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Abstract. Stationary measures for probabilistic cellular automata (PCA's) in d
dimensions give rise to space-time histories whose statistics may naturally be
described by Gibbs states in d 4-1 dimensions for an interaction energy ffl
obtained from the PCA. In this note we study the converse question: Do all
Gibbs states for this 3? correspond to statistical space-time histories for the
PCA? Our main result states that the answer is yes, at least for translation
invariant or periodic Gibbs states. Thus ergodicity questions for PCA's can, at
least partially, be formulated as questions of uniqueness of Gibbs states.

1. Introduction

Probabilistic Cellular Automata (PCA's) - which include the deterministic ones as
special cases - are interesting subjects of study both mathematically and as models
of various phenomena [1-6]. In this note we study some aspects of the connection
between PCA's in a dimensions and statistical mechanical Gibbs states in (d +1)
dimensions [7, 8], the extra dimension being the discrete time. Our objective is to
facilitate the transfer of information, particularly rigorous results, between these
subjects.

The state space of our PCA is the set of spin configurations σ on a
d-dimensional lattice, at each site of which there is a spin variable which takes on a
discrete set of values. We shall consider for concreteness the lattice TLά and Ising
spin variables taking on the values of +1. The PCA describes a stochastic discrete
time evolution of the spin configuration on Zd. We denote the value of the spin at
site i E TLά at time n e TL by σn t = +1, and write σn = (σM J for the spin configuration
at time n.
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Given the spin configuration σπ_1 ? the probability distribution of the
configuration σn at time n is given by a product of the probabilities of the spins σni,
which we denote by pldσni\σn_γ). That is, we have

P(dσn\σn^)= Π P^il f f .- i) (1.1)
ieZd

for the overall "transition probability" P, which may be regarded as defining the
PCA. The pf's satisfy the obvious normalization condition

Σ P K I I ? . - I ) = 1 (1-2)
<τ n , i= ± 1

We assume that pf(σM f | ) is translation invariant and depends only on spins at time
n — ί which are in some finite neighborhood U(i) of the site I Thus U(i) =U + i for
some fixed U( = U(0)) and

, (1-3)

where σ ^ , the configuration of the spins σ in the set U{ΐ), should be regarded as
identified with its translate to a configuration of spins on U. Our PCA thus defines
a translation-invariant homogeneous discrete time (one-step) Markov process on
{ — 1, l}zd with spins simultaneously and independently updated.

It is now natural to consider σ = {σn>ί} as defining a spin configuration on the
space-time lattice Έd+* we write x = (n, i) for a typical site in this lattice, we let 7Ld

N

denote the d-dimensional layer corresponding to n = AT, and, with some abuse of
notation, we let U(x) = {(n — lj)\je U(ϊ)}cΊLd

n_1 be U(i) at time n — 1. For any set
ΓcZd+ * we write σΓ for the restriction of the space-time spin configuration σ to Γ.

If v is a probability measure on the state space of the PCA and we "start" the
time evolution with measure v on the layer Z _ N , the Markov transition rates (1.1)
define a measure on the set of configurations on [j Έd; if in addition v is

n £ -JV

stationary (vP = v) or periodic (vPk = v for some k ̂  1) for the time evolution, then
the iV~»oo limit, along the subsequence N = kM if v has period fc, produces a
measure μv on the set of space-time configurations {σ}. (By compactness, the PCA
has at least one stationary probability measure v.)

The measure μv is an example of a Markov chain measure for the PCA,
sometimes called simply a Markov chain, that is, a measure μ on space-time
histories (here spin configurations σ on Έd+1) satisfying

μ{dσn\σ<n) = P{dσn\σn_1) (1.4)

for all neZ, where σ<n denotes the restriction of σ to (J Zd. Equation (1.4) is
equivalent to k<n

μKk<M)= Π p(**l<W (i 5)
xeΛ

for all neZ and all finite ΛcZd

n.
We assume that our PCA has no traps, i.e. that p ί σ J σ ^ ^ O . Then following

Domany [9,10], we associate with our PCA the Hamiltonian

(1.6)
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where the single site energy H(σx, σU(x)) is defined by

exp [ - H(σx, σϋix))] = p(σx \ σU(x)). (1.7)

Note that in terms of H the Markov chain condition (1.5) becomes

μ(σΛ\σ<n) = exp\- Σ H(σχ9σU(x))\ (1.8)

for all neZ and all finite ΛcZd

n.
Now it is easy to see that any Markov chain measure μ for our PCA is a Gibbs

measure for J f, i.e. for the translation invariant interaction Φ = {ΦA} with A of the
form A = {x} u U(x), xeZd+1, and ΦA = H(σx, σU{x)). In fact, consider a finite region
VCTLd+1 for which there exists a T e Z such that whenever xeVeither U(x)e Vor
U(x) e Zd

τ. The simplest such F's are the (space-time) translates of the negative cone
CN = Zd+ίn{nU(o)\0<.n^N} of height N generated by the convex hull U{o) of
U(o\ where o is the origin of Z d + 1 , CN is the set of lattice sites in the convex hull
of points influencing the origin up to JV steps back in time. We have by (1.8) that

μ(σF)=fμ(rfστ)expΓ- £ H(σx,σU{x))] (1.9)
L xeV J

(where σU(x) for xeZd

τ+ί agrees with στ) so that μ(σv) is just the Gibbs state in the
volume V with boundary condition given by μ(dστ) on the base of V and free
boundary conditions on the remaining "sides" of V. Note that by virtue of the
"normalization" (1.2), (1.3), and (1.7) the partition function Z(V, στ) in V with fixed
boundary condition στ on the base of V satisfies

Z(V\ στ) = Σ exp Γ - Σ H(σx, σV{x))] = 1,

so that the interaction arising from the PCA has free energy

/ = lim | 7 | " 1 l n Z ( 7 | σ τ ) = 0. (1.10)

(Recall that, in fact, the free energy does not depend upon the particular sequence
whenever VsZd+1 in the sense of van Hove, nor upon boundary conditions
[7, 8].)

Notice that the reciprocal temperature β which usually multiplies the energy in
the exponent of (1.9) has been absorbed in H, which, defined through (1.7), will in
specific examples contain various "interaction parameters" J which can be
identified with magnetic field h, pair interactions, etc It follows from (1.10) that
the free energy is trivially analytic in the J's even when the stationary state v for the
PCA, and hence μv, undergoes a "phase transition" as the parameters in the PCA
are varied (cf. Domany et al. [9,10]). Since the coexistence of more than one phase
for the Hamiltonian J f implies that there are directions, in the space of
interactions, along which the free energy has a cusp [7, 8], varying the PCA
parameters must sweep out a rather special surface in this space. In fact there are
simple examples [6] in which it can be shown that the entropy and energy are
separately analytic in the PCA parameters when there is a phase transition.

We shall investigate here the converse problem of whether every Gibbs state μ
for Jf (1.6) is a Markov chain measure for our PCA. If this were true then we could
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conclude, in particular, that i) if there is more than one Gibbs state invariant under
"time" translations then the PCA has more than one stationary v, and ii) if there is
more than one Gibbs state then it is not the case that the PCA is ergodic in the
sense that there exists a stable stationary v such that for every initial state v, vPw->v
as n-»oo.

This question arises because, as is well known [5], the Gibbs states are precisely
the solutions to the DLR equations

μ(σvIσvc) = expΓ- £H(σx, σϋ{xJ]IZ{V\σVc) (1.11)

for all finite VcZd+1, where the summation £ is over all x for which ({x}uU(x))

. In other words all (extremal) Gibbs states may be obtained as infinite
volume limits V /* Zd+1 of the finite volume Gibbs states defined by (1.11); here the
choice of V is immaterial, and we may, if we wish, use only the conical F's involved
in the demonstration that Markov chains are Gibbs states, but we must allow for
general boundary conditions - containing all interactions of the spins in V with
those in the exterior of V - instead of using just free boundary conditions on the
"sides" of V. Note that even if στ is compatible with σFC, the measure describing the
evolution of our PCA starting with the fixed configuration στ at time T (the base of
V lying on Zd

τ) need not agree with (1.11) on V, which describes the conditional
distribution in V for the PCA given the spins in the past and the future (i.e. the
"sides") of V. Thus the problem is whether in the thermodynamic limit these Gibbs
measures have transition probabilities given by the PCA (1.8). Now there seems to
be no a priori reason why this should be so; indeed, in a more general setting there
are counterexamples - see Remark 4 in Sect. 3. It is in fact generally very difficult to
prove any results about the number of Gibbs states for a given Hamiltonian except
at high temperatures or in one dimension. What we require here seems in a way
even more difficult since by their definition the PCA states have the global markov
property in the time direction - a property which is also very difficult to prove for
any Gibbs state in the region of non-uniqueness, see Remark 5 in Sect. 3. It is
therefore surprising that the answer for Hamiltonians of the form (1.6) is positive
for all those Gibbs states which are translation invariant or periodic in Zd+1.

2. Results and Proofs

We now give our results. Define the lexicographic order of Zd+1 by putting x< y
for x = (x1,x2,...,xd+1), y = (yί,y2,...,yd+ί)eZd+ί if x1<yί, or xt=yt and
x2<y2, or....

Let

P={xeZd+1:x<o} (2.1)

consist of the sites in Zd+1 which precede the origin in this order. Note that the
"temporal past" (J Zd

ncP.
o
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Theorem. Let μbea translation invariant Gibbs state for the interaction Jf defined
in (1.6) and (1.7). Then

μ(σ01 σP) = exp [ - H(σ0, σϋ{0$] (2.2)

is the distribution on σ0 conditioned on the configuration σP in P. •

Note that the Markov chain condition (1.8) implies (2.2). Conversely, since
according to (2.2) μ(σo\σP) does not depend upon the spins in Έd

o\{o}, it follows
from (2.2) that μ satisfies the Markov chain condition (1.8).

Corollary. The (space-time) translation-invariant Gibbs states for Jf are the
translation invariant stationary Markov chains for P. Q

Remark. It follows immediately from the corollary that non-uniqueness of the
translation-invariant Gibbs state is equivalent to non-uniqueness of the stationary
translation-invariant measure for the PCA. (Of course non-uniqueness of the
stationary measure or, more generally, of the Markov chain measure for the PCA
implies non-uniqueness of the Gibbs measure.)

In Sect. 3 we will show how to extend this result to periodic states and briefly
discuss the global Markov property which is related to our results.

The proof of the theorem makes use of entropy and conditional entropy. For
any probability measure μ on Ω = {— 1,1 }zd+\ the entropy Sv(μ) associated with a
finite volume VcZd+1 is defined by

S F ( μ ) = - Σ μ M l n μ ( σ F ) . (2.3)
σv

If μ is translation invariant its entropy density s(μ) is then given by the limit (via a
proper sequence of volumes V, say hypercubes)

s(μ)= lim Sv{μ)l\V\. (2.4)
d + *

When Vί and V2 are finite volumes then

SVίuv2(μ) = SVl(μ) + SV2lVί(μ), (2.5)

where

Sv2\vM= iμ(dσVί)SV2(μ(' M (2.6)

Furthermore the conditional entropy SV2\Vι(μ) is non-increasing in the volume Vt

("monotonicity of conditional entropy"), and is well defined by (2.6) for V1 infinite.
As the next lemma tells us, the entropy density can be related to conditional

entropy.

Lemma. Let μ be a translation invariant probability measure on Ω. Then

) = S{0}lP(μ). D (2.7)

This lemma, which is standard, and the variational principle are the main
ingredients in the proof of the theorem.

Proof of the Theorem. We start by considering a local version of the variational
principle. Consider a fixed configuration σU{0) on U(o\ and let W(σo) be the unique
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equilibrium distribution on σ0 for the interaction H(σo,σU{o)); that is,

W(σ0) = exp[-H(σ0,σU{o)ft. (2.8)

Then for any probability distribution ρ(σ0) on σ0, the corresponding free energy

Σ Qfao) H(σo, σU{0)) + £ ρ(σ0) lnρ(σβ) (2.9)

attains its minimum value precisely when ρ(σ0) = W{σ0). Moreover, because of the
"normalization" condition (1.2), this value is 0.

Next we turn to the full variational principle. Let μ be a translation invariant
probability measure on Ω. The energy density e(μ) of μ is given by

4β) = ί μ(dσ) H(σo> (?u(o)) = ί μ(dσp) Σ vfao I σp) H(σo, σϋ ( 0 )). (2.10)

Therefore, using the lemma, the free energy may be written as

e(μ)-s(μ)= f μ(dσP)Γ£μ(σ01σP)H(σ0, σU{0))-S{o}(μ( |σP))l. (2.11)

It follows from the local variational principle that the quantity in the bracket [ ]
has its minimum value, which is zero for all σP, when (2.2) is satisfied. Thus a
translation invariant probability measure μ minimizes the free energy, i.e. is an
equilibrium (Gibbs) state, precisely when (2.2) is satisfied. [Note that it also follows
directly from (2.11) that the interaction arising from the PC A has free energy
zero.] •

Though it is fairly well known, see for instance [11], for the sake of
completeness we give a

Proof of the Lemma. Put Vn = {xeZd + 1\\xi\^n,ί=ί, . . . , d + l } , Vn{y)
= Vnn{xeZd+1 \x<y} and let s = S{o}|P(μ). Since μ{o}( |σFn(0))->μ{0}( \σP) as n->oo,
it follows from the monotonicity of the conditional entropy that

s=inίS{0}lVn{0)(μ). (2.12)

n

Moreover, since μ is translation invariant,

s^SMVniy)(μ). (2.13)

Now using (2.5) iteratively,
S r » = Σ SmVn{y)(μ), (2.14)

so that
» (2.15)

n-*oo

On the other hand take N e N and consider

Wn = {yeVn\3a translation τ such that τVn(y)D VN(o)}.

Then, for yeWn,
(2.16)
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and

lim|*Fπ|/|Fπ| = l . (2.17)
n

Thus, combining (2.14), (2.16), and (2.17), we find that

s(μ)= \imSVn(μ)/\Vn\^S{o]lVN{o)(μ) (2.18)

for any ] V G N , S O that by (2.12)

s(μ)ύs. (2.19)

Thus, in view of (2.15), s(μ) = s, and the proof is complete. •

3. Concluding Remarks

1. Our analysis applies essentially verbatium to the case of spin variables taking
on any finite number of values and presumably applies as well to the case of
compact spins. We can also, without difficulty, make other generalizations of our
PCA's. We list two: a) Not all spins are updated simultaneously; e.g. first update
even sites then odd ones (as done by Domany [6, 7]). b) Divide the lattice TLd into
disjoint sets Λk, (J Ak=Έd, connected by some transitive symmetry group, and let
the spin configurations on different Aks be simultaneously and independently
updated according to p(σAk\

συA ). E.g. for d = ί, let 4̂fc = (2fc,2fc+l), a pair of
adjacent sites, and let UAk be a set of (nearby) sites at the preceding time. The
extension to case a) is trivial while case b) is simply handled by considering the σAk

as spin variables taking on 2 |74kl values.
Another generalization is the following: Let U(x) = U(o)-fx, where U(o) is a

finite set of points all of which precede o in the lexicographic order of Zd+1, and let
H(σx, σU{x)) be a translation invariant interaction satisfying the "normalization"
condition £ exp [ — H(σx, σU{x))~] = 1. By the same proof the theorem still holds.

However, the translation-invariant Gibbs states, though satisfying (2.2), will not in
general correspond to PCA's with synchronous independent updating, nor, for
that matter, need they define Markov chains, even for nearest neighbor interac-
tions. However, for suitably chosen U(o) the "dynamics" defined by (2.2) can be
thought of as corresponding to the infinite volume limit of a discrete time PCA
with asynchronous lexicographical updating.

2. The theorem holds for periodic Gibbs states as well. By a periodic Gibbs
state we mean a Gibbs state which is invariant under a subgroup G of Έd+1 that
has finite index in Έd+1 that is, \Zd+1/G\ < oo. Let μ' be a periodic Gibbs state. The
argument that (2.2) holds for μ' is roughly as follows. There exists a translation
invariant Gibbs state μ such that μ' is absolutely continuous with respect to μ. The

Radon-Nikodym derivative -— is a G-invariant function [in l}(dμ)~\ and
dμ

G-invariant functions depend only on σP(μ modO). From this and the fact that (2.2)
holds for μ it readily follows that (2.2) holds also for μ' (see [12] for more details).
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3. Consider the case d = \. In view of the corollary one is led to consider
proving (or disproving) the longstanding open question of the ergodicity of
1-dimensional PCA's (with positive rates), at least for translation invariant ones,
by considering the associated two-dimensional Gibbs states. However the analysis
of the two-dimensional Gibbs states seems as hard as a direct PCA analysis.

4. We have shown that within the class of space-time translation-invariant (or
periodic) measures, Markov chains for a PCA and Gibbs states for the
corresponding interaction are precisely the same objects. The question of whether
symmetry properties, which allow us to use the variational principle, are required
for this identification remains open, though it appears unlikely that the identific-
ation is of universal validity. (For a counterexample in 0 space dimensions but with
N-valued spin variables, see Chap. 10 of [17].)

5. By definition, Gibbs states satisfy the local Markov property: for every finite
volume F, μ(σv\σvc) = μ{σv\σdV\ where dV is the boundary of F, with thickness
equal to the range of the interaction. An interesting question in equilibrium
statistical mechanics is whether a similar Markov property holds for half-spaces
where the boundary is TLd

w an example of a global Markov property [12-16]. Even
for nearest neighbor interactions, examples are known for which this property
does not hold [14,15]. However, in view of Eq. (1.8) the Gibbs states we consider
in this paper satisfy even more than a global Markov property: the relevant
conditional probabilities are given by a specific local function (independent of the
particular Gibbs state).
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