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Abstract. Frozen-in disorder in an otherwise homogeneous system, is modeled
by interaction terms with random coefficients, given by independent random
variables with a translation-invariant distribution. For such systems, it is proven
that in d = 2 dimensions there can be no first-order phase transition associated
with discontinuities in the thermal average of a quantity coupled to the
randomized parameter. Discontinuities which would amount to a continuous
symmetry breaking, in systems which are (stochastically) invariant under the
action of a continuous subgroup of O(N)9 are suppressed by the randomness
in dimensions d^4. Specific implications are found in the Random-Field Ising
Model, for which we conclude that ind = 2 dimensions at all (/?, h) the Gibbs
state is unique for almost all field configurations, and in the Random-Bond
Potts Model where the general phenomenon is manifested in the vanishing of
the latent heat at the transition point. The results are explained by the
argument of Imry and Ma [1]. The proofs involve the analysis of fluctuations
of free energy differences, which are shown (using martingale techniques) to be
Gaussian on the suitable scale.
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1. Introduction

a. The Rounding Effect Frozen-in disorder is now recognized to have the potential
to drastically alter some physically interesting properties of homogeneous media
[2]. Even when the effect on a bulk property is perturbatively small, for low
densities—or intensities of the disorder, the perturbation theory is typically
nontrivial, as the disorder may result in deep structural changes. It may also happen
that a sharp qualitative deviation from the behavior found in a homogeneous
system occurs at any positive density of the disorder. The nature of the response
of the system to the presence of disorder may depend on the dimension, with the
latter behavior typically occurring in the lower dimensions. The systems studied
here are of that kind.

Mathematical models with disorder which have been of interest in physics
include: a) statistical mechanical models with random parameters, such as the
models discussed in this work, and also b) Schrόdinger operators with periodic
plus random potentials [studied in relation to the electrical conductivity in the
solid state], and c) random walks (simple, and self avoiding) in random environ-
ments. Some of the vast literature on these topics may be seen by consulting the
references cited in [2]. Though our results are confined to the first case, the methods
presented here—which consist of the analysis of fluctuations, may have some
relevance also for the other situations.

In models of statistical mechanics, when the thermal averages are taken at fixed
values of the random parameters—as is done when describing the thermal
properties of systems with impurities of relatively long relaxation times, the
randomness is referred to as quenched. This work is focused on the effect of quenched
disorder on first-order phase transitions. Such a transition has a dual manifestation
—in a discontinuity of one of the first order partial derivatives of the free energy,
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and in the nonuniqueness of the infinite-volume Gibbs state. Our main result,
which was reported in [3], is a rigorous proof that in d ^ 2 dimensions the presence
of random (independent) fluctuations in the structural parameters results in the
suppression of first-order phase transitions associated with discontinuities in the
densities of the quantities conjugate to the randomized parameters. Discontinuities
related to continuous symmetry breaking, as in the Heisenberg model at vanishing
external field, are eliminated by arbitrarily weak quenched disorder (with a
rotation-invariant distribution) even in the higher dimensions: d ^ 4. The dimen-
sions covered by the above results include the marginal cases.

Particular manifestation of the rounding of first-order transitions in 2D is
seen in the ferromagnetic random-field Ising spin models (RFIM), around which
many of the ideas related to the subject have been developed. For the RFIM the
converse statement, i.e. that in the dimensions d ^ 3 a first-order phase transition
persists at weak enough disorder, has now been rigorously established [5,6]. The
early prediction, and an insightful explanation of the effects of quenched random-
ness, was given by Imry and Ma [1], on the basis of the heuristic argument that
the state of a system which is about to undergo a first-order transition is determined
by the competition of the random-field, whose cumulative effect on a uniform spin
configuration in a region /t = [—L,L]d is of the order <s/\Λ~\ = Ld/2

9 with the
symmetry breaking mechanism whose strength is of the order of the boundary
\dΛ\ = Ld~ί. For the marginal case of d = 2 dimensions, the prediction has been
that the fluctuating field will have the dominant effect. In the presence of a
continuous symmetry, soft modes reduce the effect of the boundary conditions to
Ld~2, and hence the marginal dimension is d = 4.

Though the Imry-Ma argument is apparently based on the most relevant
considerations, it was found to be insufficient when a need arose to decide between
its prediction and that of a "dimensional reduction" principle, which suggested a
higher value for the lower critical dimension of the RFIM. The resolution of the
impasse required a series of rigorous works—starting with [4], and culminating
with Imbrie [5] and Bricmont and Kupiainen [6], which prove the stability (under
weak disorder) or the Peierls's mechanism (of symmetry breaking in the ground
state [5], and at low temperatures [6]) in d ^ 3 dimensions. The methods employed
there could not, however, establish the disappearance of the symmetry breaking
in 2D, which the results reported here prove for arbitrarily weak random fields.
Though that part of the Imry-Ma prediction was not challenged by the alternative
argument, it has been argued that it also deserves rigorous study—in particular
since it concerns a qualitatively distinct nonperturbative effect.

Another example of the rounding of a first-order phase transition is the
suppression of the discontinuity in the energy density [7] (i.e. elimination of the
latent heat) of the random-bond Potts models. These systems continue to exhibit
some form of a phase transition (between an ordered and a disordered phase) even
in the aftermath of the rounding effect [8]. Whether any phase transition persists
in the RFIM is still an unresolved question [9].

The vanishing of the latent heat in the random-bond Potts model was also
noted, independently of [3], in a work by K. Hui and A. N. Berker [10], where it
is derived—along with some further information on the nature of the phase
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transition—by renormalization group (non-rigorous) arguments. There is currently
a growing interest in related effects at both theoretical and experimental levels
[10,11].

b. Outline of the Argument. Our analysis is based on the consideration of
fluctuations of some relevant functions of the random parameters, denoted here
by {εηx} (ε being a uniform factor setting the effective scale of the randomness and
ηx having variance 1), in a scheme which may be useful also for other problems.

The jump of the free energy's first derivative, M = {{(dFldh+) - (dF/dh-)), is
realized as the average over the random parameters of the difference in the thermal
expectation values of a conjugate quantity (single-site spin for random field models,
and more generally the Hamiltonian's derivative with respect to ηx), between a
pair of Gibbs measures generalizing the Ising model's ± states. We introduce an
auxiliary quantity, GΛ (whose definition for the general case requires some technical
discussion), which expresses the difference in the finite-volume free energies of such
a pair of states. The argument proceeds by showing that MΦO carries the
implication that for a set of random couplings of nonvanishing probability, the
value of the related quantity GΛ(ηΛ) = E(GΛ\{ηx}xeΛ)-E(GΛ) (where £(•) is the
conditional expectation) exceeds an upper bound set by simple energy estimates.

The fundamental relation of GΛ> and GΛ, with M is:

Avl —-GΛ = εM, for each x in Λ. (1.1)

This implies that if MΦQ and ε # 0 , then GΛ is "truly" dependent on « |/l |
independently fluctuating quantities, and hence it should reach the order of
magnitude of v/jyϊϊ. That observation is contrasted with the simple free energy
bound: GΛ ^ Const.\dΛ\ (for systems with short-range interactions). In d-2
dimensions these statements are consistent only if either M = 0, or if the distribution
of the quantity GΛ manifests a sharp cutoff on the scale of its typical order^of
magnitude. That feat should be rather difficult, given the extensive nature of GΛ.
To reach a contradiction, which then implies that in d ^ 2 dimensions M = 0, it
is required to strengthen the basic observation on the size of GΛ by additional
information on the probability of large fluctuations of GΛ/^/\Λ\.

The argument outlined above is actually carried out by establishing the
following pair of conflicting properties for the quantity GΛ (with Λ ranging over
^-dimensional cubes of linear size L-* oo):

i. a Central Limit behavior:

GΛ/y/\Λ\ ->ΛΓ(O,b) (in distribution), with b >0 when M # 0 , (1.2)

ii. a uniform bound

IGΛ(ηΛ)\ £A\dΛ\ + By/\Λ\ with nonrandom A and B, (1.3)

where the term with A is due to the short-range interactions, and the term with
B contains the effects of the long-range interactions allowed here. In d^2
dimensions a contradiction is avoided only if M = 0.
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For the O(N) systems with a continuous symmetry, the first term on the right
side of (1.3) may be replaced by Const. Ld~2. That raises the marginal dimension
to d = 4.

Not all the information contained in (1.2) on the limiting distribution of GΛ is
essential for the main result, and the role of (1.2) can also bejulfilled by a suitable
lower bound on the moment generating function, Av(exp(ίGΛ/λ/ΪΛ])). A general
bound which is useful for such a purpose is given a self-contained derivation in
Appendix II.

The paper is organized as follows. The models discussed here are introduced
in Sects. 2 and 3—the latter containing the general formulation, and the main
results are stated in Sect. 4. Section 5 is devoted to the definition of the fluctuating
quantity GΛ. In order to guarantee the desired properties, we have to address a
basic issue (which in the case of the Random-Field Ising Model is easy to handle)
concerning Gibbs states of random systems. The construction of GΛ is based on
an auxiliary result—whose proof is relegated to Appendix I. In Sect. 6 we prove
the main Theorem, by establishing (1.2) and (1.3). For the proof of (1.2) we apply
the Martingale Central Limit Theorem which is quoted in Appendix II (next to
the complete proof of the broader lower bound on the moment generating function).
The rounding effect for systems with a continuous symmetry in d ^ 4 dimensions
is derived in Sect. 7, whose main content is the sharpening of (1.3) by methods
related to proofs of the Mermin-Wagner phenomenon.

2. Examples: Random-field, Random-bond, and Spin Glass Models

To make the general notation transparent, let us start by listing some examples.
In all cases, we consider systems of bounded spin variables, σ = {σx}, located on a
d-dimensional lattice, say Zd. The interaction is a sum of a translation-invariant,
non-random term and a fluctuating term with quenched disorder—represented
here by a collection of independent random variables {ηx}' with a translation
invariant distribution. We denote by v(dη) both the product measure for the infinite
array η = {ηx}9 and the individual probability distributions. The latter are assumed
to satisfy:

A\(ηx) = 0, Av(^)=l and Av(eSf|3C)< oo for all real s, (2.1)

where Av(/) = \fv(dη)(=E(f)). [The probabilistic notation E() will be used here
in conjunction with the conditioning on partial information about η (sub σ-algebras)
and Av( ) is used, as in some of the literature, to distinguish the averages over η
from the thermal averages over σ.]

i) Random Field (RF) Models [12], The spins are iV-dimensional vectors and the
interaction is:

"(*)= -iΣΛ-,σ» σy-Σ(h + εηx) σx. (2.2)

This Hamiltonian may include both short-range and long-range interactions, with
Jχ-yύ const./1 x — y\Λ\oi > d). Examples of particular interest include:
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a. Ferromagnetic Ising spin models (RFIM), for which: N = ί,σx take the values
± 1, and Jz ^ 0 (that condition is not relevant for the main result, though it does
play a role in the translation of the lack of discontinuity in the magnetization to
a statement on the uniqueness of the Gibbs state).
b. 0{N) models (N = 2 for the plane-rotor, and N = 3 for the Heisenberg model)
with a rotation-invariant a priori distribution, λ(dσx\ of bounded support. In that
case the dot in (2.2) represents a scalar product.
c. One dimensional long-range models with interactions decaying at a sufficiently
slow rate so that the non-random model exhibits a phase transition. That requires
α ^ 2, with a strict inequality for the continuous case.

At ε = 0 (no randomness) the above models exhibit first-order phase transitions
manifested in the discontinuity of the magnetization as a function of h at h = 0 (in
dimensions d > 1 for case a, and d > 2 for case b). These discontinuities occur in
the thermodynamic variable conjugate to the magnetic field—which is the
randomized parameter in (2.2). Thus, the general result proven here shows that in
d ^ 2 dimensions, and for α > 3d/2, the discontinuity vanishes when ε φ 0.

Remarks. 1. If v(dη) is not symmetric, then for ε Φ 0, h = 0 is no longer a natural
location of a possible phase transition (which it is for ε - 0). Hence, to correctly
express the rounding effect of randomness one should consider it at all ft-as is
done here.
2. For RFIM, M = 0 (the continuity of the thermodynamic magnetization) has
the stronger implication that the Gibbs state is unique for almost every realization
of {ηx}, at the corresponding values of (T9h9ε)—see discussion below.
3. To correct a statement made in Ref. [3], we wish to emphasize that the proof
of the rounding effect for systems with the continuous symmetry hinges (in
dimensions 2 < d <; 4) on v(dη) having the full rotational invariance. (The astonish-
ment expressed by D. Fisher and T. Spencer was justified.)

ii) Random-Bond (RB) q-State Potts Models. Here σx take values in {1,..., q) and
the Hamiltonian is

H(°) = - \ Σ Vx-, + tx-ynx*)*.^ (2.3)

(another RB example is presented in ref. [3]). The distribution of the random
parameters {η} is assumed to be translation-invariant. That means that the η's
form a number of classes—one for each value of z = x — y9 with members of each
class being identically distributed and sharing a common strength parameter εz.
In the general notation introduced below we index such classes by α.

In addition to the phase transition manifested by spontaneous magnetization,
Potts models, with q large enough, exhibit first-order phase transitions with positive
latent heat—which is the discontinuity in β of the energy density (the variable
conjugate to β). As emphasized in the introduction, the random parameters present
in (2.3) result (in d g 2 dimensions) in the rounding of the latter discontinuity,
without eliminating the former.

iii) The Edwards-Anderson Spin Glass (SG) Model, which is a system of Ising
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spins with the Hamiltonian

to which one may add the magnetic field terms. Here the inverse temperature (β)
is akin to the ε parameter, since it is the multiplier of the random {η}—whose
distribution is typically assumed to be symmetric. The challenging questions which
are presented by this model are discussed (from different perspectives) in refs. [13].
Their thermodynamic manifestations go beyond the specific question of the
differentiability of the free energy in β which the present work addresses. (For
symmetric distributions the differentiability is implied already by the gauge
symmetry.) Possible directions for some relevant extensions of our analysis are
mentioned in Sect. 4b.

In the next section we present a general formulation of the systems to which
our discussion applies. Readers interested mainly in the RFIM may skip to Sect.
4—after a cursory look at the notation presented in Eq. (3.1).

3. General Systems with Quenched Randomness

a. The Setup. A statistical mechanical model with quenched randomness is
described here by specifying: 1) The state space, S, of the single "spin" variables
with a finite a priori measure λ(dσ). 2) The array (lattice) 5£. (The spin configurations
on S£ form the "configuration space" ΛΞΞS^.) 3) The interaction H(σ), which
contains a translation-invariant part whose parameters (such as h above) affect
bulk terms, and also a sum of local terms with varying coefficients. The latter are
taken to be random variables, {//}, and the final ingredient of the model is: 4) the
distribution law of the random parameters, v(d{η}).

The equilibrium properties of the model concern the free energy, F, and the
infinite-volume Gibbs states (of the variables σ), corresponding to "typical"
configurations of the random parameters {η}. We assume familiarity with these
basic concepts, at least in the context of nonrandom, translation-invariant, systems.

In this work we address systems of the above type with the following features.

1. The single spin state space is endowed with a metrizable topology, in which it
is compact [see comment below], and thus also separable.
2. S£ is a homogeneous lattice, which (to avoid irrelevant notational issues) we
just take to be Zd.
3. The Hamiltonian is of the form

H{σ) = H0(σ) + ΣΣ(K + saηa,x)ga{T.xσ). (3.1)
flt X

H0(σ) is a translation-invariant interaction, which for specified σM depends
continuously on σΛ (for finite A c <£). Added to it are random terms in families
indexed by α. Tx are lattice translations (not to be confused with the temperature
T), with which we shall also write

9*M = 9JJ-Xσ). (3.2)
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The index α runs over a collection of finite subsets of the lattice containing the
origin, Oeα C ΊLd

9 and ga are local, continuous, functions depending on the spins
in the set α. {ga} and {ηa,x} are normalized so that

| ^ l , and A v ( ^ J = l . (3.3)

The effective scale of the randomness is set, therefore, by {εα}.
4. The random variables ηatX are jointly independent, with an identical distribution
within each α-class, satisfying the conditions (2.1).

The index α allows, for example, to include pair interactions of various ranges
(as seen in (2.3)—for which α = {0,y — x}), and other multi-spin terms. {ha} are
homogeneous coefficients coupled to the same terms as the random {ηatX}. For
interactions of unbounded range some further assumptions are made on the rate
of their decay. To avoid encumbering the discussion of the models of prime interest,
the decay condition is stated in the second part of this section.

Remark. The main restriction in the assumptions concerning the topological
properties of S and the continuity of the interaction is that the spins are bounded.
The rest may often be met by a simple adjustment of the topology of S. We expect
extensions to unbounded spins to be possible, subject to the availability of suitable
bounds on the Gibbs states—such as discussed in ref. [15,26].

Bulk properties of random systems are related to the free energy, F, which is
derived from the finite-volume partition functions ZΛ = $λ(dσΛ) Qxp(—βHΛ). For
Γ = 0 we interpret the quantity (-T/\Λ\)lnZΛ(T9{h}9{ε}9{η}) as the essential
minimum of the finite-volume energy (this makes it continuous in Γ). The following
proposition summarizes some basically known facts [16].

Proposition 3.1. For each system of the above type, there is a full measure set Jί of
random couplings η = {ηa,x} (with v(Jr) = 1) and a function F(T9{h},{ε}) (the free
energy) which does not depend on η, such that:

i) For all ηejV the finite-volume free energy densities converge in the thermodynamic
limit to F, at all (T ^ 0, {h}9 {ε}),

lim - ~ In ZΛ(T9 {hi {ε}, {η}) = F(Γ, {H}, {ε}). (3.4)
[ * \Λ\

ii) F() is concave in T and {h}9 and continuous atT = 0—where it equals the ground
state energy density for "typicaΓη.
iii) ifηsJf and pη(-) is a Gibbs measure for the corresponding interaction, at some
(T>0,{h},{ε}),then

where LIM is the set of accumulation points of the given sequence. For T = 0, the
same is true with the sum on the left side replaced by J] gx,χ(ση\ with ση any ground

state configuration (i.e. one whose energy can not be lowered by changing a finite
number of spins).
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By its concavity, F() has directional derivatives—as those seen in (3.5). If F
is differentiable in ha then, by (3.5), all the Gibbs measures agree on the mean
density of gΛ x. If not, then the system exhibits a first-order phase transition. The
corresponding order parameter (defined for T ^ 0) is

w {ε}) (3 6)

Equations (3.4) and (3.5) are the random-coupling version of the well known
principle for homogeneous systems, with adjustments based on generally known
ideas.

Outline of the proof. To derive (3.4) it is convenient to first peel off the
contribution from large η9\ηatX\^.K9 which (for all T and h) is bounded by

Γ7T Σ l*/« *l ̂ [l*/α *l = ^ ] By the l a w °f l a f g e numbers, and the integrability of

I if I, there is a full measure set, JV0, of η for which the contribution of this term
to the limit is controllable—in the sense of being bounded by some "ε(K)"(->0).
To analyze the main term, we partition the lattice into large congruent blocks,
and remove from the interaction the terms coupling distinct regions. The free
energy is then decomposed into a sum of independent intra-block terms, and a
remainder which is uniformly bounded by K(a\dB\ + byJ\B\)/\B\ (B being the
elementary block, and the constant b estimating the contribution of the long-range
interactions discussed below). The existence of the limit for a given (T, {h},{ε})
follows by another application of the strong law of large numbers. It follows that
there is a full-measure set Jί c JV0 for which the limit exists at a dense (countable)
set of values of (T, {ft}, {ε}). By the equicontinuity of the main term (which satisfies
a Lipschitz condition), and the uniform bounds on the remainders, the convergence
extends to all (T ̂  0, {h}9 {ε}), for each neJΓ.

For the proof of (3.5) at T> 0, one may focus on

lnp jexp -βs X gΛyX M
-T

W
= — > IZΛ{T, {h + sδx}, {ε})/ZΛ{T, {*}, {ε})] + ~0{VδΛ), (3.7)

with δa a vector with 1 at the α-coordinate and 0 elsewhere, and VδΛ the boundary
term defined in the second part of this section. It is easy to see that for every ηejVΌ
the latter's contribution in (3.7) vanishes, as L-> oo. For r\eJί the above functions
of 5 converge to F(T,{h + sδa},{ε})-F(T9{h},{ε}). Since these functions are
concave, standard convexity arguments imply that their derivatives obey (3.5). The
T — 0 case is proven by a similar argument, applied to the functions

= -i-inf I HΛ(σ') - HΛ(ση) + s
\Λ\ I

Σ 0α,*(σ')lσ'differs only locally from ση >.
1

\Λ\'
(3.8)
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A particular implication of (3.5) is that if one has a family of ij-dependent Gibbs
states, ρη{—), which are weak* measurable in η (in the sense that pη{f) are
measurable), and such that Aw(pη(gΛtX)) is translation invariant (in x), then:

\ (3.9)

b. Systems with Long-Range Interactions. The basic restriction for an argument
based on (1.2) and (1.3), is that for every cube A the interaction across the boundary,
VdΛ9 be of the order of y/\Λ\. That condition requires the dimension to be d ^ 2
(in order to have y/\Λ\ ^ Const. |dΛ|), however it does not restrict the interaction
to be of finite range. If the long-range part consists only of the terms Jxyσxσy

then it suffices to require

\JXJ^Const.\x-y\-{3dl2+δ\ for some δ>0. (3.10)

For the stronger result obtained for systems with continuous symmetry (and d ^ 4),
the basic condition is somewhat different, however the resulting restriction on
{Jx,y}> given in (4.6), is very close to (3.10).

In the more general statement we refer by VdΛ(σ) to a function of σ such that
H — VδΛ decomposes into a sum of two non-interacting terms:

H - VdΛ = HΛ(σΛ) + HΛC(σΛC). (3.11)

The definition VδΛ is not unique, since the given interaction H may have more
than one representation as a sum of local terms, and the conditions stated below
should be read as satisfied if they are met for some such choice. VOdΛ is the
corresponding quantity for the nonrandom interaction Ho.

Our assumptions on the Hamiltonian (3.1) are that for every square region
Λ = l-L9L]d(d = h2):

a) VodΛ and H0Λ depend continuously on σ, and:

|| K0,aJ:g Const, yμϊ l , (3.12a)
where || V\\ =sup|K|.
b) gΛ(σ) are continuous, with \\ga\\ ^ 1 (as stated in (3.3)), and

Const. yJΛΪ, (3.12b)

where @(Λ) = {Aa <£\Ac\Λ Φ0 and AnΛc#0}.
Together, the assumption a) and b) imply:

E(\\VdΛ\\)£ Const. yίΛJ. (3.13)

We shall now translate the above conditions to a frequently used terminology.
A standard form for a translation-invariant interaction Ho is (see [17])

M<α (3.14)

where A ranges over finite subsets of Zd, and ΦA satisfy the natural translation-
invariance condition. Pair interactions are described by Φ{Xty}(σx,σy). In this
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representation, our assumptions are that ΦA are continuous (in σA) and meet the
criterion spelled in the next proposition.

Proposition 3.2. In dimensions d^2:

a) A sufficient condition for the interaction (3.14), to satisfy (3.12a) is

X dmm(A)l-^\\ΦA\\ ^ Const. L ( 2~d ) / 2. (3.15)
ABO IAI

di&mA^L

For a pair interaction (3.14), a sufficient condition is

||Φίx,y)II gConst . \x-y\-^2l{\ + l[d = 2]In 2 ( l + | x - y \ ) } . (3.16)

b) In order for (3.12fe) to hold it suffices that

Y diam(α)^-(|εa | + |ΛJ) ̂  Const. li2'^2. (3.17)

Proof, a) With the natural choice for VodΛ,

\W0M\\ύ Σ IIΦJI (3.
Ae@(Λ)

In this sum the contribution from A with diameter smaller than L is at most

(3.19)

diam(/l)<L

(where use was made of (3.15)), while the contribution from the remaining A is
bounded by

d i a m ( Λ ) ^ | | Φ J ^ConstLd/2. (3.20)

Hence (3.15). For pair interactions the latter is implied by (3.16). Assertion b)
follows by an analogous estimate. •

4. Statement of the Main Results

Following is our main result, in the setup described in Sect. 3.

a. The Thermodynαmic Statement

Theorem 4.1. In a d^2 dimensional system of the type described in Sect. 3, with
independent variables η (providing the quenched disorder), and the Hamiltonian (3.1)
satisfying the decay conditions (3Λ2)\for any {h} and T ^ O :

ββ#0^Mβ(Γ,{Λ},{β}) = 0, (4.1)

provided v(dηa) is absolutely continuous with respect to the Lebesgue measure. For
T>0 (4.1) holds under the weaker assumption that v has no isolated point masses.
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In case of the I sing and Potts ferromagnetic RF and RB models, no continuity
assumption on the random fields'/couplings' distribution is required for (4.1) at T > 0.

The proof of the theorem is given in Sect. 6. In part c. of this section we present
a result which goes further for systems with continuous symmetries.

b. Consequences for the Gibbs States. Proposition 3.1 shows that whenever Ma = 0,
the translation average of ρη(ga,x) is restricted, for Gibbs measures of "typical" η,
to a single value (dF/dha). (One should note that there is a difference between such
statements with exclusions of sets of zero measure applied separately at each (T,h),
and the stronger statements with a uniform restriction to a full measure set, like
«yΓ of Proposition 3.1.) Hence we have the following result.

Corollary 4.2. In a d^2 dimensional system as in Proposition 4.1, the following is
true for all r\sJί (with Jί the full measure set described in Proposition 3.1). If ρη( )
and p'η( ) are two Gibbs states for Hη, at common values o / ( T > 0 , {h}, {ε}) with
εa φ 0, them

A] Σ ίpη(ga,x)-P'η(ga,xΏ = o. (4.2)

Similarly, for any two ground state configurations ofHη(ση and σ'η),

[ , ] | | Γ Λ

L-+00

Km 4τ Σ K*K)ί
Λ=l-L,LJi\Λ\τ Λ

L-*oo

provided v satisfies the stronger (T = 0) condition of Proposition 4.1, i.e. is absolutely
continuous.

More can be deduced for the ferromagnetic Ising, and Potts, random-field and
random-bond models.

Corollary 4.3. For a d ̂  2 dimensional ferromagnetic Ising model, satisfying the
conditions specified in Theorem 4.1, at each {T,h,εΦ0} the Gibbs state is unique

for v-a.e. set of random couplings η.

Sketch of the Argument. In RFIM the Fortuin-Kasteleyn-Ginibre (FKG) inequality
[18] is satisfied for an arbitrary field configuration {ηx}. The ensuing domination
arguments show that in the partial order of the Gibbs measures by the expectation
values of "monotone" functions there is a pair forming the "lowest" and the
"highest" states (constructed by taking the infinite-volume limit of the system with
uniform — 1, or + 1, boundary conditions) for which the differences in (4.2) are
all nonnegative. Under these conditions, (4.2) implies that if M{T,h,ε} = 0 then
for "typical" random couplings the Gibbs state is unique.

One could also ask whether it is true that for each "typical" η there are no
exceptional values of {T,h} (which would have to form a random set, dense in
some nonrandom region) at which there is more than one state. Equation (4.2)
does not quite rule that out, though it does imply that differences can occur at no
more than zero fractions of the volume. In this sense, we can say that for "typical"
η (e.g. all elements of Jί) for no value of {T,h,ε # 0 } is there a bulk first-order
phase transition.
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Thus, the situation for ε > 0 is drastically different from the case ε = 0. The
continuity restriction on v(dη) is not totally superfluous at T= 0 (though it could
be eased), since in the RFIM if v(dη) has a discrete component then at least for
certain values of ε > 0 the ground state is typically nonunique—with a macroscopic
degeneracy. On the other hand, for T > 0 we expect the restriction to be unnecessary
even in the general case.

Remark. For the spin glass models with symmetric v(dη\ the general theorem
presented here yields no new information even for d = 2 dimensions, since its
conclusion holds by the model's "gauge symmetry." However, certain questions
posed by this, and other models (e.g. the random bond antiferromagnetic model
in external field [19]), would be resolved by an improved version of (4.3), with the
difference [ga,x(ση) — ga,x(σ'η)l replaced by its absolute value. The issue is related to
some points which were raised in the comprehensive theory proposed by Fisher
and Huse for spin glass models. Its elucidation calls for further refinement of the
methods presented here and in ref. [14]. (We wish to thank D. Fisher and J.
Bricmont for stimulating discussions of the relation of this work to the above
mentioned models.)

c. Systems with Continuous Symmetry. In the presence of continuous symmetry, the
rounding effect of quenched disorder extends up to the higher dimension d = 4.
We consider here systems of Λ/-dimensional spins, which are invariant (with the
random interaction terms only stochastically invariant) under the action of one of
the closed connected subgroups of O(N), denoted by <$. Because of the paramount
role of the symmetry, we adopt here—and in Sect. 7, the vector notation (σ, ft, n). In
a brief form, the statement we prove, for d ^ 4 and under the suitable assumptions,
is that at h = 0 the free energy has vanishing directional derivatives in all the
directions within the orthogonal complement of the subspace of the invariant
vectors: l^ = {ueWLN\ Ru = u for all Re^}. For the 'Ό(iV) case" of (2.2) that translates
to differentiability at h = 0, since /£ = KΛ

For systems with pair interactions we write the Hamiltonian as:

x,y

-,(*„ σy) - Σ<* + εηx) σχ9 (4.4)

|| Ψx-y\\ S 1; and make the additional symmetry assumptions, that for all

i) the a priori measure is R-invariant: λ(dσx) = λ(dRσx\
ii) Ψx-y(Rσx9Rσy) = Ψx-y(σx,σy\ for all {x9y9σX9σy}9

iii) v(dη) = v{dRη\ though for each realization of the random coefficients the
interaction is of course not ^-invariant.

Furthermore, we make the smoothness assumptions

iv) Ψx-,(RσX9σy) is twice differentiate in R, along ^—with respect to the Lie
group structure inherited by ^ from O(N). It is normalized so that for any
one-parameter subgroup {Rθ} a <g, with the natural parametrization (which in the
vicinity of the identity is given by the maximal angle by which R rotates a vector),

sup sup ύ I- (4.5)
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The interaction may be of unbounded range, and our result applies as long as:

v) Σ \Jz\\z\2^ Const. L<4-' ) / 2, (4.6a)

zeΈ*:\z\ZL

for which it suffices (if d ^ 4) that

(4.6b)
Even though for each realization of η the system's interaction is not symmetric

under ^ , such a symmetry exists at the bulk level (by the symmetry of the probability
distribution of η and its ergodicity under translations). In particular, it is easy to
see (e.g. from the first part of Proposition 3.1) that the free energy F{T9h9ε) is
^-invariant:

F{T9Rh9ε) = F(T9h9ε\ for all Re<&. (4.7)

It makes sense, therefore, to say that a symmetry breaking occurs if an interaction,
with a field configuration which is not "a typical", admits at ft = 0 a Gibbs state
pη(-) whose bulk magnetization is not an invariant vector or more precisely if its
set of accumulation points does not satisfy:

U M T T Ϊ Σ **<£•)<=' (4.8)
L->αo |/l |xeΛ

(in the notation of (3.5)). That possibility is ruled out if the directional derivatives
of F{T9h9ε), D(v)f{h) = (d/ds+)f{h + sv)—which exists by the convexity of F in ft,
satisfy:

D(v)F(T909ε) = 09 for all ge/£. (4.9)

The reason is that if (4.9) holds then, by (3.5), lim — Y pπ(t; σx) = 0 for each
L | Λ | Λ

vel£9 which implies (4.8).
By the celebrated Mermin-Wagner theorem, in non-random systems there is

no continuous symmetry breaking (under the suitable assumptions) in dimen-
sions d ^ 2. The following result (proven here in Sect. 7) states that quenched
randomness inhibits continuous symmetry breaking over a broader range of
dimensions.

Theorem 4.4. Assume the system has the properties listed above, with the symmetry
group & being a connected subgroup ofO(N)9 N ^ 2. If the dimension is d S 4, and
v(dη) is absolutely continuous with respect to the N-dimensional Lebesgue measure,
then for ε Φ 0 F(T9 A, ε) is differentiable in ft, at ft = 0 (for all T ^ 0), in the directions
lying in the orthogonal complement ofl#9 i.e. it satisfies (4.9). For T > 0, the absolute
continuity assumption can be replaced by the requirement that v(dη) be spherically
symmetric, and have no isolated points in its radial distribution [in the sense made
explicit in Appendix III, b].

As in clear from the proof (Sect. 7), the theorem has a natural generalization
to systems with many-body interactions, the relevant condition being the energy
bound of Lemma 7.5.
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5. The Fluctuating Quantity GΛ(η)

In this section we construct the finite-volume quantity GΛ(η) on which the argument
outlined in (1.2) and (1.3) focuses. Instrumental for the construction is the statistical
mechanical manifestation of the thermodynamically defined Mα, as the discontinuity
of the average (over the randomness or over the translations) of the thermal
expectation value of the quantity conjugate to ha and {ηa,x}. If Ma(T,h,ε) # 0 then
for typical configurations of the couplings, i.e. for v—a.e. η, the spin system has
at least two Gibbs states which differ (by 2MJ in the bulk density of gΛtX(σ). Our
GΛ(η) is, in essense, the difference between the finite-volume free energies of pairs
of such states. The basic construction is simplest to present under an auxiliary
condition—the existence of jy-covariant states (in the terminology introduced
below), which is satisfied in RFIM and in the ferromagnetic random bond Potts
models. Before turning to the generalizations, and to the interesting questions
which arise in that context, let us present GΛ(η) in the simplest case.

In the case of RFIM, our purpose could be served by the quantity

(GΛfoΛ)= Γ l n Z Λ , + ( W » / } ) - ΓlnZΛ,_(ΓΛ{ε>y}), (5.1)

where ZΛt± are the partition functions with the standard ( ± ) boundary conditions.
It is however more convenient—both for RFIM and from the general point of
view, to work with a slightly different quantity (which has a built-in translation
covariance). Let pηt+ and pη- be the Gibbs measures for the random field η,
obtained in the infinite volume limit by means of the above mentioned boundary
conditions: σΛc = 1, and, correspondingly, σΛc = — 1. We define:

(5.2)

with β = ί/T. (One may notice that the terms in the exponents in (5.2) cancel
similar terms in the Gibbs factors of the pηt± states. That cancellation is made
explicit in (5.12) below.)

The relevant properties of the Ising model's states pηt± are summarized by their
"f/-covariance"—in the terminology defined below.

Definition. An η-covariant state [at the given (/?, {A}, {ε})], is a measurable function
(in the weak* sense explained in Appendix I) associating a Gibbs measure ρη(—) to
each η in a set of the full v-measure, which changes with η in the following way:

i) Under local changes—i.e. for Δη with a finite number of nonzero terms,

Pη+ An(~) = Pni-
where

Λ#=ΣΣ^?W«.* ( 5 4 )
a x

{see (3.1) and (3.2)).
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ii) Under the lattice translations, TX9

PTM) = P4T-J\ ( 5 5 )

for all observables f
An η-covariant state which is a limit of η-covariant states with ha varied over a

sequence of values Aiπ)J,Λα (correspondingly Aĵ tAg), is referred to as an oc-plus (α+)
state (or an a-minus (α_) state).

Speaking somewhat loosely, a sufficient condition for the existence of */-covariant
(α±) states is the availability of some //-independent and translation-invariant
boundary conditions, with which the finite-volume Gibbs states converge, for at
least v-a.e. η. For RFIM such a role is played by the above mentioned boundary
conditions σy = ± 1 . For the ferromagnetic random-coupling Potts models an
jy-covariant + phase may be constructed by means of the uniformly ordered
boundary condition, and a — phase is achieved by means of the free boundary
conditions. [We omit the proof of these statements (based on correlation
inequalities, notably the FKG inequality [18]), since they are standard and are
not essential for our main result.] The question of the general existence of such
states poses, however, a hitherto unexpected difficulty (related to some physically
interesting issues, concerning the possible structures of the collections of extremal
Gibbs states). We bypass the difficulty by moving the discussion one rung up—to
the level of probability measures on the space of states. At this level we do find,
quite generally, measures with the desired jy-covariance. The relevant existence
result is stated in Proposition 5.1 (and proven in Appendix I).

For the simpler case, of systems which possess fy-covariant α ± phases (pηfΛt±)
we define GΛa as follows:

(5-6)

The next proposition lays the grounds for a generalization of this object, which
allows our argument to proceed regardless of the existence of jy-covariant states.
For the proof of the rounding effect in RFIM (and the other models in the special
class described above) the reader may now skip to Proposition 5.2, which presents
the relevant properties of GΛ.

Proposition 5.1. For each system of the type described in Sect. 3, at each (/?, A, {ε})
there exists a function μη9 defined for η in a measurable set ^V with v(Jί) = 1, whose
values are probability measures on the space of states of the spin system, with the
following properties:

i) The map η^μη is measurable (in a weak* sense—see Appendix /).
ii) For each *ye«yT, the probability measure μη(dp) is supported in the set of Gibbs
measures for the Hamiltonian corresponding to η.
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iii) Under local changes in η, with Δη consisting of only a finite number of nonzero
terms, μη is transformed as follows:

μη+Λη(dp) = μη(d(U-ΔΪp)), (5.7)

where UΔη is the map taking a state p to UΔηp(-) = p(-e'βΔH)/ρ(e~βΔH), with ΔH
defined in (5.4).
iv) μη is a translation-covariant function of η, meaning that under the lattice
translations

(5.8)

v) Furthermore, for any α there is a pair of measures, μηa+ and μμ,α,_, satisfying

(5.9)

The proof of the proposition is given in Appendix I.

Remark. Using the general notion of the baricenter, we associate to each of the
above measures, μη(dp), the single ^-dependent state:

). (5.10)

The baricenter of μη is a Gibbs state for the couplings η (being a superposition of
Gibbs states), which is covariant under translations (i.e. satisfies (5.5)). However,
the simple behavior of the measures μη under local changes in η (Eq. (5.7)) does
not automatically extend to a simple transformation law for pμ

n. The reason is that
UΔη is not an affine map.

A related observation is that pμ

n does not necessarily provide the full information
on the measure μη—since the support of μη is not restricted to the set of extremal
Gibbs states.

We are now ready to define the fluctuating quantity GΛa(η), which is used
in the proof of the vanishing of Mα for a particular value of the index α (which
will often be suppressed). Starting with a pair of measures μη-(dp) and μη+(dp)
with the properties i)-v) listed in Proposition 5.1 (in some models the pair is not
unique), we define:

pJexpl+β X εaηatXgaΛ)
\ \ x:7Vα<zΛ / /

_(exp(
\ \

+β Σ "
x:Txαc:/t

. (5.11)

The signs seen in the exponents in (5.11) are chosen to be the opposite of the
signs in the Gibbs factors. An alternative expression for GΛJη), which better
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manifests its similarity to <EΛ(η) of (5.1), is

/ /
-β+Uxp(-

pjexpί -β X saηatXgatX))
(5.12)

where we apply the convention that ηΛC is the random field configuration which
is zero for (α,x) with Txη <= Λ, and agrees with η in Λc (the complement of A). The
equivalence of (5.12) with (5.11) is a consequence of (5.7).

Remark. For systems with f/-covariant states, the construction described in
Proposition 5.1 can be attained with point measures. In this case, our generalization
of GΛ would be consistent with (5.6).

The following statement summarizes the relevant properties of GΛ(η).

Proposition 5.2. The quantity defined by (5.11) (and—when applicable—(5.6)), has
the following properties:

i) For (x,α) with TxoceA,

dGΛ

( 5 1 3 )

where the states pηt± are the baricenters of the measures μn>±, defined by (5.10).
ii) The averages over η yield the order parameter

iii) GΛ(η) obeys the general bound:

\GΛ(η)\S2\\VηM\\9 (5.15)

where Vη;dΛ(σ) is the interaction across the boundary of A, discussed in Sect. 3b9 and
the norm \\ || refers to the supremum over the spins.

Proof. The formula for the derivative is an elementary consequence of the
representation (5.12) of GΛ. It should be noted that unlike (5.12), the expression
provided for GΛ by (5.11) depends on ηΛ in two places.

ii) follows from the explicit expression (5.13), and the properties (5.7) and (5.8) of the
measures μη±.

To prove iii) let us note that GΛ is the ratio of two expectation values of the
same quantity, which is a function of the spins in σ, taken in a pair of Gibbs states
ρ+ and p_. These states are of the form ρ±() = ρ±( 'e~βVdΛ)/ρ±(e~βVdΛ) with p± a
pair of measures with identical restrictions to the region A. That easily implies
(5.15). •

Our results on the Gaussian behavior (derived in the next section) are formulated
for averaged versions of GΛ. For a fixed α, we define:

l (5.16)
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where £(•) stands for the (conditional) expectation with respect to v(dη), and
ηΛ = {ηXtΛ\ TXOL c A}. Note that with this choice Vη;dΛ(σ) has no terms involving ηΛ.
Hence, in d ^ 2 dimensions, (5.15) together with (3.12) imply the uniform bound:

In the following discussion the index α is often omitted, e.g. ηax will be written
as ηx.

6. Proof of the Rounding of First-Order Phase Transitions in rf^ 2 Dimensions

The proof will follow the strategy outlined in Sect. lb. Since the free energy bound
(1.3) was established in (5.17), it remains to derive the Gaussian behavior stated
in (1.2). That is done in the following proposition, which is stated in a notation
slightly detached from the immediate application—since the criterion may be of
interest also in other setups.

Proposition 6.1. Let ΓΛ(η^ be a collection of functions of the I.I.D variables
{ηa,x}x:Tχ<xcΛ (wiίΛ the given value o/α), indexed by A = [—L,L]d c=Zd. If there exists
a translation covariant function τax(η), such that:

i) ^ ^ = εE(τΛJηΛ) for each x, with Txoc a A, (6.1)
Wax

ii) Av(τα,J = M, (6.2)

and ^ ε/T (uniformly in η) (6.3)

and, furthermore,

iv) Av(ΓΛ) = 0, (6.4)

then the distribution of ΓΛ has a Gaussian limit—

J 2 ) (6.5)
with some constant b, obeying

ε0v(M, T/ε) ^b^ 6 v /2Av(|^ | 2 ) (6.6)

with the function 0V(M, T/ε) defined in Appendix III (Eq. (A3.2).
In particular, the moment generating function of ΓΛ satisfies:

liminf AvίexpίίΓVv^ΊJί^expf^-ε^^M^/ε)) (6.7)
Λ = [-L,L]* V \2 /

L-»oo

for all real t.
If, in addition, τo(η) is monotone in η0, then the function 0V( ) may be replaced

in (6.7) by yv( ) (defined in (A.3.2)).

Remarks. The above proposition is proven below by verifying the conditions of
a general central limit theorem, stated in Appendix II. The bound (6.7) on the
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moment generating function, which suffices for our main purpose, is stated here
explicitly since it requires a somewhat less demanding criterion—which is derived
in Appendix II. The main result (Theorem 4.1) is thus given here a completely
self-contained proof.

Before turning to the proof of the proposition let us just point out its implication
for our main problem.

Proof of Theorem 4Λ (assuming Proposition 6.1). Let ΓΛ = GΛ = GΛa. It
directly follows from Proposition 5.2 that the conditions (6.1)-(6.4) are satisfied,
regardless of the dimension d. (One may note, however, that in the passage from
(5.11) to (6.1) use is being made of the independence of fj-which permits the
interchange of the differentiation with respect to ηx with the partial integration
over other η) Therefore GΛ also satisfies the bound (6.7). On the other hand, (5.17)
implies

Av(exp(ίGΛ/>/MT))^exp(ίvl), for all ί^O. (6.8)

In d = 2 dimensions (6.7) is inconsistent with (5.17) unless 0V(M, T/ε) = 0 (and—
when applicable, also yV(M, T/ε) = 0, with the contradiction arising at sufficiently
high values of ί. Under the continuity assumptions on v, stated in Proposition 4.1,
the statements 0V(M, T/ε) = 0 and—if available—y V(M, T/ε) = 0, imply M = 0. •

Proposition 6.1 is derived by invoking the general criteria presented in
Appendix II. In order to do so, we first establish the relevant conditions. That is
the content of the following Lemma 6.2. We start by defining some σ-algebras
which are useful in the martingale representation of Γ Λ . For any rectangular region
Λ, let us list the sites x such that TXOL C A (e.g. using the lexicographic order of
the lattice Zd) as x x , . . . , x, Λ ! . (If α contains more than one point, then the number
of such sites differs from |Λ| by a term bounded by |<M| diam(α). This point is
inconsequential, and will be ignored. Furthermore, to keep the notation simple,
we refer to the above condition on x simply by xeΛ.) We denote by &Λtk the
σ-algebras generated by {ηXi\ 1 ̂  i ^ fc}, with FΛ = ^Λt{M. We now decompose
ΓΛ as the following sum of mean-zero, orthogonal, increments

with

FΛk-x) (6.9)

Lemma 6.2. For the rectangular regions A = [—L,L]<i, with L-κx>, the variables

ΪA ,M satisfr

i) For each η, | YΛ,k(η)\ ύ «0[|if,| + Av(|ί/|)]. (6.10)

ii) There is a finite number b9 satisfying (6.6), such that

\Λ\
Λθ. (6.11)

L-ΌO
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For models (like RFIM) with τo(η) monotone in ηθ9 the function θv( ) may be replaced
in (6.6) by yv( ).

Proof. For any lattice site x, we denote by η<x the collection of variables {ηy\yeΈd

9

y<x (in the lexicographic order)}—and by η>x and η±x the collections defined
by the corresponding conventions. The conditional expectation, conditioned on
ηύx may naturally be written (in a notation which we hope is suggestive enough)
by means of an integral over ή>x, as in the following example:

E(ΓΛ\ηzx) = Sv(dή>x)ΓΛ(η<χ9ηχ9ή>x). (6.12)

By this representation, the difference in (6.9) can be expressed as an integral of
dΓA/dηx. Let

Wx = sβiv(dή>x)v(dήx)
ηjjds τx(η<x,s,ή>x). (6.13)

Formula (6.1) yields

^Al (6.14)

which is particularly convenient since Wx(η) is independent of A—as long as that
region includes x.

Since |τ j ^ 1 (by (6.3)), Wx obeys:

I Wx(η)\ ^ εβjv(dή)\ηx - ή\ ̂  εβ[\ηx\
2 + Av(\η\2)V/2

9 (6.15)

and the similar bound claimed in (6.10).

ii) Next, we prove that (6.11) is satisfied with b defined by

b2 = E(W2). (6.16)

The proof is based on the ergodic theorem, and some approximation arguments.
To get there, we decompose the summand in (6.11), as

\η<Xk)-] (6.17)

By (6.13) the functions Wx(η) share the basic covariance properties of τx(η), i.e.

with Tx the lattice translation operators. Hence

E(W2

Xk\η<Xk)=f(T_Xkη) (6.18)

with/fa) = E(Wl\η<0). For this term, the ergodic theorem (in its elementary L2(dv)
version [28]) implies

To bound the effect of the corrections, we let R denote the distance R(k) =
dist (xk9 dΛ). Simple analysis of the projection operators involved in the conditional
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expectations shows that the other terms in (6.17) can be bounded as follows:

IIE(Y\k - WllPju-1)II i ^ 2II Wo II2II Wo - E(W0\^RtR]d)II2 = a2(R) (6.20)

with α^/ί), α 2 W (defined above) vanishing for R-+oo. Since the predominant
values of R, with fe averaged over {1,...,|/1|}, diverge when L->oo, the above
bounds combined with the triangle inequality(ies) reduce (6.11) to the proven (6.19).

Finally—the bounds (6.6): 1. the upper bound is a consequence of (6.15); (2)
for the lower bound [which is more important] we note that by the product
structure of v, upon differentiation (6.13) yields

which—combined with (6.2) and (6.3)—easily implies:

dη0 dη0

By the L2-contraction property of the conditional expectation, and the definition of
the functions 0V and γv (see (A.3.2)) we now get

b2 = E(W2

0) ^ E(lE(W0\η0n
2) ^ ε2θv(M9 Γ/ε)2, (6.23)

with γv allowed to replace 0V in case τo(η) is monotone in η0. •

Proof of Proposition 6.1. Lemma 6.2 establishes the key condition for the
applicability of the general theorems presented in Appendix II. Specifically, the
moment generating function bound (6.7) and the central limit property (6.5) are
implied, respectively, by Propositions A.2.1 (derived there) and A.2.2. These criteria
are formulated in the context of double stochastic arrays, which is very suitable for
our purpose—as seen by identifying our rectangular regions A with the index n.
To further adjust the notation, let

^ and XΛkW = - 4 = ^ ( ^ (6.24)
J\Λ\\Λ\ ' ' y/\Λ\

Condition (A.2.3) and the stronger (A.2.14) are established by (6.11). It remains
only to verify the condition (A.2.4), for which it suffices to verify the unconditional
form of the Lindeberg property stated there. To do that, we first invoke the Jensen
inequality—applicable here by the convexity of the function Φ(X) = X2I[X > a],
and the relation (6.14), by which

E(X2

AiIί\XAi\ > a]) g E(J^ Wim Wo\

Hence we have:

for μ|->oo,
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with the last statement implied by the square integrability of | Wo\ (guaranteed by

(6.15)). •

7. The Rounding Effect Systems with Continuous Symmetries in d^ 4
Dimensions

In this section we focus on systems which are stochastically invariant under the
action of a continuous, connected group—in the sense explained in Sect. 4c.

With the goal of proving Theorem 4.4, we assume the system has all the features
listed in Sect. 4c (i-v). The symmetry group, ^ , is a connected, closed (with no loss
of generality there), subgroup of O(N). The key step is to prove the following
lemma, which is in fact an equivalent formulation of Theorem 4.4—cast in a
statistical mechanical terminology.

Lemma 7.1. In a system having the features i)-v) described in Sect. 4c, let pη be a
function associating to each η (in a set of full measure) a Gibbs state for the
corresponding interaction, with ft = 0, which is the baricenter of a measure μη{ ) having
the properties i)-iv) listed in Proposition 5.1. If d ^ 4 (d being the dimension of the
lattice), then the mean magnetization (m) is ^-invariant:

$ η o ) e l « , (7.1)

where I# a UN is the subspace of the ^-invariant vectors.

Remark. The conclusion of Theorem 4.4 implies (7.1) for any family of ^/-dependent
Gibbs states which are weak* measurable, and translation-covariant (in the sense
of (5.3)).

Our proof utilizes the framework developed in this paper, incorporating ideas
which have been developed in the analysis of the classical Mermin-Wagner
phenomenon [20]. In the background is an argument of Herring-Kittel [21],
which was elucidated by Pfϊster in his rigorous proof of that two-dimensional
phenomenon [22]. We make use also of related observations by Dobrushin and
Shlosman [23], Fannes, Vanheuverzwijn and Verbeure [24], and Georgii [25].

The meaning of (7.1) is that

m = Rm (7.2)

for each Re&. It suffices to prove (7.2) under the assumption that R is a cyclic
element, meaning here that it belongs to a closed one-parameter subgroup of ^ ,
isomorphic to the circle. The reason is that the union of such subgroups is dense
in 0, or better yet: each element of ^ can be written as a product of cyclic elements
(with ^ N(N — l)/2 factors). [Each ReΦ belongs to a one-parameter subgroup. If
the subgroup is closed it is isomorphic to the circle. If not, then its closure is
isomorphic to a finite dimensional torus, [26].]

To prove Lemma 7.1 we now fix the attention on a specific measure μη(-) [a
function of η with values in the space of probability measures on the space of
states—with the baricenter /?„] having the properties listed in Proposition 5.1. We
specify also the symmetry map R, assumed to belong to a closed one-parameter
subgroup of <&.
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For the specified μη and R, let us define the measures fiη(dp) by:

ifiη(dp)p(f(σ)) = Jμ R - ίη(dp)p(f(Rσ)% for all "observables"/, (7.3)

where R~xη and Rσ are the uniformly rotated configurations. Upon a moment of
reflection, one can easily see that βη() is supported within the collection of Gibbs
states for the interaction Hη Rh, with the specified random fields η and the uniform
field rotated to Rh. In its dependence on η, the new measure inherits the covariance
properties of Proposition 5.1. If h = 0, as is the case considered here, then #„(•) and
μη( ) are supported in the set of Gibbs states for the same interaction, though possibly
with different boundary conditions.

For these two measures we have:

ro, (7.4a)

and

Rm, (7.4b)

where (7.4a) is an explicit statement of (7.1), and (7.4b) is by (7.3) and the ̂ -invariance
of v(dη). Following the general strategy of this paper, in order to prove (7.2) we
focus on the fluctuations of the auxiliary quantity GΛ(η), which for this section
is defined as:

^ **) - ^ Sμη(dp)ln rfe-*"'*\ (7.5)

where ηΛσΛ = £ ηx σx. As in (5.16), we define GΛ(ηΛ) = E(GΛ\ηΛ) - E(GΛ).
neΛ

By now, the reader will not be surprised to learn that GΛ(ηΛ)/y/\Λ\ has in the
limit a normal distribution (a fact implied by Proposition 6.1), with variance which
does not vanish if (7.2) is violated (see below). The new information, which
raises the marginal dimension to d = 4, is that under the assumptions made in
Theorem 4.4, GΛ(ηΛ) obeys the uniform bound (for A = [ — L,L]d):

\GΛ{ηΛ)\ :gconst.Ld-2 +Bj\Λl (7.6)

where 5 = 0 for finite range interactions. The exponent in the first term is an
improvement over lί'1 seen in the general (1.3). Following is the key step in the
derivation of (7.6).

Proposition 7.2. For the given Re&9 assume there is some se[0,1] and a pair of
transformations on the space of configurations Ri9i= 1,2, which act as products of
single-site rotations by elements of^{R{= ®Rθχti\ such that:
1) for both i = 1 and 2, Rt acts as R in A and as the identity map in the complement
of some finite region V( ̂  Λ),
2) there is some KΛ(R)9 with which (uniformly in σ)

slH0(Riσ) - tf0(σ)] + (1 - s)lH0(R2σ) - H0(σ)] ^ XΛ(K). (7.7)

Then G Λ , defined above, obeys the uniform bound

GΛ(ηΛ)^KΛ(Ry (7.8)

In the following discussion, we refer by the term local rotation to a map acting
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as a product of rotations-at-a-site, by elements of ^ which differ from the identity
at only a finite number of sites. We reserve the symbol R for such a map.

To prove the proposition we first establish a pair of lemmas.

Lemma 7.3. Let pη(dσ) be a Gibbs state for the Hamiltonian Hη(σ) = H0(σ) — εη σ,
where η-σ = X g x σ x; with H0(σ) and the a-priori measure po(dσ) both ^-invariant.

^ X

If R is a local rotation, then for every local spin function g:

)) (7.9)

(with the terms in the exponents interpreted as sums of only the nonzero terms—of
which there is only a finite number).

Proof Let p0 be the Gibbs state obtained from pη by the removal from the Gibbs
factor (in the natural sense) all the Hamiltonian terms involving spins in V—which
is a finite region outside of which R acts as the identity. That state is invariant
under R9 and thus (in a hopefully clearly understood notation):

= pη(^Ho(σ)-HQ{kσ)Λg{Rσ)) (7.10)

with Zv(η) = p0(e-β[Hoiσ)-ησ]v). •

Lemma 7.4. IfH0(σ) and the a-priori measure po(dσ) are both ^-invariant, then for
each ReΦ and μη(dρ) as above:

GΛ(η) = 0. (7.11)

andGΛ( = E(GΛ \ηΛ)- E(GΛ)) admits the representation

^ ί ^ , H ^ l ' h (7.12)

and satisfies the bound:

iii) GA(ηΛ)^v(dηA.)lμη{dp)p(Ho(R-ισ)-Ho(σ)), (7.13)

with R any local rotation which acts as R throughout A (and as the identity in the
complement of some finite V).

Proof Combining the definitions of GΛ and fiη9 (7.5) and (7.3), we get

GΛfa) = ^ J / < * - ^ P ) l n p ^ (7.14)

By the 0-invariance of v(dη\ (7.14) implies (7.11) and also the following representation

£(<Ml^) = ^fv(*/ A c)[ f^

(7.15)
where g Λ σ Λ

Ξ Σ 2*£*.
xeΛ
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Using the transformation law (5.7)—which describes the local dependence of
μη on η9 we may reduce the above expressions to μηγe(dp)—where V is the region
outside of which R'1 acts as the identity. (ηγc is the configuration obtained from
η by setting it to zero in V) We get

(7.16)

The exponents in the two numerators do not involve the specified ηΛ. By the
0-invariance of v(dηΛc)9 the integrals of the two corresponding terms cancel. The
terms in the denominators may be combined by a reversed application of (5.7).
That yields:

2βGΛ{ηΛ)= -^(dη^μ^lnp^iv-xvϊ'-y). ( 7 1 7 )

The claimed (7.12) follows now by an application of Lemma 7.3, for which we note
that (R~ 1ηv — ηv)σv = (R~ *2 — g) σ (since R~1 acts as the identity in Vc).

The bound (7.13) is a simple consequence of (7.12) and the Jensen inequality,
x

Proof of Proposition 7.2. Let Ri9 i = 1 and 2, be a pair of local rotations satisfying
the stated assumptions. Through (7.13), each of them yields a bound for GΛ(ηΛ).
Taking a weighted mean of the two, we get

(7.18)

where we invoked the hypothesis (7.7). •

Lemma 7.5. Let H be an interaction (4.4) satisfying the smoothness condition (4.5),
and let R be an element of a closed one parameter subgroup of &9 of period P
(in the natural parametrization described above (4.5)). Then, for every A = [ — L, L]d

there exists a pair of local rotations, Ri9i= 1,2, which act as R in A and as the identity
in the complement of the finite set V = [ — 2L, 2L~\d, with which the following bound
holds for all spin configurations σ:

(7.19)

where s = s(Λ)e[0,1]. If the sum on the right side diverges, but d<4 and the
interaction satisfies (4.6) then a modified statement holds—with the right side in (7.19)
replaced by P2 Const. Ld/2.

Proof. Let us denote the elements of the one-parameter subgroup as {Rθ} with
βeRmod.p—in the parametrization of (4.5). In particular: R = RsP, for some se[0,1].
For a given L, we choose Ri9i = 1,2 to be the local rotations:

(Riσ)x = RβχΛσx (7.20)
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with the angles θx>t defined by:

(l-s)PWu

0

(l+r)L-|l
rL

0

, and θxa = sP WLιX,

11*11 ύL
xll

/ < II YII < Π -1-rU
^ * • II-*• II s l ' t Γ ^ ,

(l+r)L<| |x | |

(7.21a)

(7.21b)

A

II* II = Σ lχ*l For concreteness sake we take r = 1.

The energy differences H0(Rj ισ) — H0(σ) with / = 1,2, are sums of

ΔxyΨ= Ψx_y(R.βχiσx,R.βylσy)- Ψx-y{σx,σy)

= Ψx-y(R(βy^βxi)σx,σ,)- Ψx-y(σx,σy), (7.22)

where we applied the rotation-invariance of Ψ. Using Taylor's expansion to the
second order, and the bound (4.5) on the second derivative, we have:

14,, Ψ- («,.»- ΘXM Ψx.y(σx,σ,)\ ύ m,i ~ Kif< (7-23)

where A is a certain linear operator (related to the generator of the one-parameter
subgroup). The contributions of the first-order terms to the left side of (7.19) cancel,
since

S(θy,l ~ θxΛ) + (1 " S)(β,,3 - θx>2) = 0. (7.24)

Hence,

slH0(Rϊ»σ) - H0(σft + (1 - 5)[H0(Λ2-
ι σ) - tfo(σ)]

^ J (7.25)

from which the claimed (7.18) readily follows. •

Putting the above results together, we reach the main goal of this section.

Proof of Lemma 7.1. As explained above, it suffices to prove (7.2) for cyclic rotations
R€&. For such R, Proposition 7.2 and Lemma 7.5 imply the uniform bound

|δ Λ ( i f Λ ) | ^ Const.Ld~2 + B^\Λ\ (7.26)

with the second term absent for short range interactions. Concurrently, the
quantity GΛ(ηΛ) satisfies the assumptions of the multicomponent version of
Proposition 6.1—which requires only the obvious adjustments. For the present
case:

Avί *j'j = εMf9 with M = Rm-m. (7.27)

Hence, GΛ(ηΛ) has a Gaussian limit:

i ^ (7.28)
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with

b^εθ[N\M9T/ε)9 (7.29)

where ^ ( M , T/ε) is the function discussed in Appendix IΠb. As is shown there,
under the continuity assumptions made on v, 0(

v

N)t¥, T/ε) vanishes only at M = 0.
Hence, a contradiction is avoided only if M = 0, i.e. if (7.2) is satisfied. •

Proof of Theorem 4.4. If at h = 0 the system's free energy, F(T9h9ε)9 has a
nonvanishing directional derivative in some direction veΈtN

9 then there is a function
associating to each configuration of the random couplings η a Gibbs state, pη9 such
that:

ί v(dη)pη(v σ0) = βD{v)F{T9 h9 ε) Φ 0. (7.30)

Furthermore, by the construction of Appendix I, one may realize (7.30) with the
state pη being a baricenter of a probability measure μη (on the space of states) with
the properties listed in Proposition 5.1. Now, if the direction vector v is not
orthogonal to the collection of ^-invariant vectors, then (assuming d ^ 4, and the
other features listed in Theorem 4.4), Eq. (7.30) is in contradiction with Lemma 7.1.
Hence, the directional derivatives vanish in all the directions in the orthogonal
complement of J^, as stated in (4.9). •

Appendix I. Gibbs States for Random Systems

In this appendix we construct the ^/-dependent measure μη on the space of states,
which is instrumental for the general version of the main result. We are not aware
of a general construction of a map associating to each (typical) random coupling
configuration a single Gibbs state pη with all the covariance properties listed in
Proposition 5.1. In fact, there are grounds to question the general existence of such
a map.

a. Topological Preliminaries. We denote by (Ω9 SS) the measurable space of spin
configurations. As in Sect. 3, we restrict here the discussion to systems whose
single-spin space may be endowed with a topology (such that $ is the corresponding
Borel σ-field) in which the interactions are continuous, and the space is Hausdorff,
compact and separable—in the sense that it has a countable base. [Such a
topological space is metrizable, and admits a countable collection of continuous
functions which generate the topology.] Further generalizations are possible, e.g.
within the setup discussed in [25]—but they require some other assumptions.

Let 0>(Ω9 08) = & be the space of Borel probability measures on Ω endowed
with the ^-topology induced by the convergence of integrals of bounded
continuous functions (to which probability texts refer to as the weak topology
[27], and functional analysis texts as the weak* topology [28]). The elements of
& are the states of the spin system. For reasons indicated above, we shall associated
to each (typical) random coupling configuration η not a single state, but a
probability measure on the space of states (whose baricenter, (5.10), is however an
element of 2P). We consider therefore also the space M of probability measures
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on ^ , endowed with the nF-topology induced by the convergence of integrals of
(bounded) continuous functions of the states.

The basic relevant fact is that the space of probability measures on a compact
separable space is (in its ^-topology) also compact and separable [27]. (The
compactness can be viewed as the separable case of the more general Banach-
Alaoglu theorem [28].) Thus, the topologies we specified for the spaces & and M
inherit the properties we listed for Ω.

For more concrete convergence criteria, one may choose a countable collection
of functions fn on β, and a countable collection of functions 0m J V:RN-^R,
N = 1,2,..., such that {/„}„ and {gmtN}m are dense in the uniform topologies of R
and, respectively, RN. Applying the Stone-Weierstrass theorem [28], it is easy to
see that for each such choice:

i) a sequence pke0> converges to pofor each n, pk(fn) -7* P(fn\

ii) a sequence μkeJί converges to μoioτ each k, N < oo, and each finite collection

SθmAPiU)*..., P(fnN))dμk V Jθ**(rt/.iλ . . l*f..))dμ. (A.1.1)

These topologies are metrizable—e.g. with the metrics which are easy to generate
from the above criteria.

We now turn to the topology of the interactions, and the space of their functions.
In setting it, we are attempting to capture two different notions. On one hand,
various statements concerning random interactions are true only for "typical" η9

and they are expressed as holding only v-almost surely. At the same time, in order
to differentiate in ηx (or express the very important property of */-covariance) the
claimed properties should be stable under arbitrary local changes of η—even if
the support of v(dηatX) is a strict subset of R. The two notions may be merged by
narrowing the clause of typicality to η's behaviour at infinity.

Let Jf denote the set of configurations of the random couplings η = {ηΛtX}.
There are two relevant topologies on Jf.

—The product topology fp9 whose Borel sets define the σ-algebra on which
the probability v(dη) is defined, and

—The topology fN generated by the metric associated with:

Functions which are continuous in $~N need not be continuous in the product
topology ^"p. The latter is also metrizable, though not by a translation invariant
metric. The price of translation in variance in (A. 1.2) is fN

9s lack of separability.
We denote by j£?(Jf,R) the space of real-valued functions on Jf having the

two properties:
—measurability (in the Lebesgue sense) with respect to the σ-algebra associated

with FP

—continuity under local changes in η.
More precisely, ΨeJ?(3f ,R) if for every finite region Λ, Ψ has a version of the
form Ψ(ηΛ,ηΛc) which is continuous in ηΛ = {ηΛjX\ Txoc a Λ}). With this choice, we
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denote

E{Ψ\ηA) = Sv(dη'ΛC) Ψk(ηΛ,η'ΛC). (A.1.3)

Our choice of the topology on JSfpf ,R) is the one for which the convergence
of functions, Ψk->Ψ means that

E(Ψ\ηΛ)T7^E(Ψ\ηΛ) (A. 1.4)

for every finite lattice subset Λ9 and for all η.
With the analogous conventions, we define the topological space S£{2tf, M\ of

^-valued functions of η.

Lemma A l.l Let Q c= jSfpf ,R) be a collection of uniformly bounded functions. If
for any Λ9 the set of projections {E(Ψ\ηA)\ ΨeQ} is compact, then any sequence of
elements of Q has a convergent subsequence (with a limit in &(JtP9'R)). A similar
statement holds in <£(βtf9 M\

Proof Let Ψk(η) be a sequence of functions in Q. By the assumed compactness,
and the diagonal trick, there is a subsequence for which the functions E(Ψk.\ηΛ)
converge—simultaneously for all finite A. We denote the limits as ΨA(η). These
functions satisfy a consistency condition which may be read as saying that ΨA{η)
form a martingale with respect to the sequence of σ-algebras generated by ηA. By
Doob's martingale convergence theorem [29], there exists a function Ψ(η)—to
which ΨA(η) converge for v-a.e. η9 such that E(Ψ\ηA)- ΨA(η) = lim E(Ψk.\ηA).

According to our definition of convergence, (A.I.I), that means Ψ= lim Ψkj.
-oo

For Q a subset of Jδf (Jf, M\ the proof is by an argument like the above—with
the addition of the Riesz-Markov theorem [28], which identifies the elements of Ji
with positive linear functionals on C(&). •

b. The Construction of μη.

Proof of Proposition 5.1. The proof consists of a construction, carried out in three
steps, and the verification of the desired properties. In the first two steps of the
construction we define finite-volume objects with a restricted version of the
f/-covariance. The values of (T9h9ε) are fixed throughout the discussion.
1. Let pηK denote the periodic-boundary (p.b.) Gibbs state in [— K9K~\d

9 for the
indicated η9 crossed with the a priori product measure in the complement of that
set. [In defining the p.b. state, we exclude from the interaction the terms ΦA and
ga with diam (A)9 diam (α) ̂  2K9 and periodicize both the homogeneous and the
random parts of the interaction.] The extension of the state to the infinite system
allows us the convenience of regarding pηK as an element of ̂ , which we view as
a function of all η—even though it depends only on f/'s restriction to [ — K9K~\d.
For Δη supported in [ — K9 K]d we have

βΔHVΔηPη,K9 (A. 1.5)

with ΔH(σ) = £ βaΔηaxgax. It should be noted that for each bounded function on Ω9
a,x

\UΔηp(f)-p(f)\ ϊg ||Af H sup|/(σ)|. (A.1.6)
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In particular, for compactly supported Δη9 the map UΔη:^-^^ is continuous.
2. We now consider the collection of "windows" (on η), provided by the
rectangular regions W c [ - K, K~\d. Keeping the restriction of η to a given W fixed
(ηw = {ηaxIΓxαc W}\ let us regard ρηK as a random state, with the probability
measure induced for it by v(dηwc). The resulting probability measure on 0> is
denoted by μ*;K. As a function of η9μ^;K depends on it only through ηw. It has
the following properties:
i) Consistency: for each W c W c [ - K9 K\\

ii) Partial translation-covariance: let Tx be the translation by x, defined consistently
in the various spaces considered here. Then

\μTτ%'κ{dp) Ψ{P) = [lζ*{dp) Ψ(TxP) (A.1.8)

for each continuous function on the state space ^ , Ψ(ρ\ which depends only on
p's restriction to a set A with AcTxWcl-K,Kf.
iii) Response to local changes: for each Δη supported in W c [ — K, K~]d we have

It follows from (A.1.6) that μ^;K are uniformly continuous functions of ηw. [Since
the target space, Jf, is compact, the notion of uniform continuity is independent
of the metric chosen for J(. Some specific metrics are suggested by the explicit
convergence criterion (A. 1.1).]
3. We now make the physically relevant choice of the subsequence of volumes for
which the infinite-volume limit is constructed.

By the separability of ^ , and the diagonal sequence trick, it is possible to
produce for the given system a subsequence of values K -• oo for which μ™;K

converge—in the if topology of Jί9 simultaneously for all rectangular W with
the initial choice η = 0. Since for each such (finite) W, μ^;K is the image of μ%;K

under a continuous map (independent of K), it follows that for the above sequence
μ^;K converge also for every η. We denote the resulting limits by pζ. It is easy to
verify that these measures on ^ inherit the corresponding versions of the conditions
(A.1.7)-(A.1.9) with K stricken out (or taken to oo). In particular, (A. 1.8) yields

Remark. In relation to the above statements, one should note that even though
η = 0, the measure μ£L0 is affected by the randomness. It is manifested there by
the fact that μjflo is supported in the set of Gibbs measures whose random couplings
η are set to zero only in Λl

So far, the construction resulted in objects which are defined for all η but have
only the finite-volume versions of the desired properties. That limitation may be
lifted at the price of a restriction to v-a.e. η. One may either invoke here Doob's
martingale convergence theorem, or apply Lemma A. 1.1—by which there exists
a sequence W^> oo, for which μ™ converge to a limit, μr The consistency condition
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resulting from (A. 1.7), implies that the limit reproduces μw:

μϊ = E{μη\ηw)9 for all W. (A.1.11)

Furthermore, (applying Doob's convergence theorem) the pointwise convergence

holds not only for the initial sequence, but—with the exclusion of a set of v-measure
zero, it holds for all the (countably many) sequences of concentric hyper-cubes.
4. It remains to verify that the measure μη constructed above satisfy the conditions
listed in Proposition 5.1. The translation covariance of μη is implied by (A. 1.10)
and the translation invariance of the above convergence statement. The trans-
formation law (5.7) is a limiting version of (A. 1.9), which holds by the continuity
of the maps UΔη.

To prove that for v-a.e η9 μη is supported in the set of the corresponding Gibbs
measures, it suffices to show that for every finite region A and every local
continuous function / of the spins

\ v(dη) ϊμη(dp)\p{y\f) - p(f)\ = 0, (A.1.13)

where y\ is the corresponding Gibbs specification (see [25]). Our bounds on the
interaction, discussed in Sect. 3b, easily imply that for v-a.e η9 γ\f is a continuous
function of the spins, and thus p(y \f) is a continuous function of p. Therefore, the
integral in (A. 1.13) is the limit of the corresponding expressions with K-> oo and
(in that order) W-> oo.

By the definition of μJ;K

(A.U4)

Pη,κ being is the p.b. Gibbs state in [—K 9K]d with the random couplings η\ and
y\κ being the corresponding specification. If the interaction is of finite range then
the difference on the right side of (A.I.14) vanishes for large enough W. In the case
of infinite-range interactions the difference of the first two terms is bounded in
absolute value by Δiη.Λ.KjWfW^ with Δ(η,Λ,K) being the sum of the absolute
values of the interaction terms which directly couple spins in A with spins in the
complement of [—K9K]d. Using energy estimates similar to those in Sect. 3b, it
is easy to produce a uniform bound on this term which vanishes as K -• oo.

The above arguments imply that the constructed measures have the properties
i)-v) listed in Proposition 5.1. Since μη is supported on Gibbs states, Eq. (3.9) gives

9 {ε})J
In order to produce the function μη+ (and μη-) for which the above bound is
saturated one may take a weak limit of a sequence of function μ ( w )ei?pf, Jί) with
hin)-+h + 0 (and, correspondingly h{n)-+h — 0). By (A. 1.6), such μ(n) are uniformly
continuous, in the sense of a metric associated with the convergence criterion
(A.1.1), and the sequence satisfies the conditions of Lemma A.I.I—which implies
the existence of a convergent subsequence. It is now elementary to verify that any
limit, μe JS?(Jf, Jί\ inherits the properties i)-iv) of μin\ With h(n) -» h + 0(fι - 0), the
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bounds (A. 1.15) yield in the limit:

ίv(dη)Sμη(dp)p(gat0) = -, . A f ( % {*}• Wλ (A.1.16)
ona ± ϋ

which is (5.9). •

Appendix Π: A General Lower Bound for the Moment Generating Function

In the proof of the main result (Sect. 6), the most relevant fact about the limiting
distribution of the random variable GΛ/y/\A\ is that it exhibits arbitrarily large
fluctuations—on the scale of its second moment. A convenient way to make our
argument is by establishing a lower bound on the rate of growth of the moment
generating function. In this appendix we derive a general criterion which can be
used for such a purpose, presented in a notation which is widely used in the
probability literature on the central limit theorem. The correspondence is:
n<->A,kn<-+\A\, SH*-*&Λ/y/\Λ\9 and ^π>ι*->the σ-algebras generated by the "first Γ
η variables in Λ.

Proposition A.2.I. Let Sni be a zero-mean martingale array, with respect to
the filtration &n>i ( lg ΐ^ fc π ) ; with S B ( i -S B , i-i^X B ( i , and Sntkn = Sn (so that
Sn. = £(S w | ^ π . ) ) . Assume the conditional variation Vn, and its large-deviation
component t/ π α :

UH,a = Σ EiXyUXJ > a-\\!?nΛ_γ\ (A.2.2)
ί = l

satisfy the following lower bound (a) and the upper bound (b):

a) for some constant η>09

Prob(Kn^f/ 2-(5) •(), for all <5>0, (A.2.3)
n-*ao

b) for each a>0

UM,a^0, (A.2.4)

π->oo

[which is obviously satisfied if the Lindeberg condition—E(Un a) •O holds]. Then,

for all ίeR,
lim inf E{etSn) ^ et2η2f2. (A.2.5)

n->oo

The first step towards the proof is the following elementary statement.

Lemma A.2.2. There is a function ε(a)—which vanishes as α-^0, with which
E(eX) > eH/2 -ε(β)]£(X2/[|X| ^α]) (A.2.6)

for any random variable with E(\X\) < ao,E(X) = 0.
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Proof. First let us note that some ε, with ε(a) — • 0,
α->0

ex ^ 1 + X + [ i - ε(a)]X2Il \ X | ^ a]. (A.2.7)

Averaging (A.2.7), and exponentiating the result [with the aid of the fact that
In (1 + z)/z — • 1], one gets (A.2.6). •

z-*O

Proof of Proposition A.2Λ. By a scaling argument, it clearly suffices to prove (A.2.5)
f o r ί = l .

Lemma A.2.2 implies that the random variables

K* = expΓ Σ XnΛ - β - ε(α)] Σ E(X2

nJl\Xnti\ ί a\|^n,_x)l (A.2.8)
L«=i /-i J

form a submartingale, i.e.

EiR^^.^R^.^ for fe=l,...,fcπ. (A.2.9)

Consequently,

1 ^ £(ΛΠ>1) ̂  ^ £(Λw,fcn) = £(e s "- ί l / 2 - ε ( α ) 3 ( K ' - ι ; ' - ) ) . (A.2.10)

Applying the Holder inequality with q^l, (1/q) + (1/tf*) = 1, we get

1 ^ E{eqSn)1/qE{e-ιί/2-ε(a)](Vn-Un'a)qy/q\ (A.2.11)

Conditions (A.2.3) and (A.2.4), and the positivity of Vn — C/wα, imply—for the
last factor in (A.2.11), that

lim l i m s u p E ^ - f 1 / 2 - ^ ^ - 1 7 - ^ ) 1 ^ ύβ'1/2"2 (A.2.12)
n-*oo

for each q* < oo. Hence, for each q > 1,

lim inf E(eqSn) ^ eqη2l\ (A.2.13)
Λ-*OO

and by scaling—

lim inf E(etSn) ^ tt2η2/(2q). (A.2.13')
n-*<x>

Taking q[ 1 we get (A.2.5). •

Remark. It may be added that if the assumption (A.2.3) of Proposition A.2.1 holds
with η2 = lim sup E(S2) (which is the largest value at which it can hold) then Sn

converges, in distribution, to a Gaussian. That case is already covered by the
following version of the Central Limit Theorem (which incorporates improvements
due to a large number of contributors).

Proposition A.1.3. ([30, Theorem 3.2]). If a zero-mean martingale (double) array
SΛth with the rest of the notation of Proposition A2Λ> satisfies:

a;) for some constant b, Vn^b2 i.e.

O, for all <5>0, (A.2.14)
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and b) the conditional Lindeberg property (A.2.4), then

Λ). (A.2.15)

We apply this Theorem in the proof of (1.2), in Sect. 6. Though, as explained
there, for the main result of this paper it suffices to have Proposition A.2.1.

Appendix III: Variance Lower Bounds for Probability Measures on R*

a. Measures on R. In this appendix we prove the main properties of the functions
0V( ) and γv( ) which were used in Sect. 6 and 7. [In the process, we correct a
statement made in ref. [3]—where 0V was mentioned only with T=0 and the
absolute continuity is mistakenly replaced by a mere continuity requirement.]
These functions provide uniform lower bounds on the variance of quantities
dependent on the random parameters, on the basis of information concerning their
derivatives.

The relevant constraints on the derivatives may be introduced in terms of the

Lipschitz seminorm |||^||| = sup—• •—. We denote by *Γίtβ the following

sets of functions (on R):

For β < oo:

^ i . ^ = { f l r e C 1 ( R ) | 1^(01 ^ 1, IRβ l̂ll ^

For β = oo:

The elements of f1>00 are absolutely continuous, and hence t [Lebesgue measure]-
h

a.e. dilferentiable, with g(h) - g(0) = $ g'(z)dz. The derivative g'el?(dt) satisfies

IId II oo ̂  1> which is akin to the bound \g\')\ ^ 1 seen in the definition of ^ M .
The functions 0V( ) and yv( ) (the latter being relevant when </(•) is monotone

in η) are defined as follows, for M e [ — 1,1] and Γ ^ 0,

0V(M, T) = mΐ{^g(η)2v(dη)V/2\ger'Uί/τ,ίg
f(η)v(dη) = M},

yv(M, T) = inf {[f flf(if)2v(dιj)]1/2|flfe^lfl/Γ,^( ) ̂  0, \g\η)v(dη) = M}. (A.3.2)

It should be noted that the L2(dv) norm of g may be replaced in the above
definitions by the square-root of the variance of g with respect to dv. Of particular
interest for us are sufficient conditions for the strict positivity of these uniform
bounds. Before turning to this issue, let us make a couple of preliminary
observations.

Propositions A.3.1, For each Borel probability measure v(on R):

i. 0V(M, T) and yv(M, T) are convex in M, for any T ^ 0, with 0V( , T) an even function
(while γv(; T) is defined only for M ^ 0).
ii. 0V(M, T)/M and yv(M9 T)/M are nondecreasing in |M|, and

0V(M, T) ^ 7 v(M, T) ^ \M\Av(>72)1/2. (A.3.3)
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Ifv is absolutely continuous, with respect to /, with v(dη) = φ(η)dη, then

ΘV(M,T)£

ίThVΦ) * J
(A.3.4)

The convexity is by the affinity of the constraint, and the convexity of the norm
of L2(dv). More explicitly: for M = (1 — λ)M0 + λMί one can take as variational
functions g = (1 — A)gf0 + i # l 5 with g{ satisfying the corresponding constraints. That
yields: 0V(M)^(1 -λ)θv(M0) + λθ^MJ, and the similar inequality for γv(M).
Statements made in ii. are derived by the natural arguments, omitted here because
of their simplicity and the fact that (A.3.3)-(A.3.4) are not used in this work. Let
us note, however, that (A.3.4) is derived by ignoring all the constraints on the
derivatives.

Most important for the arguments made in Sect. 6 is to know under what
conditions on v, does 0V(M, T) = 0 imply M = 0. The following proposition answers
this question.

Proposition A.3.2. For Borel probability measures (v) on R:

i. AtT — 0; 0V(M,0) vanishes only atM = 0ovis absolutely continuous with respect
to the Lebesgue measure (/).
ii. For Γ > 0; 0V(M, T) vanishes only at M = 0 o v has no isolated point masses (i.e.
points with v( {h}) Φ 0 and v( [ft — a, h) u (ft, ft + a]) = 0 for some a > 0).
iii. For T > 0 ; yv(M,T) vanishes only at M = 0ov is not concentrated at a single
point.

Proof, i. <= (at T = 0): In the absolutely continuous case, the infimum in (A.3.2)
is actually attained in the set f l f 0 0 . To prove that statement, we note that v is of
the form v(dh) = φ(h)dh9 with φ(h)eLι(dh). Let gn be a minimizing sequence for a
given M # 0 . |0n(O)| is uniformly bounded for such a sequence, as can be easily
deduced from the bound | gn(h) | ^ 11 gn(Q) \ — | ft 11 +. By the sequential w*-compactness
of the unit ball of L°°(ίift), there is a subsequence, for which both gn(0) and the
derivatives converge; ^-•/eL 0 O(dh) (in the w* sense). It follows that gn converge
pointwise to a function gsir

lao, with g' =/(Λa.e.). For the limiting functions we
have (using the Fatou lemma, and the fact that gn was a minimizing sequence)

a. J/(ft)φ(ft)rfft = M, b. $g2(h)φ(h)dh = θv(M,0). (A.3.5)

In the above notation, if x is in the Lebesgue sets [31] of φ and g\ with
φ(x)'g'{x) Φ 0 (and, since M Φ 0, the set of such points has positive /-measure) then
for some a > 0, g does not vanish is the neighborhood (x — α, x + a) except possibly
at one point, while φ is nonzero on a positive measure subset of (x — α, x + a).
Hence 0V(M,O)>O.

=> (at T = 0): If v is not absolutely continuous with respect to /, there is a
bounded measurable set S with <f(S) = 0 and v(S) > 0. Since C(R) is dense in L1 of
the Borel measure (dv + d£\ there is a sequence of continuous functions fn9 with

being the indicator function). Let gn{h) = )fu(z)dz.
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Then
$g'n(h)v(dh) = ifn(hWh)-+v(S)

and (A.3.6)

since gn(h)^>S([0,h]nS) = 0, uniformly in h. It follows that 0V(M,O) = O for all

ii. <= At T > 0, compactness arguments similar to those used in ii., but applied to
g'\ show that for each M, 0V(M, T) is realizable by means of a certain function
geC\ with

a. jg'(h)v(dh) = M9 b. jg2(h)v(dh) = θv(M,0). (A.3.7)

Let S be the support of v (the smallest closed set with v(Sc) = 0). If 0V(M, T) = 0
then 0 = 0 on S. The assumption on v is equivalent to the statement that S has
no isolated points. The vanishing of g on such a set implies g' = 0 on S, and that
can occur only if M = 0.

=> For v with an isolated point (h), it is easy to construct g which show that
0V(M, T) vanishes at a certain positive value of M, depending only on v({h}) and
the distance of h to S\{ft}.
iii. For T > 0, yv(M, T) is attainable by an analog of (A.3.7)—with g restricted to
be monotone, as well as to have a continuous derivative. If γV(M, T) = 0 then g
vanishes identically on S = supp v. If also M Φθ, then gf'(x) # 0 for at least one
point xeS9 with g(x) = 0. That, however, implies g2 > 0 everywhere else, which is
in contradiction with the vanishing of γ. •

b. Measures on RN. In Sect. 7 we need a finite dimensional extension of the above
result—to functions of a vector valued random variable h, with values in R*. It
turns out that in order to obtain a lower bound on the variance of g, on the basis
of M = Aw(dg/dηί\ it suffices to have upper bounds on the derivatives of g with
respect to just ηx.

To express these bounds let us denote the points in R* as h = (hu AJ, and let
I1 = sup (\g(h) - g{h)\)l(\hγ - h\ |). We define the space r^\ and the function

± ±

0(

v

N)(M,T) by analogy with (A.3.1) and (A.3.2), with g' replaced by (dg/dhj and
Illfflllbyllfflll!.
Lemma A.3.3. Let v(dh) be a probability measure on R^, written as:

j1)v(dh1\h1)9 (A.3.8)

(i.e. v1(d/i1) is the projection ofv on RN~*, and v( |ft±) is the conditional probability).
If, at some T ̂  0, the one dimensional measures vh (•) = v( |ft±) satisfy

0Λi(M,T) = 0V h jM,T)^O for every M # 0 (A.3.9)

for v-almost every hl9 then Θ[N\M9 T) Φ 0 for all M Φ 0.

Proof. For gei^ψj, satisfying

ί^ M, (A.3.10)
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let us denote

Since Mg(M/2) + ί v^rφjgM/2}), we have

v±({h±eWLN-1 \nih±) £ M/2}) £ M/2. (A.3.12)

Hence

^inf< J θ2 (M/2, ΉvjdhjlA c R ^ 1 , v ± ( Λ ) ^ Af/2 >
U J

= f θ2

h±(M/29 Γ)/[flAi(M/2, T) ̂  s]v±(ΛJ, (A.3.13)

where s is determined by the condition

ί / [^ 1 (M/2, Γ) ̂  s]v1(dΛ1) = M/2. (A.3.14)

Since the above bound holds for each gei^ψ} satisfying (A.3.10), we get

0<N)(M, T) ̂  J θ2

hL{M/2, Γ)/[0hl(M/2, T) ̂  s]v±(dhλ), (A.3.15)

which is strictly positive for each M Φ 0 (by the nonvanishing of θ2

±(M/2, T)). •

Combining this criterion with Proposition A.3.2, we get the following corollary
—which is used in our result on the continuous symmetry breaking.

Corollary A.3.4. For rotation-invariant Borel probability measures (v) on RN:

i) Ifv does not have isolated spheres of positive measures (i.e. if the radial distribution
of v does not have isolated point masses), then &^\M, T)Φ0 for every M Φ 0 and
T > 0 .
ii) //, in addition, v is absolutely continuous with respect to the Lebesgue measure on
RN, then Θ[N)(M, T = 0) = 0 only at M = 0.
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