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Abstract. We show existence and uniqueness of asymptotically flat solutions to
the stationary Einstein equations in S=R3 — Br, where Br is a ball of radious
r>0, when a small enough continuous complex function ύ on dS is given.
Regularity and decay estimates imply that these solutions are analytic in the
interior of S and also at infinity, when suitably conformally rescaled.

Introduction

After a considerable effort a rather clear picture describing the set of stationary,
and asymptotically flat vacuum solutions to Einstein equations it is now available.
Solutions are represented by a complex scalar field w, and a positive definite metric
gab on a three dimensional manifold S [1-3]. From the four dimensional point of
view this manifold is the quotient of space-time with the set of orbits of the killing
vector field defining stationarity, the metric is conformally related to the one
induced by the space-time metric on S, and u is a given functional of the norm, and
the twist of the killing vector field. The equations they satisfy are,

(Aβ-2R)u = 09 (1)

2PM2)-0, (2)

where Gab is the three dimensional Einstein tensor corresponding to gab. We
consider the following asymptotic boundary conditions w->0, gab — eab-*Q, as r->0,
where eab is any flat metric on S, and r is the distance function with respect to it.
Given a solution (u, gab) of the above equations it is possible to reconstruct a
unique, stationary, asymptotically flat, maximally extended vacuum space-time.

From local elliptic theory [4, 5] we know that sufficiently smooth solutions (if
they exist) are in fact analytic. Furthermore assuming a stronger asymptotic decay
than the one above, one can show there exists a conformal factor such that the
conformally rescaled fields are also sufficiently smooth and satisfy regular elliptic
equations; thus they are also analytic, even at the point representing infinity
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[3,6,7]. It makes sense then to characterize these solutions by their Taylor
expansion at infinity, that is by a set of multipole moments [1,2,8,9]. It turns out
that to characterize these solutions it is enough to define multipole moments only
for the conformally rescaled field corresponding to u, that is there are no degrees of
freedom associated to the three-metric gab [10,11].

Unfortunately only a small set of solutions to the above equations, all of them
possessing extra symmetries, are explicitly known and so until now we did not
know if the asymptotic conditions assumed to obtain the above picture were
generic enough so as to allow for the existence of a sufficiently large class of
solutions.1 In other words we did not know how generic was this picture. In
order to add weight to the above picture we shall show here the existence of a
large class of solutions to the stationary Einstein equations when 5r = {R3-α
smooth ball}. These solutions, which one would like to interpret as the exterior
field of stationary compact bodies, are analytic in the interior of S, (even at
infinity when suitably conformally transformed) and are uniquely characterized
by a continuous complex function ύ on dS9 the value of u at dS, and thus by a
harmonic expansion of u at dS. To each member of this harmonic expansion
there corresponds a unique linearized multipole moment at infinity.

Main Theorem

Existence Theorem. Fix on dS a positive definite metric, hab, of constant scalar
curvature. Then there exists a neighborhood of zero, V, in the Sobolev space2 H2(δS),
such that for each ύeV there exists a unique, analytic on intS, and asymptotically
flat solution to the stationary vacuum Einstein equations, (u,gab), with u\ds = ύ. The
solutions, when suitably conformally transformed are analytic even at infinity, and so
each of them determines a unique multipole expansion at the point at infinity.

We partition the proof in a series of lemmata. In the first we show that the
stationary equations are equivalent to a reduced elliptic system. This procedure is
similar to the one used to reduce the full Einstein equations to a hyperbolic one
[12-14].

Reduction Lemma. Fix a flat metric, eab, in S in such a way that it induces hab on dS.
Then the stationary vacuum Einstein equations, Eqs.(ί,2), with the boundary
condition, u\ds = ύ, for (u,gab-eab)εH5/2,_3/4(S)3, ύeH2(dS), small enough, are
equivalent to the following reduced system for (u,φab):

E(u, φab) :=Δgu + (terms in Vcφ
de, φde, Vcu, u) = 0,

Eab(u, φab): = gcdVcVdφ
ab + (terms in Vcφ

de, φde, Vcu, u) = 0,

u\ds-ύ = 0, φ\ds = 0, σab\ds = 0,

1 For a sufficiently large class of solutions we mean one containing all solutions corresponding to
physical bodies in equilibrium occupying acompact region of space
2 Proper definitions of all the spaces we are using, as well as a list of their properties can be found
in [15]
3 The differentiability and decay indices used for the weighted Sobolev spaces are not necessarily
the sharpest ones, but rather are taken for defmiteness and convenience
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where φab: = ]/ggab - eab, with J/g given by εabcd(gef) = \/gεabcd(eef), Eab is obtained by
setting, in the expression for Gab in terms of φab the combination ψb: = Vaφ

ab to zero,
Va is the covariant derivative associated to eab,

φ :=eabφ
a<>, σab\ss:=(hachMφ«-{habhcdφ<d)\6s,

Ψ\dS : — (na^a(nbψb))\dS ->

where na is the exterior normal to dS, and ψb\dS

:==(ψaha

b)\dS'4'

Proof. First we show that any small enough solution to the reduced system is also a
solution to the stationary Einstein equations. Let (u, φab) be a solution to the
reduced system and consider,

It is easy to see that this is an elliptic linear second order equation for ψb,
Ltu,φcd)ψb = Q, which is continuous as a map from (u,φcd)EH5ι2^3/4(S\
ψ e H 3/2,1/4(5), to H- 1/2, 9/4(5), and which reduces to the flat Laplacian when
u = φab — 0. But injectivity is a continuous property for elliptic operators, and since
the flat Laplacian is injective for the boundary conditions considered
(ψ\ds = Q,ψb\dS = Ql5 there exists ε>0 such that if \\(u,φcd)\\5/2ί-.3/4<ε, then ψb = Q.
Thus for these solutions both systems are identical and so they also solve the
stationary Einstein equations.

Second we show that for any metric gab close enough to some flat metric, eab,
there exists another flat metric eab with respect to which ψb(gCd) = Φ\ds = σab\ds = Q
Thus, if (u,gab) satisfies the stationary Einstein equations it also satisfies the
reduced ones. Instead of looking for eab, which is related by a diffeomorphism to eab,
we diffeomorphically transform gab, keeping eab fixed. Such diffeomorphism, d,
must satisfy,

:= *Φ\ dS

where *φab : =y*g*g

ab-e

ab, with *gαί) the diffeomorphically transformed gab, and
Da is the covariant derivative on dS associated to hab.

6 We now use a corollary of
the implicit function theorem on Banach spaces [1 8, 19] to assert, given any gab in a
small enough neighborhood of eab, the existence of diffeomorphisms, d, satisfying
G(d,gJ=0.

Corollary. Let X,Y,Zbe Banach spaces, 17, V open sets ofX, and Y respectively, and
G:VxU-+Z a C1 function. Assume there exist x0eU, and y0€Y, such that

4 Where needed we have extended wα, and therefore hab9 into a neighborhood of dS on S using the
geodesic equation
5 See Appendix and [15]
6 This is equivalent to the existence of a unique, up to translations and rotations, harmonic
coordinate system, once dS is given. See also [6,16,17]
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G(y0, x0) = 0, and D^y^XQ): Y-+Z, the differential of G with respect to the first
argument is surjective and has complemented kernel. Then there exist neighborhoods
VXo C K and Uyo C U around x0, and y0 respectively such that for any x e UXQ there
exists at least an yeVyo satisfying G(x, y) = 0.

Proof. It follows from Corollary 2.5.8 and the proof of the implicit function
theorem in [18].

We consider G(d,gab) as a function from YxX to Z, where Y=HΊ/2 -7/4(S),
X = Hί/2f_3/4(S),and

Z = #3/2 1/4(5) x H2(dS) x{H[(dS)/infinitesimal conformal isometrίes of hab} .

Vis chosen, using that H7(2t - ?/4(S) C C J/2(S), to be a small enough neighborhood of
the identity map in order to guarantee that all its elements have differentiable
inverses. This function satisfies G(i, eab) = 0, where i is the identity diffeomorphism,
is a differentiable function of both arguments, and its differential with respect to the
first argument at (d,gab) = (i,eab) is,

where we have identified δd with the vector field it generates, ξa, and ξ = naξ
a\ds,

ξ = (ncrcξ)\ds, k=rarf\ΰs, and ξa = h«bξ
b\ds.

Thus to complete the proof we need only to show that the above linear map has
complemented kernel and is surjective. This map satisfies the hypothesis of the
Main Elliptic Theorem of the Appendix. Since its kernel and the one of its adjoint,
DG'(ί>eab): Y->X'9 consist of C°° functions, it is easy to see that in the first case it
consists only of the infinitesimal isometries of eab9 since this space is finite-
dimensional it is complemented, and in the second only of the infinitesimal
conformal isometries of hab, which have been factored out, but then
RangeDG(ί βαb)= Y, and so surjectivity is also asserted.

Finally we show that if σab e H'2(dS) is trace and divergence free, then σab = 0. To

see this, conformally transform hab = Ω2fab, σab = Ω~4σab, using Ω= 2, so that

fab is a flat metric in R2. Since σab is trace free its divergence is invariant under the
above conformal transformation, therefore σab is also trace and divergence free.
But then in a cartesian (with respect to fab) coordinate system the components of
σab satisfy the Laplacian equation, Δfσ

μv = 09 and so they are constant or grow
asymptotically. In any case they always give rise to singular tensors when
conformally transformed back to dS. Thus σab must vanish. Π

Strictly speaking the diffeomorphism we have used on the second part of the
above proof can move the sphere around, therefore one should take dS to be
contained in a open region where the stationary solution exists.

Note that although the tensor density φab is background (eab) dependent, the
metric tensor it generates, gflb, is not. The background metric is only an artifact to
render the equations elliptic and thus to establish existence.
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We now use the fact that the reduced system is elliptic in the sense of
Hόrmander, [20,21]7 which includes the Lopatinskiϊ-Sapiro conditions [22,23]
for the boundary equations, to establish existence of solutions to the reduced
system.

Existence Lemma. There exists ε > 0, such that for each complex function ύ with
\\u\\ 2t as <ε there exists a unique (u, φab)eH5ι2^3/4(S) solution to the reduced
system, Eqs. (1,2).

Proof. Consider the reduced system as an implicit function, F((u, φab\ ύ) = 0, for
(u, φab) in terms of ύ. As a function from

Yx X: = (ffs/2i _3/4(S) x #5/2, _3/4(S)) x H2(dS)

to

Z: - #1/2> 5/4(S) x fr;'/2f 5/4(S) x H2(dS) x H2(dS) x H'2(dS) x #0(<

it is differentiable and furthermore F(0,0), 0) = 0. Thus if we could show that
DιF(0,o),o) '• (δu> δφab) e 7->Z, the differential of F with respect to the first entry, is
an isomorphism then the implicit function theorem [18,19] would assert the
existence of ε > 0, and of a unique, continuously differentiable function (u(ύ\ φab(ύ))
defined for all \\u\\2ίds<s such that F((u(ύ\ φab(u)\ ώ) = 0. This would complete the
proof.

We first show injectivity, namely D1F((0tQ)tQ)(δu9δφάb) = 0 => (δu,δφab) = Q.

Decomposing δφab at the boundary as δφab = τnanb + 2n(aφb} + y /ια& + σab, with

Q = $ana = σabna = σabhab, we obtain

Aeδu

Aeδφab

δu\ds

τ + σ

σab

7 Hόrmander ellipticity of the system for points not at the boundary follows from usual ellipticity.
That is one considers for each one of these points the constant coefficients differential system on
R3 obtained by defining its coefficients as the value of those of the principal part of the system at
that point. One then shows that there is no bounded solution to the constant coefficients system of
the form uί(x) = Cl exp(ifc,ocj) with some fcyφO. For points at the boundary one considers for each
one of them the constant coefficients differential system on +R3, obtained by defining its
coefficients as the value of those of the principal part of the operators at that point (now taking into
account the boundary operators!). One then shows that there is no bounded solution to it of the
form ttj = Cjexp(i£^)ω(τ), with some £y Φθ, where τ is the coordinate defining +R3 as τ^O, and
the # are normal coordinates to τ
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Using the first and third lines of the above equation we get

0 = J δuΔeδudVe = \ VcδuVcδudVe.
s s

Therefore δu = cte, but the constant functions are not in H5/2t _ 3/4(S) and so δu = 0.
Similarly the trace of the second line, and the fourth line imply eabδφab = Q, and so
σ + τ = 0. Thus the last two lines become,

Using these two equations we now obtain,

0 = | δφabΔeδφabdVe = l VcδφabV
cδφabdVe + \

s s ds

Since fe>0 the right-hand side is positive definite, and so we conclude δφab = 0
which asserts injectivity.

Second we prove surjectivity. Note that D1F((ΌtQ)tQy(δu,δφab) satisfies the
hypothesis of the Main Elliptic Theorem of the Appendix, (in particular
Hόrmander ellipticity), thus it has an index, and it only depends on the principal
parts of the operators. We now prove that this index vanishes. This together with
the above injectivity result implies that the co-dimension of the range is zero, and
so surjectivity. To find the index we consider a family of nested spheres (with
respect to the flat metric eab) and decompose as before Δeδφab into equations for τ,
σ, $b, and σαb, now defined for the whole family of spheres. Since the index is an
invariant - it only depends on the principal part of the equations - one can
continuously distort the equations without changing it. We distort them by setting
to zero fe, the value of the scalar curvature of the spheres, in several places where it
appears in such a way as to decouple the equations.8 It is easy to show then that the
resulting map, which consists of several decoupled Laplacians is an isomorphism,
and therefore the vanishing of its index. D

We now study regularity for the solutions whose existence has been asserted.

Regularity Lemma. Let Sf be strictly contained in S. Then (u,φab)eCω(S'\ and
therefore (u, gab) e Cω(S'). Furthermore there exists an analytic conformal factor, Ω
approaching zero asymptotically as r2 such that (u,gab) = (Ω~1/2u,Ω2gab) can be
extended analytically to the conformally completed space, that is when the point at
infinity is added to S'.

Proof. By considering some of the w's and φcd's in the expressions for the operators
E(u, φcd\ and Eab(u, φcd) as coefficients we arrive to a coupled, linear elliptic system
for the remaining w's and φcd's. If (u, φab) e Hs _ 3/4(5') then such system approaches
Δe with differentiability s, and rate — 1. Furthermore since Q = 0 we can apply the
Regularity Theorem of the Appendix to conclude that (u,φab)eHs+1^3/4(S').
Starting with s =| and iterating the procedure we conclude (u, φab) e Hs, _ 3/4(S") for

8 One is not deforming the spheres into planes, which would result in a discontinuous distortion of
the Laplacian, but rather setting to zero some terms not in the principal parts of the differential
operators
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any 5', and so (u9φ
ab)eH00^3l4cC^/4^ε(Sr\ ε>0. Local analyticity follows now

from this result and Morrey's theorem [4,5]. Analyticity at infinity follows from
the above results and the work of Beig and Simon [10]. Although Beig and Simon
assumed a faster decay at infinity than the one we have so far obtained here it is not
difficult to see that their results are still valid assuming this slower decay.
Alternatively one can, by writing the reduced equations as,

Aeu = F(u, Vcu, </> , Vcφ
e

by using the decay estimates obtained see that (F,Fα&)eC^/2_ε, and by applying
the Asymptotic Behaviour Theorem of the Appendix, conclude that (w, φab) do in
fact decay as it was assumed by Beig and Simon. Π

This completes the proof of the Main Theorem.

Discussion

We have asserted the existence and uniqueness of solutions to the stationary
vacuum Einstein equations, when a sufficiently small - with respect to a Sobolev
norm - complex function, w, on a sphere is given. Thus the freedom on the
boundary data is the same as the one available from a multipole moment
expansion at infinity. It is clear that each ύ giving rise to a solution determines a
unique multipole set. Does there exist a norm on the multipole set such that each
small enough multipole set gives rise to a unique solution to the stationary
equations and thus determines a unique ύl

One would expect that it would be possible to assert existence not only for
solutions close to Minkowski space-time but also for those close to Schwarzschild
space-times of arbitrary mass. This is indeed the case, since by applying a constant
conformal transformation to any of our solutions with nonvanishing mass we
obtain solutions with arbitrarily large mass9. This corresponds to letting the
sphere dS get bigger and bigger, i.e. having smaller and smaller constant curvature,
while keeping the same ύ.

Along the same line as above it should be possible to establish existence for the
interior problem, namely when S is taken to be a ball, or the space within two
concentric spheres. This should be relevant in order to perform an analysis similar
to the one in [14], but for quantum cosmologies.

Acknowledgement. I thank Bernd Schmidt for calling my attention to the problem here treated,
and for several discussions and ideas, and the referee for pointing out several places of the
manuscript needing clarification or correction.

Appendix

Here we list several definitions and theorems used in this work, which although
known are very difficult to find in the literature.

9 I thank Bernd Schmidt for this argument
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Definition (Bartnik [17])10. A linear elliptic operator in an n dimensional

asymptotically flat manifold is said to have differentiability, s>-, and to be

asymptotic to, Ae9 for some flat metric eab I at rate τ > — - ), if it can be expressed as,

with Va the covariant derivative associated to eab, and A{a b, B{b, and C{ tensor fields
satisfying,

Note that the Sobolev imbedding theorems imply that A{ab is Holder

( _ _ «\
r 2) [15]. For this work it is enough to consider

the case τ= — 1.

Main Elliptic Theorem. Let w,— »P/w/ , ij, = l,...,Nbean operator and asymptotic to
Ae, at rate —1, on S = R3 — B1 and let u^Bf^u^ iJ9k=l, ...,JV be boundary
operators on dS. Then if the coefficients of the whole system are smooth and the
whole system is elliptic in the sense of Hormander [20,21] we have;

i) The map

(P,B): Π H..ΛSHΠ Hs-2,s+2(S)x Π H5_2_mk(3S),
j = l i = l k = l

for s > 2, <5 Φ p + ̂ , p e Z, and where mk denotes the order of B(k\ is Fredholm. That is,
dim Kernel < oo, co-dim Range < oo, and i = dim Ker(P, B) — co-dim Range (P, B) is
an invariant.

ii) For any ueHStδ(S\

||tt-Ker(P,B)||e§afS^^

where C depends only on (P, B), and

iii)

Sketch of Proof. To prove the above theorem we follow Bartnik's proof of
Propositionl.il in [17] which establishes a similar result but for manifolds
without boundaries. We depart from that proof in the following two points:

i) To prove the analog to Proposition 1.6 in [17] instead of starting with the
usual local Garding estimate, we start with the following one which reaches the
boundary: There exists C>0 such that for all ueHs(S), dScScS, compact,

K 1

* Note the different convention for the Sobolev indices in [17]
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This estimate can be deduced following the steps on the proof of Lemma 10.5.1 in
[21] where the above inequality is proven for the case N = ί.

ii) To prove the analog to Theorem 1.10 in [17] we take the patch function
equal to 1 in a compact neighborhood of S containing dS. Π

Remark. Partial proofs of the above theorem can be found in [15, 24-27]. We
suspect that the theorem still remains valid if the smoothness condition on the

coefficients is relaxed, that is if only certain differentiability, s' > -, where n = dimS,
is required for P, and that

β(k)j = D(k)jab ^ ̂  + E(k)jb ^ + p(k)j ?

with D^abeHs,_ίl2tdS, £pbeH s,.m+12as, F^eH s,_m_ 1 2 δ S, and

Regularity Theorem (Choquet-Bruhat and Christodoulou [1 5]). Let P be an elliptic
operator of differentiability s>f, asymptotic to A e at rate — 1, and with C/ = 0,
defined in S =R3 - B^. Then for any S' C S, S'nδS = 0, there exists C > 0 such that if
ueH2,δ(S), and P(u)eHs,_2fδ+2(S'l s'^s + 1, then,

The proof of the above theorem is an immediate consequence of the local
elliptic theory, see for example [28], and Theorem 6.1 in [15].

Asymptotic Behaviour Theorem (Meyers [29], Beig and Simon [9]). Let
weCftR3), ε>0, such that Aeu: =/eC*+ε(lR3), geΛΓ, q^3. Then,

q-3 I £

ί = o m= —i r

where ι;eq°_2+ε(R3).

Proof. Using Green's function we have,

u=i^\dv

To estimate v one uses the following inequality valid for all peN [30,31],

1 -'Σ.]/l+ω2-2ωξ
,

}/l+ω2-2ωξ

and the fact that the wth derivative of u satisfies the Poisson equation with a source
decaying asr~ 4~"~ ε. Π
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