1)

(4.19)
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Hence (4.18) is 0(Γ(2-β)) and

I \(ψt,E0fjaΛ¥2jJ(Df)EaψMdt £ const \\\p ||2
1

can be shown by following the pattern (4.10). We now turn to the first term on the
right-hand side of (4.17),

, (4.20)

and we are going to prove the integrability of the contributions arising from

Dja = (2/vt) (F/ J (x/vt) - (p - x/2t) - ί/(vt)2 (Δja) (x/vt):

(Dja}fEΩ=- Σ jl(Vbja

where we took 0 < t?0 < i;jfc =Jb(χ/vot\ and used (3.12), (3.14) with fe = v/v0. We thus
obtain

< const

* bc\a\

X

b
+0(r2)iMI2,

since Λll2jafEΩ = 0(\). The term in this sum is a product of two functions in
L2([l, oo), A/f) by (4.11), (4.16), showing that

We are now left with the first term on the right-hand §ide of (4.20):

DA*'2 = DaΛ
l

a'
2 + i\Iφ Λ

1/2] , (4.21)

where Da is defined by (4.2) with H replaced by Ha. The contribution arising from
the last term in (4.21), EΩfja\Ia,Λ

lJ2]jJEΩ, is integrable in time (for 2β<μ) by a
computation deferred after the end of this proof [see (4.34)]. The first term on the
right-hand side of (4.21) can be computed using eitHa(DaA

i

a

l2}e~ίtHa

Λ / 2 \ l / 2

= ^ ΛW*-***} and e^A^e-^11^ i +Γ2β\ . The result is

1 / 2 , (4.22)

where the contribution arising from the last term is integrable due to \\A~1/21| ̂  tp.
Collecting (4.17), (4.20), (4.21), (4.22), and knowing that all contributions,

except the one arising from the first term on the right-hand side of (4.22), are
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integrable in time for 0</?<min(μ/2,1), we obtain

fvi ^2sup|(tp ί,EΩf j aA^ 2 j afEΩ ιp t)\ + const\\ψ\\2

t r^ l
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This is equivalent to (4.15) by

^ const || ψ ||2.

x

(4.23)

P- 2t
+ Γβ. Π

The estimates (4.11) and (4.15) can be summarized by replacing in

(4.15) by p — — with 1 ̂  ε ̂  2. This can be extended to 0 < ε ̂  2 by considering the
^ a

propagation observable fjaA
εJ2jaf, and by using the techniques and the results

obtained so far. However, we will not use this extension.
We now fill the technical gaps left open in the previous proof.

Lemma 4.5. i) Let heCco(X) with bounded derivatives. Then, as ί->oo,

KAJit)ll2

9h(x/t)^\\ gO(r(1-'> + r 2(i~β}) \\φ\\+0(Γl) \\AJt)ll2φ\\, (4.24)

and for 0<α<l/2,

\_Aa(t)Λ, h(x/i)\ = O(t~(1'β)). (4.25)

ii) Let lAa(t\B(t)~] be bounded for fixed t. Then

|| [Aa(t)1/2

9 B(t)~] || ̂  O(t2β) || \_Aa(t\ β(ί)] ||. (4.26)

iii)

Proof. We drop the subscript a and use

for \peD(A) and 0<α^l/2, where C~l= J
o

Then

= C

since (ω + Λ) iA = l— ω(ω + Λ) 1. Notice that

(4.28)

(4.29)
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which proves (4.26). Setting B = h(x/f) in (4.28), and using

(the subindex a is dropped on the right-hand side too), we obtain

const °°
——\

t o

const °°
+ —5-J dωω«-l\\ω(ω+ΛΓl\\ IKω + ΛΓ'U \\φ\\, (4.30)

£ o

where we used
x

^ \\Λ 1/2φ ||. The last term is O(t ~(2~2β)) by (4.29), while

for the first one we use \\All2(ω + A)~l\\ ^ ||(ω + Λ)~1/2 | | ̂ tp, as well as

for any εrgl/2. This leads to the estimate

const l~ι °°
- \dωω"'ίtί>\\φ\\+ f

t LO i

If α = 1/2 the second integral is finite for ε = 1/2; if α < 1/2 it is finite even for ε = 0. In
the latter case we can use the symmetric expression for i\_A, ft], which leaves us
without the 0(t~2(ί~β)) term. We are now left with iii), and we first show

LA1/4,p'] = lAί/4,pa] = 0(Γ(1-β}). (4.31)

K x\2 Ί \( x\
P— y) >Pa\=~\P— ^~) by setting B=pa in

*t/a J ^ V 2ί/α

(4.28), which is then estimated like the first term on the right-hand side of (4.30), i.e.
by (4.31). Thus

by (4.31) and because of

=0(r<1-")). π

Lemma 4.6.

(4.32)

, (4-33)

where Ja=Ja(x/vt), v>0.
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Proof. For (ij)<t<* we have

=7«f (I*(IJ)I ̂  const ί) Vtj{x(ij}) ((p(ij))2 + 1)~ 1 ((p™)2 + 1) (p2 + 1)' 1 = O(Γ "')

by (3.6), (1.1). The proof of (4.33) is similar. Π

Lemma 4.7.

(P2 + l)~1/J.[/»Λ1/2]yβ/(P2 + l)-1 = 0(ί-(1+"-2«). (4.34)

Proof. (See Theorem 4.4 for notation.) By

L(p2 + ιrlfjaιjaf(p2 + 1Γ l, Λ1/2] =(P2 + 1Γ '/m,

+(P2 + 1Γ ifjJJUafiP2 + IΓ1, A1/2] , (4.35)

we have to show that the left-hand side as well as the last two terms on the right-
hand side are O(r(1+""2β)). We compute

/»))-^Δa(f( β)ja(.

proving \_(p2 + 1 ) " 1 /jα, ̂ ij = O(t ~ ̂ . Moreover

by (4.33). Using also (4.32), it follows from (4.35) with A1J2 replaced by Λa that

Hence, applying (4.26) to (4.35), we obtain (4.34). Π

We conclude this section by some commutator estimates, the last of them has
already been used in the proof of Theorem 4.1 :

Lemma 4.8. Let χ e CJflR) or χ(x) = (x + i) ~ x, and h e CGO(X) with bounded deriva-
tives. Then ~ ~

jaχ(H)-χ(Ha)ja = 0(Γ»), (4.36)

0(Γθ'), (4.37)

0(Γl), (4.38)

where μ' = min(μ1,l),7α=Jfl(x/t>t), and h = h(x/t).

Proof. We only prove (4.36).
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by 0>-
χeQ?(]R) we set

Then

= J dr^
- 00

=(-0 ϊ
-oo

=o(r«').

'' λ due to (4.32). For
, and compute

5. Existence of Deift-Simon Wave Operators

We now focus on short range potentials, i.e. we assume in addition to the
hypothesis of the preceding section, that (1.1) holds with μ^ > 1. In this section we
will establish the existence of the Deift-Simon wave operators for velocity v > 0,
defined as

Wa:=s-lim eM«
ί-H-oo

where a is any cluster decomposition [see (3.2) for the definition of/,,]. We caution
the reader that this result alone does not imply asymptotic completeness, since
(unlike in [4, 2ΐ])a is running over all cluster decompositions, including the
trivial one (1 ... N). We start by proving that the convergence above occurs when
suitable cutoffs are added.

Lemma 5.1. Let t»0, Ω,Ω'CIR bounded and measurable,' and Λ>0 large enough.
Then

s-lim eitH"EΩ,(Ha)fJafEΩ(H)e-itH (5.2)
ί-* + QO

exists, where f = f(x/λt), andja=ja(x/υt).

Proof. We set EΩ = EΩ(H\ EΩ, = EΩ,(Ha) and we denote by Wa(t) the operator
whose limit is taken in (5.2). Since we are going to use Cook's method, we compute

ne-iM, (5.3)

where the last term is integrable in norm by (4.32) (this is the only place where we
use μί > 1). We now turn to the first term on the right-hand side of (5.3)

) = f(Dja)f+(Df)Jj+jJa(Df), (5.4)
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and consider the contributions arising from Df:

EΩ,fja(Df)EΩ = EΩ,gfja(Df)gEΩ

= 0(r1)

with g=g(x/λt) as given in the foregoing section. Then

Ω.φ\\ \\g(H + i)EΩψ\\+0(Γ2)\\φ\\ \\ψ\\ .

Hence, as ί l5 12-> + oo,

\(φ, e*a E0.flj(Df)Eae-ta'ψy dt
tl

dΠ1/2Γ ί2 dtΎ12

g const ||g£^-' 'N>ll2 \\g(H + i)EΩe-ίtHψ\\2 + 0

(5.5)

by (4.4), which applies to Ha as well. Equation (5.5) holds for fixed ψ uniformly in
φ E L2(X). We are now left with the first term on the right-hand side of (5.4).

= Σ fJl^Ja) p - ) f+o(t-2)
\a\

= Σ fh(vJa} p-
Vtbc\ά\ \ Zt/b

where we took 0 < t;0 < t>, jb =jb(x/vQt),> and used (3.11), (3.13) with fc = v/v0. We write

=Λb(t)ll4B(t)Λb(ty* (5.6)

[see (4.16) for the definition of Ab(t}~\ with

= 0(1)

since Λb(t)'1/4 (P/Λ) Λb(t)ίl4 = Vja+Λb(t)~1/4 0(ί ~(1- ">)=0(1), where we used (4.25)
(with α = l/4 and j8g2/3), and ^6(t)"1/4 = 0(tW2). This implies

\(φ,EΩ,f(Dja)fEΩψ)\

const
^-y- Σ M*(ί)1/4Λ/£0^IIM»(t)1/4Λ/£ovll+0(ί"2)||φ||

from where we obtain as ί l 5 ί2-> + oo
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by (4.23), with the uniformity of (5.5). We conclude that for given ψeL2(X)

t2 / dW \

lOM^ta)— ̂ (ίi))^)!^ f φ,—τ-^ιp dt = o(l)\\φ\\,
t ί \ dt J

as f 1} t2-+ + oo, so we see that Wa(t)ψ is Cauchy as ί-» + oo. Π

Now the task is to remove the cutoffs from (5.2). We use a result of [13,18]:

Lemma 5.2. If ψ E D(p)nD(x), then e~itHψeD(p)r\D(x), and

\\xe~itHιp\\ ^const(l + |ί|)(||pφll + \\xip\\ + \\ψ\\). (5.7)

Proof. By the relative boundedness of H and p2 with respect to each other, we
estimate sup \\p2e~ίtHψ\\ ^const(||p2tp|| + ||φ||) for ψ eD(p2), and by interpolation,

ίeR

sup\\pe~itHψ\\ ^const(||pψ|| + ||φ||) (5.8)
ίeR

for ψeD(p). We regularize x by uε(x) = x/(l +εx2). We have uε^ A1, Auε Aθ as
ε\0, where u^ is the derivative of u. Let φ,ψeD(p2). Integrating

~itHψ) we get

o
since by the continuity of the integrand, the integral can be carried inside the scalar
product. This then extends to φeD(p) by (5.8). Furthermore, the integrand is
uniformly bounded in ε and τ. If in addition ψ e D(x), we obtain as ε \ 0

o

by dominated convergence and by the closedness of x. From this (5.7) readily
follows. Π

Theorem 5.3. For any ϋ>0, the limits (5.1) exist for all cluster decompositions α.

Proof. We set Wa(t) = eίtHaJa(x/vt)e~ίtH. It is enough to show that Wa(t)φ is Cauchy
as ί-> 4- oo for φeD(p)nD(x). Given ε>0,

l + l lxv l l + ||φ||)^β (5.9)

for λ>G large enough. We also take a bounded measurable ΩcR with

(5.10)

Finally, we take a bounded measurable Ω' D Ω and a χ e C J"(R) with χ(x) = 1 for
xeΩ, and χ(x)=0 for xφΩ1. Then, setting EΩ, = EΩ,(Ha), EΩ = EΩ(H)

^Hψ\\ +2sup||(l -
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for tl9t2 large, by (5.9), (5.10), (5.2). Now (5.1) follows from this and from

||(1 -EΩ) Wa(t2)ιp-(l-EΩ.) Wa(t^\\

^ ||(1 -χ(Ha)) Wa(t2)EΩψ-(l-χ(Ha)) W^EQV\\ +2||(1 -EΩ)ψ\\

for large tl9t2. This follows from (5.10) and from

(1 -χ(Ha)) WMEΩ=eίtH"(jaχ(H)-χ(Ha)Ja)e-™

where we used (1 - χ(H))EΩ = 0 and (4.36). Π

Proof of Theorem 1.1. In the foregoing proofs in this section the roles of H and Ha

are interchangeable. This implies the existence of

/ v \

s-lim eitHJa — hΓίίH« (5.11)
r-» + oo \VtJ

for any v > 0. Next we notice that the finite linear combinations of eigenstates of Ha

are dense in RanPfl. It is therefore enough to prove (1.6) assuming that P° is the
orthogonal projection on such an eigenstate: HaPa = EPa. Moreover it suffices to
prove the existence of the so modified limit on states in the dense set D = (J Dv,

v>0

We then remark

F(|x{/ί| ί vQίtβ1'2 + σ))e- "<>->2 F(\2p{\ Z v^qi)1

as t -> -f oo for / J a, g ξ α, where the first limit is an immediate consequence of [1 9],
Theorem IX.31. For ψeDv, v>0 this leads to

e~ίtHaPaιp

as ί-^-f oo, where we used e~ltHaPa = e~itEe~it(pa)2Pa and the commutation
relations arising from (1.9), as well asj^ = 1 on the set given by the characteristic
function above. The existence of (5.1 1) then implies that of (1.6), from which in turn
the remaining claims follow. Π

6. Asymptotic Completeness

The whole analysis done up to now holds also at eigenvalue and at threshold
energies. Also compactness has never been used. This will no longer be so in this
section. We assume (1.1), (1.2), (1.4) and, as far as the proof of Theorem 1.2 is
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concerned, μ±>\. We recall that under these assumptions the Mourre estimate
holds [2]. We will use it to prove

Theorem 6.1. Let ΩcR be a compact set, which does not contain any eigenvalues or
thresholds. Then

^1...iV)£Ω(/ί)=0, (6.1)

provided t;>0 in the definition (5.1) of W(lmmfN) is small enough.

Proof. We remark that μl > 1 is not required for the existence of W(l _#>> as can be
seen from (5.3) by 7(1 ...jv) = 0 We now drop the subscript (1 ... N). By a covering
argument, it suffices to show that for any E e R, which is neither an eigenvalue nor
a threshold of H, there is an open interval A 3 E such that

(6.2)

for small enough ι;>0. For such an £eR the Mourre estimate reads

EΔo(H) i\H, A] EAo(H) ^ ΘEAo(H) (6.3)

for some 0>0 and some open interval A03E. Here A = (p x + x-p)/2. We take
A θ£ to be an open interval with AcA0, and compute

(6.4)

where ψt=e~itHψ, Ed = EΔ(H), and J=J(l ...N)(x/vt). We want to prove that the
contributions arising from Z)/are integrable in time. Remark that as ί-» + oo,

1) = ?-J PEΛ + 0(Γ ') = 0(1) ,

since supp/C Σ"(ί _N) is bounded,

(6.5)
vt

where we inserted / = f(x/λt) due to / = 1 on supp J( -/vt)ϊoτλ>0 large enough, we
applied the by now familiar trick (3.11), (3.13) withjb=jb(x/v0t), 0<v0<v, and we
usedjAjb=jbAj+0(ί). We further discuss the term in the sum (6.5). It is equal to

= (H - 0 EJjbΛb(tγl\Hb -iΓ^p 0(1) Λb(tγ'*jJEΔ + 0(Γ"") ,
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where μ" = min(μ', 1 -β)>0. Here we used (4.37), (4.38), we applied (5.6) with Vja

replaced by (x/t)®jvj, and finally we used (4.27). We then conclude by (4.23) that

~A
J7 at-

for given ip e L2(X). Next we consider

and

iίH, A\JEΔ = EJχ(H) i[H, A] χ(H)jEA + 0(Γ l)

where we took χeCJ(R) with χ(x) = l for xeA, χ(x)=0 for xφΔ0, and we used
(4.38), (6.3). We also have

pEΛ + 0(Γ J) ,

where the constant is independent of ι;>0, since by the boundedness of suppj

( E ^AΈ }
\ t Δ )

^
<;

(
V

φ,Ejp~ΐχ(H)EAφJ -

ί x ~ \
{φ,EJpχ(H) -jEΛφ)

(6.6)

This implies

EJ( DEΔ^-(θ-

where we take v > 0 such that θ — const v = : δ > 0. Integrating (6.4) from tίtot2>tί

we thus obtain

^JyJ^f2 ^δ jf \\jEΔψt\\2^ +o(l)
t / l ί i ίi t

as ^^2-^ + 00. Given ε>0 we have \\jEΔψt\\2=\\eitHje-ίtHEΔφ\\2^\\WEΔψ\\2-ε
for t large enough by (5.1). This, together with (6.6) shows

Taking 1 1 = ί, ί2 = ί2, this proves || WEΔψ || 2 ̂  ε, and hence (6.2). Π

We remark that one can easily prove (6.2) by using the minimal velocity bounds
of [23,24], which however require the additional hypothesis that
y-V(y- VVJ (p2 + 1)~ l is bounded on L2(X™}.
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We are now ready for the

Proof of Theorem 1.2. The proof goes by induction, i.e. we assume that
completeness holds for M bodies with M<N. Equation (1.7) trivially holds for
N= 1, since both sides are {0}. So let N> 1. Given φ e Ran(l — P) and ε > 0, we can
find a compact set ΩcIR which does not contain any eigenvalues or thresholds,
such that

\\(\-EΩ(H))ψ\\^ε. (6.7)

This follows from the fact that the set of eigenvalues and thresholds is countable
and closed, which is a consequence of the Mourre estimate. We then take a t»0
such that (6.1) holds. Thus

as ί-> + oo by (3.4), (5.1), (6.1). We now apply the completeness result to Hc in (1.12),
(1.11), with the result

0 Ran&(# α, Hb) = Ran(l - Pa) ,

where Ω(Ha,Hb)=s-lim e^ae-itHbpb Hence there are ψa

bεL2(X) for bζa, such

that

(l-P*)WaEΩψ= I

which implies

e-** (ί-P^WβEΩψ=

as ί-> + oo, and

EΩψ= £ ΩaWaEΩψ+ £ Σ Ω*V?e Θ RanΩα.

Since the latter is a closed subspace, ipe 0 RanΩ* follows by (6.7). Π
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