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Lie Group Exponents and SU(2) Current Algebras
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Abstract. Due to the Cappelli-Itzykson-Zuber classification, the minimal
conformally invariant quantum field theories with SU(2) currents are classified
by the ADE Lie algebras. Here I give a conceptual proof of the empirically valid
relation between their partition functions and the Lie algebra exponents.

Consider a conformally invariant quantum field theory on Sι x R with left and
right SU(2) currents. Let the Hubert space of the theory decompose into a finite
number of irreducible level k representations of the Kac-Moody current algebra
A^ x A[1}. Then the partition function is of the form

Z{w,w)= Σ zSfc)(w)fli7 z f (w)*, (1)

where the aV} are non-negative integers. The χjfc), / = 1,..., k + 1 are the characters of
the irreducible unitary positive energy representations of level k of Aγ\ The label /
is the dimension of the subspace of lowest energy, which forms an irreducible
representation of the SU(2) charge algebra.

If the vacuum state is non-degenerate, one must have ax ί — 1. As the partition
function can be written as a functional integral over a torus, it must be invariant
under modular transformations. The partition functions of this type are in one-to-
one correspondence with the Lie algebras of ADE type Lie groups G. In particular,
k + 2 is the Coxeter number of G, and au is the number of G exponents equal to
i [1].

So far this fact had not been explained in a conceptual way, though in [2] I gave
the following construction of the SU(2) modular invariants in terms of G. For a
given G fix a set A +(G) of positive roots and consider the subgroup H of G which
leaves the highest root α invariant. Moreover, consider the SU(2) subgroup of G
generated by Ea and £_ α . The coset space G/(H x SU(2)) is the unique quaternionic
symmetric space with symmetry group G. More precisely, for adjoint groups G, H
the holonomy group is (H x SU(2)/Z2, where H is a double cover of H. Ignoring
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Table 1. The list of quaternionic symmetric spaces

G

SU(N + 2), N ^ l
SO(2N + 4), N>2

E6

EΊ

Es

H

SU{N)xU(l)
S0(2N) x SU(2)
SU(6)
50(12)
EΊ

k

N
2N
10
16
28

this subtlety for the moment, the list of symmetric spaces of this type is given by
Tablet.

Consider a free Majorana fermion field taking values in the tangent space
TG/(H x SU(2)) and sum over periodic and anti-periodic boundary conditions.
The resulting model is ίsomorphic to the level 1 WZW sigma model on S0(4k\
where

4fc = d i m G - d i m # - 3 . (2)

The model has natural H x SU(2) currents, and the Hubert space decomposes into
a finite number of irreducible representations of the corresponding current algebra
[3,4]. After gauging the H currents with infinite coupling constant most states
become infinitely massive and drop out of the Hubert space. There remain the
states in the lowest energy spaces of the irreducible HL x HR current algebra
representations which are singlets under the global HL_R group [5]. One is left
with a theory with SU(2) currents of level k, whose Hubert space decomposes into a
finite number of irreducible representations of the SU(2) current algebra. Its
partition function is of the form

2 ίrankG £ |χ|k)(w)l2 + ZG(w,w)j, (3)

where ZG(w, w) can be written as in Eq. (1), with coefficients αG . Up to a sign, it is the
modular invariant partition function corresponding to G.

Only for G = SU(N + 2) the sign is negative and one finds

N+ 1

z s ^ + > , w ) = - Σ I#V)I2 (4)
i= 1

This case is somewhat more complicated than the others, as the symmetric space is
hermitian. Moreover, the structure of the modular invariant is very simple. Thus
not much is gained by generalizing the calculations to include it, though this is not
too difficult [2]. Here it will not be considered any further, i.e. H will be assumed to
be semisimple.

In order to calculate the partition function, we have to decompose the partition
function of the SO{Ak) sigma model into HxSU(2) characters. The S0{4k)
partition function taking values in the characters o f H x SU(2) is

ZG(w, w) = |χG(w)|2 + |zf(w)|2 + \χ% (w)|2 + lzG(w)|2, (5)
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where

•χSU{2)Y

yG V = C~l\

and
oo

^dimG/24 ΓΊ ί β/2 __ - β/2\ γτ

βeΔ*{G) n = l

x \(l-qn)rankG Π (l-eβqn)(l-e-βqn)~], (8)

X Γ(l_^-l/2)rankG J-J ( J _ ^ -1/2)

L
and analogously for // and SU(2). Note that

. (10)

The contributions of the lowest energy subspaces to /Q, χf, / + , χ°. can be
recognized immediately as the characters of SO(4k) scalar, vector and Weyl spinor
representations.

The expression for ZG in Eq. (5) has to be decomposed into irreducible
characters of H x 5(7(2). To do this we need the Weyl-Kac character and
denominator formulas. The denominator formula is

D(G)= Σ ε(w)0,(G)(Γ(G),wρ(G)). (11)
weW(G)

Here

and

θn(T,λ)= Σ eβ + λq« + λ)2l2n. (13)
βenT

W(G) is the Weyl group of G and ε its homomorphism onto ( + 1 , - 1 ) . The lattice
T(G) is the root lattice and g(G) is the Coxeter number of G. Note that for ADE
algebras dual Coxeter number and Coxeter number coincide and all roots are
long, which allows the somewhat simplified description. For semisimple Lie
groups

G'=]JHi9 # f simple, (14)

we shall use the vectorial notation

, (15)
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Multiplication by an integral vector (wj will map T(G') into © ^ T ^ ) . Similarly,
the level of the corresponding semisimple affine Kac-Moody algebra will be a
vector k! = (/q). Then the Weyl-Kac character formula is

χ[G,/c',/]=D(G'Γ' Σ f;(w)θ,(G,)+r(Γ(G'),H 2). (16)
weW(G')

Here the representation with highest weight / — Q{G') is labeled by λ, modulo lattice
translation and Weyl group actions. For SU(2) characters we often write

mα/2] = χ2> (17)

as in Eq. (1).
To decompose χ%~ χG into H x SU(2) characters we need to consider the

coset spaces

S=W{G)/W(HxSU{2)) (18)

and T{G)/T(HxSU{2)). The latter has two elements, one of which will be
represented by zero. In the other one we choose the dominant H x SU(2) weight τ
of shortest length. The eosets in S will be represented by elements s which
transform ρ(G) into a dominant weight of H x SU(2).

Thus we obtain the decomposition

U-XG-= Σ Φ ) (XIH x SU(2), (kH, k),
seS

x SU(2), (kH, k), g(G)τ + sρ(G)}). (19)

The levels of the H x SU(2) current algebra representations are

(/c, k) = g(G)-g(H x SU(2)) = (g(G)-g(H;), g(G)- 2). (20)

Note in particular that g(G) = fc-f-2.
For any G' with weight τ one has

χ[G', fc',

(21)

Here eιh belongs to the Cartan subgroup of G', and we have identified weights with
generators of this Cartan subgroup using the standard bilinear form. Thus qτ

belongs to the complexification of the Cartan group and Eq. (24) makes sense.
According to this equation, the translation

λ-*λ + (g(G') + fc')τ (22)

yields an automorphism of the Kac-Moody algebra. If τ is a root, the
automorphism is inner. Thus the outer automorphisms correspond to the eosets of
the weight lattice modulo the root lattice, or equivalently to representations of the
center of the covering group of G'. In particular, the translation by g(G)τ in Eq. (19)
yields the outer automorphism of the HxSU(2) current algebra which corre-
sponds to the isomorphism of the center of (H x SU(2))/Z2 with (1,-1).

By construction, the highest root α transforms into its negative under the non-
trivial element of W(SU(2)), whereas

wα = α for weW(H). (23)
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Inversely, wote {α, — oc} implies we W(H x SU(2)). Thus,

ιoc = β (24)

defines a bijection β<-+s(β) between A+(G) and S. Using

(s(β)ρ(G), oc) = (ρ(G), s(β) ~ιa) = h(β), (25)

where h(β) is the height of the root β, we obtain

— χ[H, kH, πH(g(G)τ + s(β)ρ(G))~]χ<£)

+2-h{β)} - (26)

(27)

is the decomposition of G weights into weights of H and SU(2). We also used

(α,τ) = l . (28)

To obtain the corresponding formula for #Q — Xu w e n e e d a n outer automorphism
of the SO(4k) current algebra. Under the embedding

HxSU(2)/Z2cSO(4k) (29)

a spinorial weight of SO(4k) is mapped into α/2, such that the corresponding outer
automorphism of the SO(4k) current algebra just induces the non-trivial outer
automorphism of the SU(2) current algebra, but leaves the H current algebra
invariant. Thus

lo-lί- Σ ε(S(j8)){χ[iί, kHiπHs(β)Q{G)-\y<£l2_m

βeA^(G)

~ χ[H, kH, πH(g(G)τ + s(β)ρ(G))γ/h

k

(

)β)} (30)

This yields

S Λ), (31)
where n(h) is the number of G roots of height h. In terms of m{ϊ), the number of G
exponents equal to U one has

n{h)= Σ Hi)- (32)
i = h

Due to the other two basic properties of the Lie group exponents

fc+l

X m(i) = rankG (33)
i= 1

and
m(ϊ) = m(k + 2-i), (34)

we obtain
aG

hh = m{h), (35)

which is the result we were looking for.
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Moreover, afj=l for i=\=j, if there are positive roots β, βf of G with heights
i, k + 2—j respectively, such that πHs(β)ρ(G) and πHs(β')ρ(G) + g{G)πHτ lie in the
same orbit of the semidirect product of W(H) with the lattice translations T(H). It
would be nice to have some conceptual understanding of the latter condition. If
G is of type Όw one has /? = /?', but not for the exceptional groups.
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