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Abstract. We calculate the exact temperature of phase transition for the Ising
model on an arbitrary infinite tree with arbitrary interaction strengths and no
external field. In the same setting, we calculate the critical temperature for spin
percolation. The same problems are solved for the diluted models and for more
general random interaction strengths. In the case of no interaction, we generalize
to percolation on certain tree-like graphs. This last calculation supports a
general conjecture on the coincidence of two critical probabilities in percolation
theory.

1. Introduction

Consider a tree, as in Fig. 1; we use the word tree to mean a countable connected
graph which has no loops or cycles and which is locally finite (i.e., each vertex
belongs only to a finite number of edges). In the Ising model of ferromagnetism
[KS,Prl,Big], there is a particle at each vertex with spin either up (+ 1) or down
(— 1). Each particle interacts with its nearest neighbors in such a way as to favor
alignment of the spins; we shall assume that there is no external magnetic field.
At temperatures higher than a certain critical temperature, Tc, there is only one
Gibbs state, while at temperatures below Ta there are at least two. (In fact, for
T < Tc, there are an uncountable number of extreme Gibbs states on a tree.)
Clearly, adding edges and vertices to a tree can only increase its critical temperature
[Lig, Theorem IV.1.21, p. 186]. We shall at first assume that the interaction strength
is the same along all edges. Thus, Tc is a measure of the number of edges per
vertex "on average." Remarkably, after a scale conversion, this notion of average
number of edges per vertex coincides with one which has already been studied in
connection with percolation, random walks, and Hausdorff dimension [Lyo]. This
correspondence between the Ising model and percolation, exact for trees, is only
approximate for other graphs [Bisl,Bis3].
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Fig. 1.

There is another critical temperature, Γpc, above which the probability of finding
an infinite (connected) cluster of (aligned) spins is 0 for any Gibbs state, while
below Tpc this probability is 1 for some Gibbs state. We shall calculate Tpc as well
and show that it depends only on Tc.

In the (quenched) diluted Ising model, particles are removed from the tree at
random and independently, so that each particle remains with some fixed
probability pe[0,1]. In this situation, Tc(p) and Tpc(p) are random variables, but by
Kolmogorov's 0—1 law, they are constant almost surely. In fact, the value of this
constant is easily calculated by combining the results mentioned above with the
percolation results in [Lyo].

All of these calculations can be generalized to the case of differing interaction
strengths along different edges and even to random interaction strengths. Past
results for the Ising model on trees have been exclusively for homogeneous trees
(where each vertex has the same number of edges as every other)
[Prl, KS, Spi, MS, KT, Mtb, Mtd, KM, Con].

In order to obtain the percolation results for the Ising model, we first study a
general percolation model. This extends a result of [Lyo] and also enables us to
study percolation on tree-like graphs, as in Fig. 2. Here, we call a graph tree-like
if it is countable, connected, locally finite, and each vertex belongs only to a finite
number of cycles (simple closed paths). Under mild assumptions, we show that
the critical probability, pc, for Bernoulli percolation is equal to another more easily
calculated critical value, p c u t . This lends further support to the conjecture made
in [Lyo] that pc = pcut for all countable graphs. Previous calculations of pc for
tree-like graphs, other than trees, have been for regular structures [FE, Bis2,
Con].

We now describe our results more precisely. Given a tree, Γ, designate oneLof
its vertices as the root, 0. (None of our results depend on which vertex this is.) If
σ is a vertex, we write |σ | for the number of edges on the shortest path from 0 to
σ. A cutset, Π, is a finite set of vertices such that every infinite path (i.e., path
containing infinitely many distinct vertices) from 0 intersects Π. The branching
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Fig. 2.

number of Γ'[Lyo], denoted brΓ, is defined by

brΓ = inf{;i>O:inf £ λ~^ = 0
I Π σeΠ

As explained in [Lyo], this represents an average number of branches per vertex,
where the edge leading towards the root does not count as a branch. This is
independent of the chosen root, so that we may regard 1 + brΓ as an average
number of edges per vertex, i.e., an average coordination number.

If J > 0 is the interaction strength along each bond and k is Boltzmann's
constant, then phase transition in the Ising model on Γ occurs at the temperature

fccoth^brΓ

as we show in Sect. 2. In the diluted Ising model, we first create a random graph
by means of a Bernoulli site percolation process on Γ, then we consider the Ising
model on that random graph. If p is the probability of a vertex of Γ remaining,
then this is of interest only for p larger than the critical probability, pc, which equals
(bΐ Γyι [Lyo]. In this case, we have

Tip) =
J

a.s.

The following more general result in Sect. 2 allows for arbitrary interaction
strengths. For vertices σ and τ, we write σ ^ τ if σ is on the shortest path from 0
to τ. If σ Φ 0, then "σ denotes the vertex such that *σ ^ σ and |*σ\ = \σ\ — 1. The
edge from B7 to σ is denoted e(σ). If the interaction strength along e(σ) is Jσ, p is
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the survival probability of each vertex (p = 1 for the undiluted model), and

inf J σ > 0 , sup Jσ<co, (1.1)
OΦσeΓ OΦσeΓ

then

Π σeΠ OΦτ^σ kl

Still more generally, we may state the following theorem.

Theorem 1.1. Let Γ be a tree and let Jσ(0 Φ σeΓ) be independent random variables,
none a.s. zero, satisfying

M{Jσ:Jσ Φ 0,0 Φ σeΓ} > 0 a.s.

and

sup Jσ < oo a.s.
OΦσeΓ

The critical temperature of phase transition for the I sing model on Γ with random
interaction strengths Jσ is

:inf X Π E t a n h τ i r ° ( a'S

Π σeΠOΦτ^σ |_ Ki J J

In particular, if Jσ are identically distributed, then Tc is a.s. the solution to the equation

Note that Theorem 1.1 encompasses the aforementioned diluted model: given
constants Jσ, we construct independent random variables equal to Jσ with
probability p and to 0 with probability 1 — p. Consideration of the component
connected to 0 with nonzero bond strengths shows that the randomness of the
bond strengths in Theorem 1.1 is equivalent to the randomness of the sites in the
diluted model. (Of course, this is special to trees.)

In Sect. 3, we study a general percolation process on trees, which we term
quasi-Bernoulli. It is used in Sect. 4 for spin percolation in the Ising model and
in Sect. 5 for Bernoulli percolation on tree-like graphs. Our first result in Sect. 4
is for constant interaction strength J > 0; here, the critical temperature for spin
percolation is

τpc=<

if b r Γ < 2 ,

-+OO if b r Γ ^ 2 .
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For the diluted model, we have a.s.

i

if p-bΐΓ<2,

Tpc(p) = fccoth - 1 p b r Γ

, 2 - p b r Γ ,

I+00 if

More generally, with interaction strengths satisfying (1.1), we have

n f Σ Π Pθ +<Γ2J</(f[T)Γ1 = θ j a.s.

For random interaction strengths, the critical temperature is determined as follows.

Theorem 1.2. Under the same hypotheses as in Theorem 1.1, the critical temperature
for percolation in the Ising model on Γ is

Tpc = infίτ:inf £ E[(l + ίr
2 J</ ( f c Γ ))-1] = 0 j a.s.

Given a countable connected graph G and a point OeG, a cutset (relative to
0) is a finite set of vertices, 77, such that every infinite path from 0 intersects Π.
Let G0(ω) be the (random) connected component of 0 for a Bernoulli bond or site
percolation process on G with survival parameter p. In [Lyo], we defined the
critical probability

pcut(G) = sup j p inf Ep [card Πn G0(ω)] = 0 i,

where Ep is expectation with respect to the percolation under consideration and
"card" counts the vertices. For comparison, we state the definitions of the usual
critical probabilities:

pc{G) = sup {p:Pp[card G0(ω) = α)] = 0}

and

pT(G) = sup{p:Ep[cardG0(ω)] < oo},

where Pp denotes probability with respect to the percolation. Clearly

In the case of many regular lattices G, all three are equal [AB, MMS]. For arbitrary
trees, Γ,pcut(Γ) = pc{Γ), while pτ(Π = Pc(Π only for sufficiently "regular" Γ
[Lyo]. We conjectured in [Lyo] that pcut(G) = pc(G) for all G. In Sect. 5, we show
that this is the case when G is tree-like and satisfies a mild regularity condition;
this condition includes the case when the blocks of G are uniformly bounded in
size. Here, a block of G is a maximal connected subgraph having at least one edge
and no cutpoints [Har, p. 26], where a cutpoint is a vertex whose removal would
disconnect the subgraph.
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2. The Ising Model

Given a tree JΓ and vertices σ,τeΓ, we write σ < τ if σ ^ τ and σ Φτ. If σ = T, we
write σ -• τ and we call τ a successor of σ. We shall modify the definition of cutset, 77,
so as to exclude the possibility that 77 contains two vertices, σ and τ, with σ < τ.
A special cutset is the sphere of radius n, Sn = {σeΓ:\σ\ = n). We write σ ^ 77 if
every infinite path from σ intersects 77; the set of such σ is denoted - 77. We also
write σ < 77 if σ ^ 77 and σ^77. We say that a sequence of cutsets, {77M}, tends
to oo if lim,,.^ min {|σ|:σe77n} = oo. We denote the subtree {τeΓ:σ ^ τ} by Γσ.

Let 77 be a cutset. Let wσe{ + l, — l}be random variables denoting the spins
for σ ^ 77. For "plus" boundary conditions, these are determined by the
Hamiltonian

in accordance with Boltzmann's equation

PπLueA] = X e-'uW/Z
uevl

where

is the partition function and tfί = {ue{±l}~π:u\π= + 1} is the space of all
configurations. We are particularly interested in Fπ[μ0 = + 1]. For a = ± 1, let

Z α

Π (0 )= Σ e-*1**-

More generally, for σ < 77, consider σ as the root of Γσ and ΠnΓσ as a cutset
of Γ σ , and define Zfl

π(σ) analogously to Zα

π(0) above. Finally, for σe77, let

Thus,

Γ { ^ Σ

= f]
<τeSi

whence

σeSi
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where α = e2JI(kT) and

. , otx + 1
Gel*) = — —

For σ g 77, set

which we interpret as + oo for σeΠ. We have thus arrived at a recursion formula

for fπ:

oo if σeΠ. ( Z 1 )

The empty product is defined to be 1, so that it follows from (2.1) that when
ΠrsΓσ = 0 , fπ(σ) = 1, as it should.

We now pass to the thermodynamic limit. Choose a sequence of cutsets {Πn}
tending to infinity. From considerations of monotonicity, it is well known that

/ ( σ ) = B m / a ( ( r )

exists and is independent of the choice of {Πn}; furthermore,

P[M O =+1]

the probabilities being taken with respect to the limiting Gibbs state. For T > Tc9

/(O) = 1, while for T < Tc, /(O) > 1 [Prl, Proposition 8.9, p. 67].

Theorem 2.1. Let Γ be a tree. Phase transition in the Ising model on Γ with constant
interaction strength J > 0 occurs at

If β = (α - l)/(α + 1), then (2.2) is equivalent to

l. (2.3)

The key to estimating / lies in replacing ga by an exponential function, as the
latter behaves much more simply under composition and multiplication. For this
purpose, we shall use the following inequalities.

Lemma 2.2. For x ^ 1,

Proof. First, by the weighted form of the arithmetic-geometric mean inequality,
we have

OC X
q (χ\= x -j- x " 1 > χa/(<z + x)χ-x/(<x + x) _ χ(a-x)/(a + x)

α + x



344 R. Lyons

Second, we have

x d x a2 — 1
log ga(x) = j - log ga(t)dt = J Λ

i dί i (1 + αί)(ί + α)

= f « τdt^\~ ^-Λ = logs'. •
J

α ( ί l ) 2 + ( + l)2ί - { ( + l ) 2 t 6

Proof of Theorem 2.1. We shall show that if jS brΓ < 1, then /(0)= 1, while if
/(0) = 1, then β brΓ :£ 1. Given a cutset 77, define ft on -77 recursively by

I Γ L ^ / if σ<i7.

We claim that for n large enough that Π £ =77Π, we have fΠn{σ) ^ h(σ) for σ <Π.
This is a consequence of the following facts when combined with (2.1):
ga(fΠn(σ))Sx = h(σy for σeΠ; ga{fΠn{σ))^fΠn{σf for σ<Π. In particular,
/(0)^/ι(0). Set θ(σ) = j?|σ|log/2(σ). Then θ(σ) = Σσ^Aτ) f o r σ < 7 7

? whence
0(0) = Σσeπ

θ(σ) = Σ σ e J I £ H "X l o β α τ h i s y i e l d s t h e b o u n d

By definition of br Γ, it follows that if β-brΓ < 1, then /(0) = 1.
Conversely, suppose that /(0) = 1. Then f(σ) = 1 for all σeΓ by (2.1). Choose

βoe]0,β[ and set αo = (1 + βo)/(l - β0). Given n so large that fΠn(σ)^φ0 for
σGSl5 there is a cutset Π^=Πn such that for all σ ̂  77,

/n,(σ)^α/α0, (2.4)

while for all σe/7, there is a successor τ 0 of σ such that fΠn{τ0) > α/α0. Put
<z = #α(α/α0). Since / ^ ^ 1, we have for σe77,

Furthermore, for xgα/α0, we have (α - x)/(α + x) ̂  β& whence by (2.4) and
Lemma 2.2, we obtain

If we define h on -Π recursively by

if σe/7,

then it follows that fΠn(σ) ^ h(σ) for σ ̂  17. In particular,

Since a>\ and //7M(O)->1, it follows that irάriLσeπβ^ = 0 —in other words,
βo bτΓ ^1. Since this is true for all β0 < β, we arrive at our desired conclusion:
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In combination with Corollary 6.3 of [Lyo], this theorem has the following
immediate consequence for the diluted Ising model.

Corollary 2.3. Let Γ be a tree, (br Γ)~ 1 < p ^ 1, and J > 0. For the diluted Ising
model on Γ with survival probability p and constant interaction strength J, we have

Tip) = a.s.
J fccot irVbrΓ)

We shall now allow the interaction strengths to vary according to the bond. If
Jσ is the strength along e(σ\ the Hamiltonians take the form

Kl0<σgΠ

Correspondingly, we write <xσ = e2J°KkT) and βσ = (aσ- l)/(ασ+ 1) = t a n h J J
(fcT). The same reasoning as above leads to the equation

) if σ<Π,
«> if aeΠ.

Theorem 2.4. The critical temperature of phase transition for the Ising model on a
tree Γ with interaction strengths Jσ>0 satisfies T%^TC^ T*9 where

Π σeΠ

and

T* = infj T inf £ Jσ
L Π σeΠ 0<τ<σ

Of course, in most cases, 7^ = T*. Certainly this happens if inf Jσ > 0.

Proof. Suppose that infπΣσ e i 7J ( TΠo<τ<σ^τ = 0 Given a cutset /I, define h on

i f

Then as in the proof of Theorem 2.1, fΠn{σ)^h{σ) for σ<Π and Π^ ~Πn.
Therefore

f(0)^h(0) = cxpΣ2~ Π β»
σeΠ kl 0<τ<σ

which entails, by our supposition, that /(0) = 1. Thus Tc ^ T*.
Conversely, suppose that /(0) = 1. Choose T >T and define αr

σ, β'σ accordingly.
Given n sufficiently large, there is a cutset Π<^-Πn such that

fπ(σ)<aσ

]~^- = 0^- {σ<Π)
> σ σ
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while each σeΠ has a successor τ 0 such that fΠn{τ0) > <xσ/a'σ. Put aσ = gaσ(oισ/θLf

σ)
and note that aσ ̂  (ασ/α^/σ by Lemma 2.2. Define /ι on -Π by

if ,

^ / ' if σ<Π.

Then /πn(σ) ̂  h{σ) for σ g 77, so that

0 < τ ̂  <r

σeΠ
) Π K

pn p.
•J ' a 1 1 rri rw-if I Λ. J. ' T

Our supposition entails, therefore, that inϊπΣσeΠβ'σJσTlτ<σβ
/

τ

==Q- Since T is
arbitrary, the conclusion Tc ̂  T% ensues. •

Corollary 2.5. The critical temperature of phase transition for the diluted Ising model
on a tree Γ with interaction strengths Jσ satisfying (1.1) and survival probability p is

i7 <xe/70<τ^<r Kl

Proof. Let Γ0(ω) be the connected component of 0 arising from the Bernoulli
percolation on JΓ, let Π(ω) = ΠnΓ0(ω), and define fΠ(ω)(σ) f°r σEΓ0(ω) as before

for the tree Γ0(ω). Let /ω(0) = lim fΠ(ω)(0). Now Tc(p) is a constant (a.s.) and for
Π-+oo

T > Tc(p\ /ω(0) = 1 a.s, while for T < Tc{p\ /ω(0) > 1 with positive probability.
Suppose that {Πn} is a sequence of cutsets tending to infinity such that

lim X Π Pβτ = 0. Then
n -*• oo σe Πn 0 < τ S σ

EPΓ Σ Π ^ 1 = Σ PP[σeΓ0(ω)] Π A
|_<τeJIn(ω) 0<τ^σ J σeΠn 0<τ^(T

= Σ Π
σe i7 n 0 < t ̂  σ

whence, by Fatou's lemma,

lim Σ Π & = 0 a.s.
n->oo σeΠn(ω) 0<τ^σ

It follows from (the proof of) Theorem 2.4 that/ω(O) = 1 a.s, whence Tc(p) S Ta.s.

On the other hand, suppose that inf £ |̂ [ pβτ > 0 and choose T < T. Define
Π σeΠ 0<τ^σ

β'σ accordingly; we claim that inf £ (T'/T) |σ| f ] pβ'τ > 0. For let F{t) = log tanh ί.
Π σeΠ 0<τSσ
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Then if ί > 0,

, , sech2ί 2 1
F(ί) = = < -,

tanh t sinh It t
whence

J/(kT)

log (&//?;)= } F'(t)dt< log (T/T).
J/(kΓ)

Our claim follows.
We next claim that inf Σ f] βj. > 0 with positive probability. Given this,

Π σe Π(ω) 0 < τ g σ

we may conclude from Theorem 2.4 that Tc(p) ̂  T with positive probability, hence
a.s. Because of our choice of T\ this entails the relation Γc(p)^Γa.s., which
completes the proof.

The proof of our claim is exactly parallel to that of the second half of Theorem
6.6 of [Lyo]; we merely sketch it. We call a function, θ, on Γ a unit flow if θ ̂  0,
0(0) = 1, and VσeΓΘ(σ) = Σ 0(τ). Write σ Λ τ for the vertex farthest from 0 which

is ^ both σ and τ. Put pσ = f| p/?̂ . Using what was established above, we may
0<τ^σ

find, as in the proof of Corollary 4.2 of [Lyo], a unit flow, θ, such that

Σ
OΦσeΓ

Define

£„= Σ/c(σ).
σeSn

Then {ξn} is a nonnegative martingale satisfying

σ,τeSn M^n

This is uniformly bounded in n by virtue of our choice of θ (and the fact that
Pσ<Plσl)' Hence {ξn} has a nonzero limit with positive probability. Set

*(*)= π i8;
and

Yn

 = Σ ^ ( σ Λ τ ) ~1 ̂ (o")fc(τ)
σ,τ6Snn Γ0(ω)

Then Ep[Yπ]^ Σ ^(σ)2P^1ί a s ^ s ^s bounded, we obtain limYπ<ooa.s.

Therefore lim yrtξ~2 < oo with positive probability, whereupon our claim follows
n-+oo

from Lemma 3.2 of [Lyo]. •
The proof of Theorem 1.1 is exactly parallel; the only significant change that
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needs to be made is to define k(σ) as

θ(σ) Π t a n h — / E t a n h — .

0<τg,σ kT I [_ feTJ

3. Quasi-Bernoulli Percolation

Given a tree Γ9 suppose that (Ω, P) is a probability space associated with random
subgraphs Γ(ω) oϊΓ(ωeΩ). We assume the measurability of the indicator functions
corresponding to the presence or absence in Γ(ω) of any vertex or edge of Γ. Let
Γ0(ω) be the connected component of 0 in Γ(ω) and K(σ) = {ω:σeΓ0(ω)}. We
say that (Γ,Ω,P) is a quasi-Bernoulli percolation process if there is a constant
M < oo such that for all σ,τeΓ,

(The motivation for the name "quasi-Bernoulli" is more apparent when the above
inequality is expressed in terms of probabilities conditioned on K(σ A τ).)

Theorem 3.1. Let (Γ, Ω, P) be a quasi-Bernoulli percolation process. If

infΣ P[K(σ)]=0, (3.1)
Π σeΠ

then P[card Γ0(ω) = oo] = 0. // there are positive numbers wn such that ]Γ wn < oo

and

inf y w, ,P[X(σ)]>0, (3.2)
77 σe/7

ίΛen P[card Γ0(ω) = oo] > 0.

Proof If (3.1) holds, then there is a sequence of cutsets {77n} such that

E[card(Γ0(ω)n77 / l)]= X P[K(σ)]->0.

By virtue of Fatou's lemma,

lim card (Γ0(ω) n Πn) = 0 a.s.,

which is the same as card ΓQ(ω) < oo a.s.
On the other hand, if (3.2) holds, then the max-flow min-cut theorem provides,

as in the proof of Corollary 4.2 of [Lyo], a unit flow θ on Γ such that

X θ(σ)2PlK{σ)y1<cx). (3.3)
σeΓ

Define

<reSn
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Suppose, for a contradiction, that Γ0(ω) is finite a.s. Then Xn is eventually 0 a.s.
Now

= Σ θ{σ)θ(τ)PlK(σ)r1PlK(τ)r
σ,τeSn

^M £ θ(σ)θ{τ)PlK{σΛτ)y1

σ,teSn

= M X P T O ) ] - 1 Σ 0(σ)0(τ

σ,τeSn

In view of (3.3), E[X^] is bounded, whence {Xπ} is uniformly integrable. Since
Xn->0 a.s., it follows that Xn-+0 in L1 [DM, p. 23], which contradicts the fact
that E[XJ = 1. •

4. Spin Percolation

Markov random fields lead naturally to quasi-Bernoulli percolations, as we shall
see below. Thus, the critical temperature for spin percolation is amenable to
calculation via Theorem 3.1. Because of its greater simplicity, we shall treat the
case of constant interaction strength first.

Theorem 4.1. Let Γ be a tree. The critical temperature for percolation in the Ising
model on Γ with constant interaction strength J > 0 is

T —
, t t b rΓ
fccoth"1

if brΓ<2,

•4.D
oo if br Γ ^ 2.

If y = α/(α + 1), then (4.1) is the same as

ypc = max((brΓ)-M/2). (4.2)

Proof. To the Gibbs state (ί2,P) on Γ, we associate the random subgraphs
Γ(ω) = {σeΓ:uσ(ω)= + 1} (with e(σ) present iffu-(ω) = uσ(ω) = + 1). By the
Markov random field property of the Gibbs state and the fact that Γ is a tree,
we see that

P[K(σ)nX(τ)|K(σ Λ τ)] = P[X(σ)|K(σ Λ τ)] P[X(τ)|K(σ Λ τ)].

Therefore (Γ, Ω, P) is a quasi-Bernoulli percolation process. Now

= l] Π
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in the last step, we have again used the Markov random field property. To calculate
P [ u τ = 1 | M T = 1], it suffices to consider the tree Γ τ u { T } rooted at T. Now it is
easy to see that

Consequently

which gives us

Π

For T larger than the value for Tpc asserted in (4.1), we have T>TC, whence / = 1
and the above reduces to ±ylσl. Thus, if y br Γ < 1, Theorem 3.1 ensures that the
probability of an infinite cluster of up spins containing 0 is 0. Since T>TC, the
same is true of down spins, and since Γ is connected, this entails the a.s. lack of
any infinite cluster.

On the other hand, if T is smaller than the value for Tpc asserted in (4.1), then
since/ ^ 1, we still have that P[K(σ)] ^ y H . Now Theorem 3.1 provides that 0
is in an infinite cluster with positive probability. Since the tail field is trivial for
extreme Gibbs states [Pr2, Theorem 2.1], this guarantees the a.s. existence of some
infinite cluster. •

As before, this leads to the determination of the value of Tpc for the diluted
Ising model (by means of Corollary 6.3 of [Lyo]).

Corollary 4.2. Let Γ be a tree, (brΓ)'1 < p ^ 1, and J > 0 . For the diluted Ising
model on Γ with survival probability p and constant interaction strength J, we have a.s.

T (

if p brΓ<2,

oo if

We now generalize to varying interaction strengths. In fact, it is no more
difficult to handle the case of random interaction strengths immediately.

Proof of Theorem 1.2. Let the probability space corresponding to the random
variables { Jσ} be (Ω\ P) and that corresponding to the Gibbs state associated with
{Jσ{ω')} be (ί2,Pω>) {ω'eΩ'). The compound process yields the random subgraphs
Γ(ω',ω), as in the preceding proof, representing the clusters of plus spins. For
each ω', (Γ(ω' , ), ^ ? P ω ) is a quasi-Bernoulli percolation process with

If inf E X Π (! + α 7 1 ) ~ 1 \ = ° > t h e n b y Fatou's lemma,
Π \_σeΠ 0<τ^σ J
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mf Σ ΓΊ (1+ α t~
1)"1 = 0 a.s.

Π σeΠ 0 <τ^σ

Furthermore, by Theorem 1.1, T> Tc a.s., so that/ω> = 1 a.s. This means that
(3.1) holds and percolation does not occur a.s.

On the other hand, if T is less than the asserted value of Tpc, choose T >T

such that inf E | £ Π (1 + α τ "
x )~ x 1 > 0 and set α'σ = e

13°l{kτ'\ Now

(1 +K)~T1(1 + ^ 1 /frΓ1)^ ί+*°_i£e-«llτ-llτ'\

where

ε = ini < —

is positive a.s. in view of the hypotheses. Let

—e-nε(l/T~l/Γ)

Then Σ wn < °° a s

n

infΣ w |ff |P[X(σ)]^infΣ J

whence Theorem 3.1 ensures percolation with positive probability a.s. In fact,
percolation is a.s. as before. •

5. Bernoulli Percolation on Tree-like Graphs

From every tree-like graph, G, and cutpoint OeG, we form a tree, Γ, rooted at
0 in the following manner. The vertices of Γ are the cutpoints of G and σ has τ
as a successor iff σ and τ belong to the same block and every path in G from 0
to τ passes through σ. Every subgraph G' of G induces a subgraph Γ' of Γ as
follows: a vertex σeΓ lies in Γ ' iff σeG' and an edge in Γ lies in Γ ' iff its endpoints
lie in G' and are connected in G'. In particular, every bond or site percolation
process on G induces one on Γ; if that on G is Bernoulli, then that on Γ is
quasi-Bernoulli in many cases—e.g., if the blocks of G are uniformly bounded in
size.

Theorem 5.1. Let Gbe a tree-like graph, OeG a cutpoint, and Γ the associated tree.
Suppose that for each 0 ̂  p < 1, there are constants M < oo and r < 1 such that if
σ, τeΓ\{0}, *σ = T, σ Φ τ, and σ and τ are in the same block B in G, then

Pp[σ,τ,*σ are connected] ̂  MP p [σ, σ" are connected]Pp[τ,"σ are connected]

(5.1)
and

sσ{p)\= Y*p[σ,*σ are connected] ^ r, (5.2)
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where P p denotes probability with respect to Bernoulli bond [site'] percolation on B
with survival parameter p. Then the critical probability for Bernoulli bond [site]
percolation on G is given by

= sup{p:inf£ Π Φ) =

where Π denotes-a cutset of Γ.
It follows that pc(G) = pcut(G) (for both bond and site percolation on G) because

cutsets 77 of Γ give only some of the cutsets of G. Note that the hypotheses are
satisfied if the blocks of G are uniformly bounded in size.

Proof. The condition (5.1) guarantees that Bernoulli percolation on G induces
quasi-Bernoulli percolation on Γ. Furthermore, in the notation of Sect. 3,

P[X(σ)] = Y\ sτ(p). Thus, in light of Theorem 3.1, it suffices to show that for

£ sup Π sτ(p)/sτ(p')<co9

n^l \σ\=n 0<τ^σ

which we shall accomplish by demonstrating that

sup sσ{p)/sσ(p')<l.
OΦσsΓ

Now the law of B(ω) under P P 1 P 2 is the same as the law of B(ω1)nB(ω2), where
B(ωι) are chosen independently via J?Pi (i = 1,2), respectively. Of course, if σ and
σ" are connected in B(ω1)nB(ω2\ then they are connected in each of β(ω, ).
Therefore

It follows that sσ(p)/sσ{p')Ssσ(p/pf), which, together with (5.2), completes the
proof. •
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