
Communications in
Commun. Math. Phys. 118, 401-410 (1988) Mathematical

Physics
© Springer-Verlag 1988

Ergodic Endomorphisms of
Compact Abelian Groups*

M. Shirvani and T. D. Rogers
Department of Mathematics, University of Alberta, Edmonton, Alberta Canada, T6G2G1

Abstract. We show that for a surjective endomorphism of a compact abelian
group ergodicity is equivalent to a condition which implies r-mixing for all r ̂  1,
and we characterize such maps algebraically. This is then used in proving the
ergodicity of an extensive class of endomorphisms of the binary sequence space.
As a simple corollary it is found that one-dimensional linear cellular automata
and the accumulator automata are r-mixing for all r ̂  1.

1. Introduction

Let θ be a continuous automorphism of a compact abelian group G. The classical
automorphism theorem of Halmos [4] states that θ is strongly mixing with respect
to the normalized Haar measure on G if and only if it is ergodic. To explain our
generalization, say θ is completely mixing in G if and only if the following holds:

Given any integer r ̂  1, any r -f 1 measurable subsets A0,...,Ar of G, and any
r sequences {kin} of positive integers such that lim kιn = oo for all 1 rg i :§ r, we

have

Km μ{Aonθ-kίn(A1)n-nθ-krn{An))= f\
j 0

In an arbitrary space the above property may well be stronger than the condition
of r-mixing introduced by Rohlin [9], since the latter involves the extra assumption
that lim min \kin — kjn\ = oo. We prove the following generalization of the

n -* oo i ψ j

above result.

Theorem 1 (Endomorphism Theorem). Let G be a compact abelian group with
normalized Haar measure μ, and let θ be a continuous surjective endomorphism of
G. Then θ is μ-invariant. Moreover, the following are equivalent:

(i) 0 is completely mixing.
(ii) θ is r-mixing for all r ̂  1.
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(iii) θ is ergodic.
(iv) The induced homomorphism θ has no non-trivial finite orbits on the character

group G.
(v) For every n ^ 1 the endomorphism I — θn of G is surjective, where I denotes the

identity map on G.

Rohlin [9] proves the equivalence of (ii), (iv) above by a different method. Note
also that the bilateral shift endomorphism is completely mixing but not exact, so
the conclusion of Theorem 1 cannot be much strengthened.

Our interest in the dynamics of endomorphisms arises from the study of gene-
ralized automata. Let G = IS

2 = \\Έ2, where S is either f\J or Z, and let θ be a
ieS

continuous endomorphism of G. Then for each ieS there exists a finite subset

Ktc:S such that θ(a)i = Σ aj f°r a 1 1 a e G L e t P(ϊ) = mSiX{JeKi} a n c i ^(0 =

min {jeKi}. Assume that p (and λ in the case S = Z) is strictly increasing and has
no fixed points. Then Theorems 2 and 3 combine to say that in this case θ is onto,
completely mixing, has periodic points of all orders, and the set of periodic points
of θ is dense in G. Furthermore, Theorem 4 states that in the case G = Z^ the

00

above maps are also strongly transitive (i.e. [j θn(V) = G for every non-empty
n = 0

open subset V of G). As an immediate consequence of the above we have

Corollary 2. One-dimensional cellular automata, and the accumulator auto-
mata [7] are completely mixing.

The corollary may shed some light on the unpredictable space-time patterns
produced by certain local automata. For example, some of Wolfram's class III
automata [11] are clearly completely mixing. The corollary also strengthens a
result due to Lind [6]. The accumulator automata C Z^^-Z^ given by (Cx)f =

xi + 1 + ]Γ CijXj were introduced in [I] , where the algebraic structure of the set
j = o

of periodic points associated with them were elucidated. The particular example
of the twisted shift map(Tx) ί = x0 + x i + 1 was utilized in [12] as a symbolic
dynamical system in the enumeration of the bifurcations of the stable periodic
cycles associated with quadratic maps of the interval.

The hypothesis that p (and λ) in Theorems 2 and 3 be order preserving may
well be too strong, as is shown by the following:

Theorem 5. Let G = ZS

2, and let Θ:G^G be defined by θ(x)i = xβiί), where p:S-+S
is injective and has no periodic points on S. Then θ is continuous, surjectiυe, completely
mixing, has points of all periods, and its set of periodic points is dense in G.

Whether Theorems 2 and 3 can still be proved under the weakened hypothesis
of Theorem 5 remains to be seen.

2. The Endomorphism Theorem

Let G be a compact abelian group (written additively) and let μ denote the
normalized Haar measure on G. Let T be a continuous μ-invariant map of G into
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itself. If T is completely mixing then it is in particular strongly mixing (the case
r = 1 of r-mixing). The latter property has many interesting consequences, among
which are ergodicity, sensitive dependence to initial conditions (at all points of G\
and the fact that the set of periodic points of T has measure zero in G (unless
some iterate of T is the identity mapping on G). It is therefore of interest to
determine conditions under which (algebraic) homomorphisms of G are completely
mixing. Before stating these conditions, recall that the character group G of G
consists of all continuous homomorphisms λ of G into the group of complex
numbers of modulus one. Given a continuous endomorphism θ of G, the induced
homomorphism θ on G is defined by θ(λ)(x) = λ(θ(x)) for all xeG. We also write
1G for the trivial character on G (i.e. lG(x) = 1 for all xeG).

Proof of Theorem I. The μ-invariance of θ is well-known ([8], 1.7.2). The equi-
valence of (iv) and (v) is also easy to see. For, given any n ^ 1, the set H = {x — θn{x):
xeG} is in fact a subgroup of G, and θn(λ) = λ if and only if the restriction of /
to H is the trivial character \H. Moreover if H φ G then any non-trivial character
of G/H gives rise to a character of G which is trivial on H. Thus H Φ G is equivalent
to the existence of non-trivial character λ of G such that θn(λ) = λ. This establishes
the equivalence of (iv) and (v).

The implications (i) => (ii) => (iii) are trivial. The proof that (iii) implies (iv) is
essentially Halmos' observation [3] that if θn(λ) = λ and Λ / 1 G , then / =
n - ί ^

Σ θι(λ) is a non-constant function in if 2(G) such that fθ = /. This implies
i = 0

that θ is not ergodic ([8], Π.2.1).
It remains to prove that (iv) implies (i). Define the linear operator Uθ = U on

<£2{G) by U(f) = fθ for all feSe2(G). Consider the equation

n -> oo j = 0

where / 0 , . . . , / r e i f 2(G). Clearly 0 is completely mixing if (1) holds when the f are
the characteristic functions of the sets Av We claim that (1) is in fact true for all
fie^?2(G). It is sufficient to show that (1) holds when the f are linear combinations
of characters, for then the fact that G is dense in i?2(G) ([7], 38D), together with
some straightforward estimates, show that (1) holds for all

n

Note that if λ is a character then Un(λ) = λθn = θn(λ). Let f = Σ cijλp where

λ0 = 1G, the CijβC, and the λjeG. Then the left-hand side of (1) consists, apart from
r

the term c o o c l o c,o = f ] </ J ? 1G>, of complex multiples of terms of the form
j = 0

(λioθ
kln(λil)' θkrn(?.ir\ 1G>, where 0 ^ i o , . . . , i r ^ m , and at least one λx φ\G. An

application of (the multiplicative version of) the H — S Lemma (cf. Sect. 5) shows
that for all sufficiently large n, λioθ

kin(λiχ)' θkrn{λit) Φ 1G, whence the above inner
product is zero. This establishes (1) for all linear combinations of characters, and
hence concludes the proof of the theorem. •

In particular using (iv) of Theorem 1 we have
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Corollary 1. Let θ be a continuous surjective endomorphism of a compact abelίan
group. Then the ergodicity of any power of θ implies the ergodicity of all powers
ofθ. •

The above is of course false for arbitrary ergodic maps T; more precisely, the
ergodicity of T does not imply that of any of its iterates.

3. Complete Mixing and Strong Transitivity in Zf

Henceforth we confine ourselves to the case where G is a binary sequence space.
To treat infinite and bi-finite sequences simultaneously we write G — Zf = J~JZ2,

ieS

where S is either f̂J = {0,1,...} or Z. In what follows θ denotes a continuous
endomorphism of G.

It is easy to see that for each ieS there exists & finite subset K^S such that
θ(a)ι= Σ aj for all aeG. Conversely, any choice of finite subsets Kt of S gives

JεKi

rise to a continuous homomorphism of G defined as in the above formula. Therefore,
the dynamical properties of θ are determined solely by the collection of subsets
{Ki'.ieS}. We begin with some elementary results.

Lemma 1. Let G = Zf, and let θ be a continuous endomorphism of G. For any n ̂  1
and any ieS write the i-th component of θn in the form

θn(x)i= X xj9 allxeG.
jeK(n,i)

Then for n ̂  2 the sets K(n, i) are defined recursively by

K(n9ϊ) = ΔjeK{n_lti)K(lJ).

= (A\B)^J(B\Λ) is the symmetric difference of the sets A and B.)

Proof. By definition £ χj = θn(x)i = θn'1(θ(x))i= Σ θ(x)j= Σ
jeK(n,i) jeK(n-l,i) jeK{n-l,i)

Σ xr. The only terms xr that survive in the last double sum are those for
reK(l,j)

which r occurs an odd number of times in the various K(l,j) for jeK(n — 1, /). But
this is merely another way of describing the symmetric difference of the K(ίJ). Π

For example if K(l, i) = {0, i + 1} for all ieN, then K(2, i) = X(l, 0)ΛK(l, i + 1) =
{0,1}ZU{O9 i + 2} - {1, i + 2}, and more generally K(w, i) = {n - 1, n + i}.

Lemma 2. In the notation of Lemma 1 assume that θ is surjective, and that X(l, i) £
{ — Ϊ, ..., -f ϊ] for all ieS. Then θ is not ergodic.

Proof. A trivial inductive argument shows that K(n, /) £ { — i,..., i} for all
/ and n, and so K(n, i) = K(m, i) for some m > n. In view of the definitions this means
that θn{x)i = θm+n(x)i for all xeG, and since θn is surjective we get yt = θm{y)i for
all yeG. But then the i-th component of / — θm is identically zero, and the conclusion
follows from Theorem 1. •

It is apparent from Lemma 2 that the maximum and minimum elements of
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the sets K(n9 ί) exert considerable influence over the dynamical properties of θ. Let

λ(ΐ) = mm{j:jeK(l,ΐ)}9

for all ieS. A case in which the ergodicity of θ can be asserted is when p (and λ
when 5 = Z) are both strictly increasing, i.e. i <j implies that ρ(i) < ρ(j).

Theorem 2. Let G = ZS

2 and let θ be a continuous endomorphism of G. Assume that
p (and λ in the case S = Z) is strictly increasing and has no fixed points. Then θ is
surjective and completely mixing.

Proof. The following properties of the map p are trivial to verify: p is injective;
pn(ί) Φ i for all n ^ 1 and all ieS; if j < pn(j) for some jeS then i < ρn(i) for all i ^ j ;
if pn{j)< j for some jεS then pn(ί) < i for all i g j .

We treat the cases S = N and S = Z separately, beginning with the former. Here
0 < pw(0), and so i < pn{i) for all ieS. We first show that θ is surjective. This means
that given aeG we have to solve the system of equations

X Xj = ai9 all ieS, (1)

for some xeG. The solution may be found as follows: since 0 < p ( 0 ) < p ( l ) <
p(2) < •••, we begin by defining xr arbitrarily for 0 g r < p(0), use (1) to find xp(0),
define xr arbitrarily for p(0) < r < p(l), use (1) to find xp(1), and so on.

The surjectivity of/ — θn is just as easy. Given αeGwe have to find xeG satisfying

x(~ X X/ = 0ί5 all ieS. (2)
jeK(n,i)

By induction on n, the maximum element of K(n, i) is pn(i) > i. We may thus solve
(2) exactly as we did (1), since (2) determines each xpn{i) in terms of the Xj with
j < pn(i). The ergodicity of θ now follows from Theorem 1.

In the case S = Z we still have to solve the systems (1) and (2) for any given
aeG. We indicate the solution of the more complicated system (2) only. Let n g; 1
be fixed.

Suppose first that i < λn(i) ̂  pn(ΐ) for all ieS. Then the left-hand side of (2) has
the unique maximal subscript pn(ϊ) and the unique minimal subscript i for all ieS.
Begin by defining the xr arbitrarily for 0 ^ r < p"(0). For i > 0, use (2) to define
xpn{i) in terms of previously defined components (some of which may be arbitrary),
and for i < 0? use (2) to define xt (with no arbitrary choices).

The case where λn(i) ̂  pn(i) < i for all ίεS can be treated analogously. We are
left with the possibility that i < λn(ΐ) ^ ρn(i) for some ieS, and λn(j) g p (j)<j for
some jeS. It is then easy to see that there exist integers j ι and j 2 such that
i < λn{ί) g pn(ί) for all / ̂ ; \ , and λn{ί) ^ p\ί) < i for all i ^j2. Moreover j 2 =jί9 or
J 2 = A - 1 We thus have ••• <λn(j2- l)<λn(j2)<j2SJi <Pn(Ji)<Pn(Ji + 1) < -
Define xr arbitrarily for A"(j2) < r < Pn(h\ For ί ^ j \ the term pΛ(i) is the highest
subscript occurring in (2), while for i ^ j 2 the term λn(i) is the lowest subscript
occurring in (2). Therefore the system can be solved consistently, showing that
/ — θn is surjective. Similarly (1) may be solved along the same lines as above. The
result follows. •
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Corollary 2. One-dimensional linear cellular automata, and the general accumulator
maps o/[l] are completely mixing.

Proof. In the case of cellular automata p(i) = i-\-r1 and λ(i) = i + r2 where r1 and
r2 are fixed non-zero integers. The accumulator maps are defined o n S = N and
have ρ(ϊ) = i + 1. In each case the conditions of Theorem 2 are trivially verified. •

The above considerably strengthens Lind's result [6] for the map 0(x)f =
xi-1 + x-i+1. The class III cellular automaton with code number 42 ([11], page
7) is the case θ(x)i = xt _ 2 + xt - 1 + xt + x* +1 + xf + 2 of Corollary 2.

Write Pn = {xeG:θn(x) = x} for n ̂  1. If θ is a linear map then each Pn is a
subspace of G(regarded as a vector space over the field of two elements). In particular
the cardinality of Pn is either a finite power of 2 or that of the continuum. As has
already been remarked, the fact that the maps θ of Theorem 2 are strongly mixing

00

implies that P(G) — (J Pn has measure zero in G. There are, nonetheless, many
n = 0

periodic points.

Theorem 3. Let G — J\ and let θ be a continuous endomorphism of G. Assume that
p (and λ in the case S — Έ) is strictly increasing and has no fixed points. Then θ has
periodic points of all orders, and the set of periodic points of θ is dense in G.

Proof. Clearly we have θn(x) = x if and only if (/ — θn)(x) = 0. To show the existence
of points of period exactly n we need a closer look at the proof of the surjectivity
of the maps I — θn given in Theorem 2. For example in the case S = N a point of
period dividing n is a solution of xt + ]Γ Xj = 0 for all ieS. In particular if d

JeK(n,i)

is a proper divisor of n then xβd{0) is uniquely determined by the xp0^j<pd(0)
(which have been chosen arbitrarily). However for any choice of the components
0/> 0 ύ j < Pd{% we can find x, yePn with Xj = y} = a } for 0 ^ j < pd(0), xpd{0) = 0,

and ypd{0) = 1, so at most one of x or y can have period d. This plainly establishes
the existence of points of period exactly n. Similarly given any m ̂  1 there exists
n such that ρn(0) > m. Thus given any aeG one can find xePn such that xt = a{ for
0 rg i !g m < pw(0). This proves that the set of periodic points is dense in G. The
proof of the (entirely analogous) case S = Z is left to the reader. •

A well-known consequence of the ergodicity of the maps θ is that they are all
OO

topologically transitive, i.e., for any non-empty open set F, the set [j θn(V) is
n = 0

00

dense in G. Following [2] we say θ is strongly transitive if (J θn(V) = G for
n = 0

all non-empty open subsets V of G. In this direction we have

Theorem 4. Le£ G = Z 2 , #ftd Zeί θ be a continuous endomorphism of G such that p
is strictly increasing and has no fixed points. Then θ is strongly transitive.

Proof. We have to prove that given any a,beG (possibly a = b) and any neighbour-
hood V of a, there exists an integer m and an element xeV such that θm(x) = b.
A fundamental system of open neighbourhoods of the identity is given by the
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cylinder sets Vn = {xeG'.Xi = 0 for 0 ̂  i ̂  n} for all n ̂  0. Thus given a,beG and
n ^ O w e have to find m ̂  1 and xeG such that 0m(x) = h and xf = αf for 0 ̂  i ̂  n.
Choose any m such that pm(0) > n. Set xf = βf for O^i^n, and use the equations

Σ Xj = b{ to determine the xpm{i) for all i ̂  0 (other components of x may be
jeK(m,i)

chosen at will). •

The result, of course, does not extend to the case S = Z. Indeed, even the

bi-infmite shift map σ(x)i = xi¥1 does not possess strong transitivity, since from

almost no neighbourhood of T (all Γs) can one reach 10 (alternate Γs and 0's) under

any iterate of σ.

4. Other Examples

Unfortunately the condition that p (and λ) be strictly increasing is not always
necessary for the truth of Theorems 2 and 3, as the following result shows

Theorem 5. Let G = ZS

2, and let Θ.G^G be defined by θ(x)i = xp(i), where p is
ίnjective and has no periodic points on S. Then θ is continuous, surjective, completely
mixing, has points of all periods, and the set of periodic points of θ is dense in G.

Proof. The surjectivity of θ is trivial since given aeG one simply defines xeG by
xp(i) = ai f° r aU ieS, and Xj is arbitrary iϊjφp(S). The definition is consistent since
p is injective.

Clearly K(n, i) = [pn(ί)}, so surjectivity of / — θn amounts to the solution, for x,
of the system

where aeG is given. Let n be fixed, and define an equivalence relation ~ w on S
by* i~nJ if either i = prn(j) or j = prn(i) for some r ̂  0 (the transitivity of ~ depends
upon the injectivity of p). Consider an equivalence class [io~]n, where ίoeS. Then
the relation -<, where j<k\ί and only if j = pn{k), induces a strict total order on
[zo]w (anti-symmetry follows from the fact that p has no periodic points, so j = ρn(k)
and k = pn{j) cannot hold simultaneously). We may therefore write [ ί o ] w

 =

{ί..,/_2,/_1? f0,/1; f2, }, where pn(ik) = h+i f° r a ^ integers k. The subsystem of
(1) indexed by the elements of [fo]M thus has the form

One may choose xίo arbitrarily, and solve the system by forward/backward
substitution. Of course the subsystems indexed by different equivalence classes are
disjoint, so the above method of solution is consistent. This establishes the
ergodicity of θ.

The existence of periodic points is the case a = 0 of the above construction,
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and is clearly equivalent to the conditions xr = xt for all re\J]n. To show the
existence of points of period exactly n we need merely observe that if d is a proper
divisor of n then [i]n is a proper subset of [ι]d (for example ρd{ί)e[ι]d\[ι]n). Consider
the n distinct equivalence classes [/]„, [p(0L, •> ίpn~ HOL By assigning values of
0 or 1 to the components of x on the above classes (with an appropriate definition
elsewhere) we obtain 2" vectors x satisfying θn(x) = x. If d is a divisor of n then
~ d partitions {i,p(i)9...,p

n~1(ί)} into d equivalence classes, whereby one obtains
n - l

only 2d points whose period divides d. But ]Γ 2d ^ ]j] 2ι = 2" — 2, so there

is at least one point whose period is exactly n.
To show that the set of periodic points is dense in G, let J be any finite subset

of S. If ieJ then pn(ί)φJ for all sufficiently large n (for if pn(ΐ)eJ for an infinity of
values of n then pn(i) = pm(ί) for some n Φ m, which is impossible). Since J is finite
it follows that J npn(J) = 0 for all sufficiently large n. This means that the classes
[ι]n, for ieJ, are all distinct, and so the components of x indexed by them can be
assigned arbitrary values. In other words, given any yeG and any finite J there
exists xePn such that xt = yt for all ieJ, as required. •

Observe that the conditions on p in the above theorem cannot be relaxed. For
example if p(i) = p(j) for some i Φ j then {θx)i = (0x), for all xeG, so θ is not surjective,
while if pn(ί) = ί for some n ̂  1 then / — θn is not surjective.

Finally, we observe that the maps in Theorem 5 are not in general strongly
transitive, even when S = N. For example consider the mapp on ί\j given by

• 8-»6->4-»2->0->l->3-*5-> Let bt = 1 for all ieN. Then no xeG such
that x 0 = 0 can map to b under any iterate of 0, for given any n we have θn(x)2n —
xpn{2n) — XQ — Q Φ bln. Hence from almost no neighbourhood of the identity can
one reach b. The problem of relaxing the conditions on p (and /) in Theorem 2
and 3 still remains.

5. The Homomorphism-Separation Lemma

Here we prove the following purely algebraic result, needed for the proof of
Theorem 1:

The H-S Lemma. Let M be an additive abelian group, and let φ be an endomorphism of
M such that

φ, and 1 — φn for all n ̂  1, are 1 — 1 maps of M. (1)

Let {fclM},...,{fcrn} be sequences of positive integers satisfying lim kin = oo for
n—• oo

1 5Ξ i ίΞ r. If x0,..., xr are elements of M such that

*o = Σ Ψkιn(xι)> f°r al1 «. (2)
t = l

then x0 = = xr.

Proof. The subring R = Z[^] of End (M) generated by φ is Noetherian. Replacing
M by its .R-submodule generated by the xt we may assume that M is a finitely
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g e n e r a t e d left τ R - m o d u l e . A l s o o b s e r v e t h a t if M is t h e d i r e c t s u m M1 ® ••• ®Mk
k

of its i^-submodules Mf and if each xt = £ yίp where the ytjeMp then (2) its
7 = 1

r

equivalent to the k systems yOj = X Ψkin(yij) = Q> ^ύjίkK and also the restric-

tion of φ to each Mj also satisfies (1). Since x0 = ••• = xr = 0 if and only if all the
y.j = 0, it is sufficient to assume from the beginning that all the xteMj.

We prove the lemma in a series of steps.
1. Consider the special case where M has a countable basis uuu2,••• over some
field i7, and φ is the F-linear one-sided shift mapi/φ^) = ui+1 for all i. Clearly for
all sufficiently large n the right-hand side of (2) cannot contain any of the u{

involved in x0. This implies that x0 = 0, and simple induction on r concludes the
proof in this case.

2. Now consider the case where char R = 0, M has no i^-torsion (i.e. if 0 φ xeM
and OφreR then rxφθ\ and let S = R®ZQ Then N = M(g)zQ has no
5-torsion, and φ extends naturally to an endomorphism, still denoted by φ, of N.
Since S is a principal ideal domain ([5], Theorem 2.15) we can write N = Syx © •
®Symi where each Syt is a free cyclic S-module ([5], Theorem 3.10). Consider one
of the summand, Syj say. Since this module has no S-torsion it follows that yp φ(yj)9

φ2(yj\... form a Q-basis of Syj, and clearly φ acts as the shift map relative to this
basis. An application of Step 1. concludes this case.

3β Now assume merely that M has no Z-torsion (i.e. if 0 / xeM and n > 0 is an
integer then nx Φ 0). As in Step 2. Let N = M®ZQ and S = R®ZQ. Then N is a
direct sum of free cyclic modules of the form Sy, and the Λ-torsion submodule T of
N. In view of Step 2 we may assume that xo,...,xreT, and that in fact they generate
T as iS-module.

Since 5 is a principal ideal domain and T is finitely S-generated, there exists
a non-zero polynomial g(φ)eQ[φ~\ such that g(φ)x = 0 for all xeT, whence g(φ) = 0.
Thus for some integer n and rational numbers q( we have φn = ^ g^^, and

0 ^ i < n

therefore T has finite Q-dimension. In particular the injective maps φ and 1 — φn

are invertible. Put V =T®QF, where F denotes the algebraic closure of Q in
C, and consider an (//-composition series {0} = Vo c V1 a cz Vm = F of V. Since
the map induced by φ on each factor VJVi_ι also satisfies (1) we may assume (by
induction on dimF V) that V = V1. But now the absolute irreducibility of the action
of φ on V (and Schur's Lemma) implies that dimF V = 1, say F = Fu. We have
xt = λ u and I/̂ (M) = α«, where the λt and α belong to F. By (1) we know that α is

r

not a root of unity. Clearly (2) is equivalent to λ0 = ]Γ /.αfcm for all n, which

implies that λo = 0. (For example it is well-known ([10], IV.3, Theorem 8) that
one can find a valuation || on the algebraic number field Q(λθ9...,λr,ot) such that
|α| < 1, whence λ0 — 0 follows upon letting n-> oo.)
4. Now consider the case where M is a torsion group. Then we can write M = © M p 3

where the sum ranges over all primes p and Mp = {xeM / x = 0 for some e ^ 0}.
Since only a finite number of the Mp can be non-zero we may assume that M = Mp.

Consider first the case where px = 0 for all xeM. Then M is a finitely generated
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module over R' = Zp[_φ]. Since R1 is a principal ideal domain we have M =
R'y1 ®~-®R'ym®T, where the R'yt are free cyclic ^'-modules and T is the R'-
torsion submodule of M. Observe that T = {0}, for if xeT then by definition
g#)x = 0 for some 0 Φ g{φ)eZp\_φ\ whence (1 — φn)x = 0 for some n ^ 1. In view
of (1) this implies x — 0, as claimed. As in Step 2 the action of φ on each i '̂jy is
like the shift map, and so the conclusion xt = 0 follows from Step 1.

In general there exists e ^ 1 such that pex = 0 for all xeM. As M is a torsion
group the map induced by ^ on each R'-module plM/pi+lM also satisfies (1). By
the previous paragraph we find that x0,..., xr belong to every pιM, and in particular
to peM = {0}, as required.
5. Finally in the case of an arbitrary group M let T = {XEM:ΠX = 0 for some
n > 0}. Then T is a submodule of M, and the map induced by φ on the Z-torsion-free
module M/T satisfies (1). An application of Step 3 to M/T shows that all the xteT,
and proof is concluded by an application of Step 4 to T.
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