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Abstract. Tilings provide generalized frames of coordinates and as such they
are used in different areas of physics. The aim of the present paper is to present a
unified and systematic description of a class of tilings which have appeared in
contexts as disconnected as crystallography and dynamical systems. The
tilings of this class show periodic or quasiperiodic ordering and the tiles are
related to the unit cube through affine transformations. We present a section
procedure generating canonical quasiperiodic tilings and we prove that true
tilings are indeed obtained. Moreover, the procedure provides a direct and
simple characterization of quasiperiodicity which is suitable for tilings but
which does not refer to Fourier transform.

I. Introduction

The present paper is devoted to the construction and analysis of two kinds of
tilings of the euclidean space R\ 1. "Oblique" periodic tilings. 2. "Canonical"
quasiperiodic tilings, as we may call them.

The tilings of the first kind, the oblique tilings, are periodic in the sense that they
are invariant under the action of the discrete subgroup Z" of R". The oblique tiles
depend on two orthogonal complementary subspaces £, of dimension d, and E' of
R" which are given a priori with an arbitrary, albeit fixed, orientation with respect
to the lattice. Every oblique tile a "rectangle," that is the direct sum of a polyhedron
in E and a polyhedron in E'\ the polyhedron in E is the projection (onto E) of a
d-dimensional facet (a d-facet, for short) of the π-dimensional unit cube; the
polyhedron in E' is, similarly but up to a sign, the projection (onto E') of the (n — d)-
facet which is complementary to the previous one. ϊf one proceeds in this way for

all the I I differently oriented facets having the same dimension as £, one builds a
\d)

set of I 71 oblique polytopes in R" which form a partition of a fundamental cell for
W

Z" and thereby provide a set of so-called "prototiles" for the tiling. This is stated
and proved in our main theorem in Sect. III.
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Preliminary, contingent, versions of our "oblique" tiling appeared in the
literature dealing with the theory of Anosov diffeomorphisms. Being periodic, the
oblique tiling yields, by projection onto the quotient, a finite partition of the
n-torus Ύn = Rn/Zn. Now, starting from a linear hyperbolic operator h on Rn

satisfying hZn = Z", one obtains a diffeomorphism / of the torus by projecting h
onto T": this is a standard example of diffeomorphisms of Anosov's type. For such
diffeomorphisms in dimension n = 2, Adler and Weiss [1] constructed Markov
partitions (see for ex. [2]) and their result, when lifted back into R2, is an oblique
tiling with E and Έ identified to, respectively, the stable and unstable eigenspaces
of h. Thus, when this identification is done, the oblique tiling projects precisely
onto a Markov partition for the induced /

In n = 3 dimensions, the Markov partitions are not smooth [3]. Nevertheless,
explicit Markov partitions are available for such diffeomorphisms on T3 as
provided by Bedford's work using fractals [4]. In his procedure generating fractal
Markov partitions, the starting point is a 3-dimensional tiling with three prototiles
which turns out to be a particular realization of our oblique tiling1.

Those two examples lead us to address the question of whether the object
common to the n = 2 and n = 3 cases, namely the oblique tiling, exists in arbitrary
dimension and whether its fundamental property - to tile R" - can be given direct
statement and proof in affine geometry. A positive answer to both questions is
given in the course of this paper (Sect. III). Moreover, whereas the quoted Markov
partitions involve only a particular set of subspaces - those which are eigenspaces
of unimodular hyperbolic matrices with integer coefficients - the geometrical
construction of the oblique tiling remains valid for arbitrary orientations of the
pair E,E'.

Another application, to which the present paper aims to contribute more
extensively, deals with the crystallography of quasicrystals. Affine cuts of the
oblique tiling along parallel translates of E yield regular tilings of E; moreover
those tilings are quasίperίodίc in generic situations2. Quasiperiodic tilings provide
tentative templates to describe the order of the atomic constituent in the
quasicrystalline phases of metallic compounds such as AIMn, AlMnSi, AlLiCu,
and others [5,6]. Because of discreteness - a tiling is characterized by a finite
number of prototiles; here, all the prototiles shall be polyhedra - such templates
take into account the finite size of the inter-atomic distances. Moreover, as shown
in a number of models, quasiperiodic ordering satisfactorily fits to the long range
order of such phases. This is established on the basis that the Fourier transform of
the tilings agrees with the diffraction spectra (neglecting effects such as the
enlargement of the spots due to disorder, structural defects, etc.). The diffraction

1 Bedford's proof that he obtains a true tiling seems to rely upon the one-dimensionality of the
contracting subspace (say E') meaning that the complementary E is a splitting (hyper-)plane, a
property which does not hold in general
2 The quasiperiodic tilings constructed in this way are denominated canonical - refering to the
standard unit cube at the heart of the construction - to keep clear that there are many other
quasiperiodic tilings which are neither canonical nor obtained from canonical ones by local
decorations or transformations. In this paper, since we are not concerned with any of these other
tilings, quasiperiodic tilings always means canonical, i.e. cut of an oblique one, unless otherwise
stated (see Sect. VII)
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peaks are contained in a finitely generated module over the integers Z; in cases
involving irrational commensurations, such a spectrum would be a dense subset of
E if there was no sensibility edge in the detector.

Usually, underlying Z-modules in the diffraction as well as Fourier spectra are
considered as characteristic of quasiperiodic ordering. Several algorithms have
been proposed to build quasiperiodic models: the dual grid method [7,8], Janner
and Jansen's section method [9,10], and the strip or projection method [11]; in a
number of cases including the canonical quasiperiodic tilings, these methods are
equivalent (see Sects. IV, V and [12]). The last two methods generate discrete sets
of sites (in crystallographic models, these sites may be atomic sites or the sites of
structural units composed of several atoms). However, questions about the local
order or the inference of the global from the local order often arise in ill-stated
manners due to a lack of direct proofs that the above quoted methods actually
generate true tilings. In the present paper, this problem is solved, we prove that the
strip algorithm leads to an authentic tiling. To do so, in Sect. VI, we show that a
fundamental conjecture underlying the strip algorithm (see e.g. [13] p. 192) holds
true, namely that the strip selects a unique simply connected faceted manifold
which projects onto the tiling. On the other hand, Janner and Jansen's technique
provides the set of the vertices of the tiling in question (Sect. V) because the
periodic set of "vertical" surfaces (or atomic surfaces) entering this algorithm
proves out to be a part of the (n — d)-dimensional boundary of the oblique tiling.

As to the dual grid method, a proof that it yields a tiling was given by de Bruijn
in [14] where he constructs a continuous differentiable function approximating
the tiling and he applies Hadamard's theorem about differentiable maps with non-
vanishing Jacobian3. Our proof, on its side, is immediate and uses only simple
(^-dimensional) geometry and linear algebra. A crucial step consists in building the
/!-dimensional oblique tiling. Then, the quasiperiodic tilings are obtained as plain
affine sections of the oblique one.

This method sheds light on the quasiperiodic ordering of such tilings. A
function is quasiperiodic if it is the affine section (meant here as the restriction to an
affine subspace) of a continuous periodic function defined in higher dimensions.
This property goes back to the pioneering works on quasίperiodicity by Bohr [15]
and Besicovitch [16]. With some care, such a characterization of quasiperiodicity
extends to discrete subsets of E. For example, consider the Zn orbit of a bounded
regular domain K of E1 in R". Then a cut, by £, through this periodic set generates
a discrete set which, by construction, may be thought of as quasiperiodic. This is
Janner and Jansen's description of modulated crystals [17] and Penrose tilings
[9]. The further extension needed to get a whole tiling rather than only a discrete
set - such as the vertices - as a cut through a periodic structure is developed in
Sects. Ill and IV below. Concerning quasicrystals, similar ideas have recently been
presented by P. Kramer in some particular cases [18].

In applications to crystallography, the choice of the embedding dimension n
and of the orientation of E are prescribed by symmetry [11,13]. The resulting

3 According to the equivalence there is between the various techniques [7], one could, in principle,
refer to de Bruijn's proof to set down that the strip method yields a tiling. This way is, however, a
fairly indirect detour
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quasiperiodic tiling will be periodic in the directions spanned by the intersection
EnZn and aperiodic in the complementary ones (in E). The famous Penrose tilings
[19], for example, involve 5-fold rotations, whereas 3-dimensional quasicrystals
involve point symmetries like the icosahedron group, 8 or 12-fold rotations. For
further references on point symmetries in quasicrystals, see Rokhsar et al. [20] and
Cartier [21]. The argument we present, however, does not depend on any
particular point symmetry: only the translations are involved in analysing the
(quasi-)periodic order.

In summary, the basic definitions and notations are collected in Sect. II. The
oblique tiling is constructed in Sect. Ill, devoted to demonstrate that this tiling
tiles R". That generic affme sections of the oblique tiling provide quasiperiodic
tilings of the subspaces E is stated in Sect. IV. What happens for non-generic
sections (such cases are also called singular) is then discussed. In Sect. V is shown
that the J-J section procedure provides the vertices of the quasiperiodic tiling. The
projection method is revisited in Sect. VI: we prove that the strip contains a unique
simply connected faceted surface which projects bijectively onto the tiling. The last
section, Sect. VII, is devoted to some prospective and conclusions.

The Sects. I-IV are of general interest in the theory of tilings, providing the
settings and verifying the basic properties. On the other hand, the Sects. V and VI
are more technical, relating our section algorithm to previously known methods:
we aim to provide a synthetic picture and (new) proofs to some fundamental
conjectures.

II. Definitions and Settings

1. A subset A of R" is regular if it is bounded with non-empty interior Int(^) and
such that its closure Clos(^) coincides with Clos(Int(τ4)) and its interior Int(^4)
equals Int(Clos(,4)). The topology is provided by the euclidean norm

^ :

In this work, the regular sets will be polygons in d — 2, polyhedra in d = 3
dimensions, or polytopes in higher dimensions. The theory is presented in terms of
polytopes to avoid unnecessarily complicated writings but, even if we don't
mention it systematically, many of our assertions remain true for regular sets
which are not polytopes.

2. A partition of a topological space £ is a covering of £ by disjoint sets. If the sets
are regular, we say that the partition is regular. In other words, a regular partition
is a set P of regular subsets of E satisfying:

a) C\os(\JA)=E, (2.1)
\AeP )

b) Int(A)nInt(J3) = 0, V45BeP, A^B. (2.2)

The elements of P are called domains.

3. Let E be a topological vector space. Two subsets A and B of E are congruent
(through the translations) if there is a translation t such that A +1 = B. Congruence
defines an equivalence relation among the domains of any partition P.
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When the number of equivalence classes - the congruence classes modulo
translations - is finite, the partition is a tiling. The corresponding domains are the
tiles and we call the congruence classes prototίles. (As usual, we often use the same
word - prototile - for the congruence class and for any prototype representing this
class.) Thus, if T denotes the translation group, a partition P is a tiling if

c) P/T is finite. (2.3)

4. Throughout the text, E, E' will be a pair of orthogonal complementary
subspaces of R". To the decomposition Rn = Eξ&E' corresponds the pair of
orthogonal projectors π, with range £, and π' = l — π, with range E'\ the
dimensions are dim(E) = d and dim(E') = d'= n — d.

5. {εl5 . . . ,ε j denotes the standard orthonormal basis of the n-dimensional
Euclidean space R". A = Zn is the simple hypercubic lattice of R" generated by
{εl5..., εn}. The canonical fundamental domain for Zn in Rn is the unit hypercube yn

in n dimensions:

{ n )

(2.4)

6. Let p be an integer Orgprgrc and Mp = {I = {iu ...,ip}c{l,...,«}} be the set of
subsets of {1,..., w} with p elements. The p-facets of the unit cube are indexed by Mp

as follows:

yj= lΣ ^eil^eCO, 1]1 for all IEMP and p > 0 ,
) i e l \

(2.5)

If Γ = {1,..., n} \I E Mn __ p is the complement of / e Mp, the unit cube admits the
decomposition4

y»=y/+7/- ( 2 6 )

Moreover, πι is the projector onto the coordinate subspace spanned by
{ε}, = {8^1 el}.

7. The projections L = π(Λ) and L = π'(Λ) of A in E et E' are Z-modules generated
respectively by {eu ...,en} and {e\, ...,e'n}, where e—n^j} and βj = π'(εt). If we set
AE = AnE and AE> = AnE', L and L' are isomorphic to A/AE, and ^ί/^ί£

respectively. When AE reduces to {0}, the orientation of £ with respect to A is said
to be totally irrational or incommensurate. Otherwise, AE and AE> are non-trivial
sublattices of A.

Generically, the orientation is irrational. In this case, the systems {el9 ...,en}
and {e\,...,e'n] are independent on Z (and thus on Q) and A is isomorphic to each
of its projections L and L. Conversely, any non-trivial relation Σ 71^ = 0
(respectively Σ ^ ^O), with nteZ, implies Σ n / ε i e ^ £ ' (respectively ΛE) and
corresponds to an algebraic equation satisfied by π.

•For A and BcR", we write Ά+B for {a + b\aeA, beB)
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8. We shall assume the following property (which is also generic):
Non-degeneracy hypothesis: For any I = {ίu ...Jd} eMd, the system

{e}j = [eiχ,..., eid] is of rankd in E and the system {e'}IC = {e\\i e Γ) is of rankrc — d in
E.

Actually, in our setting where π is orthogonal, the two statements mentioned in
the hypothesis are equivalent; the ranks of {e}j and {e1}^ are simultaneously
maximal or not maximal as shown in

Lemma ILL Let p be an integer O^p^n and let I e Mp. The ranks r of {e]j and r' of
{e'}lc satisfy r' = n — d — pJrr.

Proof If r ^ p is the rank of {e}ι in E, there exist p — r independent linear relations
£ ; L j . £ . = 0, (j=ί,...,p — r). Thus the p — r vectors Σ λj^ (/=1, ...5p —r) are

iel iel

independent in R" and coincide with their projection on E'. Now, for any k e Γ and
any7 = 1, ...,p —r, we have (using the orthogonality of π):

o= Σ hi(*i>ek)= Σ h M ^
iel iel

Thus the system {e'k\k e Γ} is orthogonal to E and to p — r independent vectors
of F ; therefore its rank satisfies r'^n — d — p + r. A symmetric argument implies
r^d-{n-p) + r'. QED

The 3-dimensional rombohedral tilings involve a construction in R 6 where the
orientation of £ (and E') is completely specified by the icosahedral symmetry. The
above condition is satisfied since the projections of the 3-facets of Z 6 are
rhombohedra [11].

III. Oblique Periodic Tilings of Rn

In this section we present the construction of the "oblique" tilings of R" associated
to a pair E, E' of orthogonal complementary subspaces.

When the non-degeneracy hypothesis II.8 is satisfied, the d-facets of A are
isomorphic to their projections on E by π; similarly the d'-facets of A are
isomorphic to their projections on E'.

Definitions III.1. For any subset /C{1, ...,n}, let

ΣVΛe[0,l]j and DH%)
iel J

be the projections of the facet jj on E and E.
Define the rectangular poly tope Δι as

ΔJ = DJ — D'jc = {x — x'\x e Dj, x' E D'jc},

and set AIίξ = AI

J

Γξ, where ξeZn.
We assert:

Theorem III.1. The set <D = {ΔL ξ\I e Md and ξ e Z"} is a periodic tiling of R", the unit

cell of which is the disjoint union of the ( J subcells
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The proof is divided in two propositions: first we prove, by standard
multilinear algebra, that these subcells have a total volume equal to 1 ( = vol(yn))5

and we shall prove, next, that different subcells do not overlap.

Proposition IIL2. For any I = [iu.. .,id} C {1,..., n}, let Vι and V'ιc denote the volumes
of Dj and D\c (so that the volume of ΔI is Vι Vjc). Then

Σ vrv;c=ι. (3.1)
IeMd

Proof Let 8X A ... Aεn denote the wedge product of the basis vectors of R". The
decomposition εf = ef + e\ yields by multilinearity

βj Λ ...A8n = Yjs(I)eIAe'Ic, (3.2)

where s(I) is the signature of the permutation

and

In (3.2), use is made of the fact that the wedge product of k vectors vanishes when
k exceeds their rank.

By definition of the volumes,

eι A e'jc = σI'VI- V{c ει Λ ε/c (3.3)

with σι= ± 1. Using again εt = ei + e\ for /e/ c, we obtain βjAe\c — eιAεIc. By
eι = πjfei) for i e I (in the writings II.6), we obtain

eι A CjC = det(π[/]) εI A ε/c,

π[7] being the minor of π with indices in / x /. Now, since π is a positive symmetric
operator, the partial determinant is non-negative, proving that σI = + 1 . The proof
is achieved by introducing (3.3) into (3.2). QED

Remark. It follows from Lemma II. 1 that, for any I = {iu ...,ΐd}, either VI- F/ cφ0or
^ = ^ = 0.

After the former proposition, showing that the set © = {Aι ξ|7 e Md and ξ e Zn]
is a tiling of R" amounts to check the non-overlapping property (2.2).

Proposition III.3. Let Δ ι ξbe as in Definition IILI. Then, for any I,Je Md and any

", either the interiors of Δ ι and of Δj + ξ are disjoint, or I = J and ζ = 0.

Proof. Let I = {ii9 ...,id}, J = {Ji,...Jd}- Suppose that there is a point a in
Δ1cλ{ΔJ-\-ξ). This means that there exist ?n, ...,λn and μ l 5 ...,μΠ, all in [0,1], such
that :

Projecting on E

ie

and

\

E'

ί

yields

iel
kret

i «i-

- Σ

jeJ jeJ
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where x = π(ξ),

and x' = π{ξ). Define
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ielc jeJc

jeJ

and

v=- Σ V^+ Σ μj'εj-ζ-
ielc jeJc

Since π(w) = 0 and π'(ι;) = 0, we have UEE' and ι;e£; in particular, the scalar
product (w, ϋ) vanishes.

If ξ = (ξi,...,ξB), we get:

+ Σ
kelnJ

0= Σ fe
keI\J

+ Σ
k l J

Σ
keJ\I

Σ
keIcnJc

Σ
keJ\I

(3.4)

Σ
keIcnJc

k + λk-μk).

One easily checks that the conditions 0gλ k , μ k ^ l imply that each term,
considered as a second degree polynomial in ξk, is larger than or equal to 0 as soon
as ξk is an integer. Thus (M, υ) = 0 implies the vanishing of each term of (3.4); now,

- ^ ) = 0 implies ξk = λk or ξ k - μ k ,

) = 0 implies ξk= -λk or ξ k = - μ k 5

) = 0 implies ξk = 0 or ξk = λk-μk= - 1 , 0 or 1,

- ^ ) = O implies ξk = 0 or ξ f c= -λk + μk= - 1 , 0 or 1.

(3.5)

Fig. 1. Construction of the unit cell of the oblique tiling in the n = 2-dimensional case
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An equation of the type ξk = λk means that both ξk and λk are 0 or 1 a similar
analysis applied to the four equations covers all the possible cases. Therefore, in
any case, we conclude that, when it exists, an intersection point a necessarily
belongs to the boundary of one of the two subcells Aι or Aj + ξ, unless £ = 0 and
I = J. QED

Remark. It follows from (3.4-5) that intersection points aeAJC\{ΔJ + ξ), which are
now contact points, exist only when |£ f c | ^ l for all k=l,...,n.

IV. Quasiperiodic Tilings

An immediate property of the oblique tiling is that any section of it along a
subspace parallel to E actually defines a tiling of the subspace. As we argue in this
section this is true for almost all parallel cuts, but a tighter analysis shows that, in a
non-generic set of such cases, the section tiling is only defined with some
ambiguities. Singular sections are briefly studied.

Let E + ί be an affme subspace of Rn; the translation t belongs to W/E which is
identified to E'. Suppose R" is provided with a tiling T; we call an E-sectίon of T the
partition which is induced, on E, by the intersection of E +1 with the π-dimensional
tiles:

((E + t)nT)-t = En(J-t). (4.0)

The singular situations occur when the cutting subspace E +1 intersects the
boundary of a cell of T over a domain with non-empty interior (in E +1). From the
definition of the oblique tiling in Sect. Ill, the boundary, defined by d(D= {dΔI>ξ},
may be split in two parts:

(4.1)

with

d{E)<D = {Dj - dD'IC + ξ\(I, ξ)eMdx Zn}, (4.2)

d(EΊ(D ={dDI-D'IC + ξ\{I,ξ)eMdx Z"}. (4.2')

Since d{EΊ(D is transverse to E, the singular situations correspond to

teT0 = π'{d{E)<D). (4.3)

By the fact that DjCkerπ', the definition of L in II.7, and a change of index in
the union, this singular set may be written as

T0 = L- U 3D',. (4.4)
IeMd

Being a countable union of bounded affine manifolds of codimension 1, the
singular set (4.4) has Lebesgue measure zero in E.

In regular situations, tφπ'(d{E)<D\ the intersection (E + t)nΔhξ is either empty
or equal to Dj + π(ξ) -h t. This, together with the fact that a regular E-section of a
tiling partitions E, leads to the following statement:
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Proposition IV. 1. Any regular E-section of the oblique tiling is a tiling5:

Ψt = En{<D-t). (4.5)

The set of prototiles of the section is the set of projected d-facets D7 = π(y7) for

lEMd' . (d\

The number of prototiles is bounded by I j . In some cases, this number may
be reduced by additional symmetry. If the congruence relation among tiles is
considered not only with respect to pure translations, but also with respect to the
full euclidean group acting on E, including rotations, then the rotational symmetry
may enlarge the congruence classes, and therefore reduce the number of prototiles.
For example, the d = 2 dimensional generalized Penrose tilings are E-sections of a
5-dimensional oblique tiling where the subspace E is spanned by the two following
vectors, written in the canonical basis (ε1, ...,ε5):

v^ =(l,cos2π/5, —cosπ/5, — cosπ/5, cos2π/5),

v2 = (0, sin2π/5, sinπ/5, — sinπ/5, — sin2π/5).

In this case, the prototiles are the two Penrose rhombi.
Similarly, the icosahedral tilings in d = 3 dimensions with two prototiles result

as E-sections of the 6-dimensional oblique tiling, under the condition that E is the
range of the projector given, for ex., on p. 184 of [13].

The identity between these two examples and their respective sections of
oblique tilings will become clear in the next sections where we relate our section
procedure to the previously known methods generating Penrose or icosahedral
tilings.

Comment IVΛ. In general, sections of periodic tilings are partitions with an infinite
number of non-congruent domains. For example, irrational cuts of the simple
hypercubic tiling generated by the Z" orbit of the unit cube yn partition the section
in domains which are all different6. If one wishes to obtain a true tiling in the cut
(with a finite number of prototiles), one may be proceed in two different ways:

i) By letting £ be a lattice subspace then the E-section of any periodic tiling is a
periodic partition of E, therefore a tiling.

ii) If E is not a lattice subspace, what happens in the generic cases and in the
examples involving 5-fold symmetries, we may choose, among all the possible
fundamental cells for the lattice, a special one inducing a tiling in the section.

Alternative b) prevails in the present work. The oblique tiling, in Sect. Ill, has
been constructed in this perspective. The following picture illustrates the situation:

Singular Sections. For singular positions of E -f ί, say t = t0 e Γo, the section is not
properly defined. By hypothesis, the region

W=En{d{E)(D-t0) (4.6)

has a non-empty interior in E but the section fails to prescribe, in an unambiguous
way, how this region ought to be covered. To see this, let us consider a bounded

5 The tiling IP is referred to as the quasipeήodic tiling (see note 2). Of course, quasiperiodicity
doesn't forbid periodicity, a priori
6 The boundaries of this partition constitute a so-called multigrid
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Fige 2. £-sections of the standard cubic tiling (top) and of the oblique tiling (bottom)

region BcE which is large enough to cover a significant part of W(in general, Wh
a discrete union of bounded connected components: suppose that B contains at
least one of these components). Consider, also, the mapping

HBn(O-i), (4.7)

defined in a neighborhood N(t0) of ί0 in E. This application maps points around ί0

into tilings of B in a piecewise constant way. Now, since WnB spreads over facets
lying in the interface of two or more cells Auξ, t0 is a discontinuity point of this
mapping.

Despite its non-genericity, the singular set may be a large subset of R". Indeed,
for an irrationally oriented E, this set is a dense stacking of planes of codimension 1
in E:

Lemma IV.2. Let (D be the oblique tiling of Sect. IIL For J c { l , ...5n} denote by E3

the plane spanned by {e'}J = {e'i\ieJ}. Then

U
\J\=d'-l

(4.ί

Proof Equation (4.4) states that To is contained in the right-hand side of (4.8). To
prove the inclusion in the other direction, note that dD) is the projection of the
boundary of the d'-facet γ]9 which itself is a union of (translated) facets yj9 with
I j \ = d' - 1 - 1 / | - 1 . Now U (L + dDΊ) contains Lj + π\yj) = E'j for all JeMd,_ι {Lj

1

is the lattice generated by {e'}j). By L'-invariance of To, it also contains the L'-orbit
of QED
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V. Relation with Janner-Janssen's Cut Method: The Vertices

The "cut method" was developped by Janssen [9] and others [10] as an alternative
method to build discrete models for quasiperiodic crystals. Its original form was
devised to give structural models of modulated crystals [17].

The standard formulation of the cut method is the following: suppose we are
given an orthogonal decomposition R" = £ © £ ' , where E represents the physical
space and where E' = E1. Let A be a regular bounded subset of E' (the "atomic
surface") and let Γ = {A + ξ\ξ e Z"} = A + Z" denote the set of lattice translates of A.
To any t in E\ there corresponds a structure Xt defined as the intersection
(E + ήnΓ. The pattern Xt is a discrete set of sites since, for any ξ in Z", (E + t)
n(A + ξ) is either empty or reduced to a point.

Remark V.I. It can be required that E + t never intersects the boundary
{dA + ξ\ξeZn} of the atomic surfaces. Such a condition eliminates a set of
translations To = [j (dA + x') which is of Lebesgue measure zero as long as A is

x'eL'

regular in E'. For the remaining generic translations ί, the structure (E + ήnΓ is
independent of A being open or closed.

We now proceed to identify the vertices of the quasiperiodic tiling Ψ with those
obtained by an appropriate cut method.

For any multiplet / in {1, ...,n}, let wI denote the set of 2 | / f vertices of yt given

by:

w 7 = j £ ' - i 4 * i = 0t>r
\iel

Define v, and v', as the projections of w{ on E and E':

υ, = |_Σ V,|A, = 0 or 1J, υ\ = | ^ λ ^ λ , = 0 or 1

The sets y/? Dl9 and D\ are the convex hulls of w/? vl9 and v\ respectively. If |/| g d,
Vj is the set of vertices of D{; similarly, if \I\^d\ υ\ is the set of vertices of Ώ\.

Let t be a generic translation and consider the tiling Ψt defined in Sect. IV.
For any d-multiplet / of {1, ...,n} and ξ in Z" such that E +1 intersects AΣ + ξ,

the tile Dj + x, where x = π(ξ\ belongs to the tiling. The corresponding set of
vertices of this tile, vt + x, is thus given by the intersection of E + t with
(vj — DjC) + ζ actually, for all sev^ s — D'IC is a subset of the boundary of the cell

In other words (and up to a global translation —1\ the set Xt of vertices of the
tiling Ψt is given by the following intersection (see Definition III. 1 and
Proposition IV. 1):

XME + ήnlUKv -D^ + ξ-]}. (5.1)

More generally, the set of ^-facets (0 ̂  q ̂  d) of the quasiperiodic tiling IP̂  is

given by the intersection of E +1 with (J [(F7 — D'IC) + ξ], where F 7 denotes the set

of ^-facets of DP

 Uξ
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Lemma V.I. The union (J [_(vI — D'IC) + ξ'] over all d-multiplets I of {1, ...,n} and all

ξeZn is equal to Lξ

where K = π ;(yj is ί/ι̂  orthogonal projection of the unit cube yn on E.

Proof If ξ = x + x' belongs to Z", then x + Z" = — x' 4- Z" (this is a trivial identity on
the torus). Therefore:

Finally, the identity \J(v'I + D'IC) = K follows from P4, proved in the
appendix. QED 1

This lemma implies that for any generic translation t, the set of vertices (5.1) of
the quasiperiodic tiling is identical to the set of vertices (E + t)n Γ corresponding to
Janner and Janssen's method.

Next, we show that, for a generic translation t, the set of vertices Xt of the
quasiperiodic tiling is the projection of the set

Ξt = {ξ\ξeZn and (E + t)n(-K + ξ) + Φ}, (5.2)

and that the mapping Ξt-+Xt is one to one.
Consider a general structure (E + t)nΓ given by the cut method, where

Γ = Zn + A, and where A is an arbitrary atomic surface. Any vertex x is given by at
least one intersection (E + t)r\(A + ξ) with x = π(ξ). However, when the sublattice
AE, = F π Z " is not reduced to {0}, the atomic surface A 4- ξ associated to x is not
necessarily unique; this situation would occur if there existed ζ + ξ such that A + ξ
and A + ζ had the same intersection with E +1 in such a case, ξ — ζ would belong to
both AE> and A —A. The following lemma shows that this is impossible when
A=-π\yn\

Lemma V.2. In the settings of Sect. II, let K° = π'(y®) denote the projection of the
open unit cube yQ

n onto E. Then AE,n(K° -K°) = {0}.

Proof In the standard basis, the components viofv = ξ — ζ = Yj vfe£ are integers. If v
belongs to K° — K°, there exist reals /Lfe] —1, + 1 [ such that v = Ylλie'i (in the
notations of II); set λ = Σλfb then v = π'(λ) so that v — λ belongs to E. It follows
from the orthogonality of E and E that (v, v — λ) — £ v̂ V; — λt) = 0; since each term
satisfies vf(vf — /l£) ̂  vf — |vt-| ^ 0 we have v ^ — λt) = 0 for all ί, which implies either
v~0 or Vj = yLj-; finally vt = 0 in all cases since |A f |<l. QED

It follows from this lemma that for any generic translation t the set Ξt (5.2) has a
one to one projection on Xt = (E + t)nΓ.

VI. The Strip Method

The "strip" associated to the subspace E and the basis KcE' is the cylinder S
defined by:

(6.1)
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The strip selects points of Z" which are then projected onto E to generate the
following set (we let St = S + t):

Xt = π(StnZn). (6.2)

This set is discrete and quasiperiodic and it coincides with the set obtained
through the J-J section method. To prove this assertion, note that a point ξeZn

belongs to the strip St iff (ξ + £)n(K + f)Φ0. Rewrite this as En(ξ~K-t)ή=φ.
Since the last intersection is precisely {x = π(ξ)} when it is non-empty, we deduce
that

Xt = En(Zn-K-t).

This expression is identical to the one in Sect V [Eq. (5.1) and Lemma V.I].
According to what we said in Sect. V, this proves that the set of vertices of the
quasiperiodic tiling may, as well, be generated by the strip-projection method.

In this section, we shall show more. Not only the vertices correspond to lattice
points, but also the whole tiling is the projection of a continuous faceted surface of
the lattice Zπ. Moreover this faceted surface is the unique one which is contained in
the strip.

The non-degeneracy hypothesis II.8 insures that the tiles Δhξ of the oblique
tiling © are regular polytopes in R". The regular sections Ψt (4.5) are indexed by
[see (4.3-4)]

teE'\T0. (6.3)

There are various ways to characterize the tiles of the quasiperiodic tiling. We
collect them in a theorem which is followed by a description of the underlying
geometry.

Theorem VI.1. Given a d-index IeMd and ξeZn, set ξ = x + x' with x = π(ξ) and
x' = π'(ξ). The following are equivalent:

2°

3°

4°

5° x'eD'jc + t,
6° ξeSj + t, where Sj = E + D'IC,
7° π'(ξ + γj) C K -f ί, where K = π'(yn).
8° ξ + y7 C S +1, with S = E + K.

Proof. 2° => i° and 4° => 3° are trivial.
5° o 6° and 7° o 8° are direct consequences of the definitions.
For any subset ΛcRn and any yeE, we have

(6.4)

Apply this identity to 1° using Definition IΠ.l:

En(ΔItξ-ή= U (En(y-D'IC + ξ-t))

(6.5)
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The right-hand side of (6.5) is non-empty iff En(ξ — D'lc — ί) + 0; this proves
1° o 3°. Equation (6.5) proves 2° <=> 4° as well.

3° <=> 4° follows from the general fact EnAQπ(A).
Project 3° or 4° onto E. They both lead to

which is equivalent to 5°. Thus 3° <=> 5° and 4° <=> 5°.

5° => 7°: By 5°, π'(ξ + yi) = xf+ 0^0^ + 0^ +t = π/(y
jo ^ 5o.yo m e a n s t}ja t χ>_t belongs to the "K-polar" of D\ (which, by

convexity, is also the iC-polar of the set of vertices of D'r). It is shown in the

appendix (P3 and Remark VIII. 1) that K-pol(Z)j) = Z)jC. QED

Corollary VI.1. Let t be a regular shift (6.3) and let Zt be the subset of Md x Z"
consisting of all pairs (/, ξ) satisfying one of the conditions of the theorem. Then the
quasiperiodic tiling is given by

P t = {x + DJ |x = π(ξ) s(/,ξ)eZ ί}. (6.6)

Proof. The proof is simply achieved by writing the definition (4.5) explicitly in terms
of Definition IIT.l and using statements 1° and 2° of the theorem.

Interpretation. Statements 3° and 4° are at the origin of the link between the
vertices of the tiling and the discrete set generated by a J-J section method.
Actually, the distinguished if-boundary of © contains the periodic set Z" — K. All
the details were presented in Sect. V.

Statements 5° to 8° allow to connect the quasiperiodic tiling with the strip or
projection method. The cylinder S appearing in 8° is the strip; the cylinder SΣ is a
substrip of S. Statement 6° means that the set of sites to which are attached the
replicates of a prototile Dι is the projection π{Ξj) of the lattice points sitting in the
strip Sj\

ΞI = Znn{SI + t). (6.7)

The union of the sets Ξι over Md is of course Ξt (5.2).
Since a necessary and sufficient condition for a tile DI to be present at x in (6.6)

is that x' = π'(ξ) satisfies 5°, we name D'IC the domain of existence of the prototile Dj.
As stated above (6.7), D'IC is the basis of the strip generating, through the strip-
projection algorithm, the translations involved in the congruence class
{DI + xePt}.

By 2° of the theorem, every tile x + Dj = π(ξ + y7) is the projection of a d-facet of
the lattice Z". Since both Dj and yt are non-degenerate d-dimensional polyhedra, π
defines a 1 — 1 linear mapping between x + Dj and ξ + yj. On the other hand,
statement 8° asserts that the facet ξ + yt lies in the strip S +1 so that, if we define the
faceted surfaces Fj as the unions of all facets ξ-\-y1 involved in the theorem for fixed
/, and F as (J Fj (thus F is the union of all the facets of Z" with coordinates in Zt of

Corollary VI. 1), then we are guaranteed that FcSt. Moreover, by (6.6) and
statement 8° of the theorem, F contains all the rf-facets of Z" which are included in
St. Therefore F is the unique d-dimensional facetted surface selected by St.

It is clear that F is in 1 — 1 correspondence with the tiling. We state this in:
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Corollary VI.2. π\F:F-+E is a piecewise linear isomorphism.

Proof. That π\ξ + yiis (the restriction of) a 1 — 1 linear mapping from ξ + yI to x -f Dj
has been argued before. That the map π\F is onto is another way of saying that the
tiling (6.6) covers E. The injective nature of π\F is related to the uniqueness of the
facet ξ + yj above x + Dj. This uniqueness is obvious in 2° of theorem, provided the
section is regular (6.3) and (4.3). QED

Remarks VI.1. a) When the orientation of E is irrational, π" 1 (0)nZ" = {0}, a tile
x + Dj is the projection of a unique facet ζ + yjl moreover, the uniqueness holds
throughout the whole lattice 77. Indeed, if ζx and ζ2 are two points of Z" projecting
onto the same vertex z of x + Dl9 then π(ζi—ζ2) = 0 which, by the irrationality
condition, implies ζx = ζ2. The uniqueness for the vertices implies the uniqueness of
the facet.

b) When, on the other hand, there is a nontrivial intersection lattice ΛE> (see
II.7), if x + Dj^πiξ + yj) for some facet of Z", then any facet of the orbit
ΛEf + (ξ + yI) projects onto the same tile x + Dj. Thus, in this case, the uniqueness
only holds within the strip St, in the sense that there is one and only one facet in
Stn(ΛE, + ξ + yj) whose projection is x + D7; the uniqueness within St may be
proved by the argument presented in Remark a) using, moreover, Lemma V.2.

From the tiling of £, we may infer another property for the faceted surface to
which it is isomorphic, namely that F is a simply connected d-dimensional
manifold without boundary.

Corollary VI.3. Let s be the section1 s = (π\F)~ι. Then s is a continuous map E-+W1.

Proof. Since s is linear inside every tile of Pt9 all we have to check is continuity
across the vertices. Let x be a vertex of Pt. Suppose that ξ and ζ are two limit points
of s(x). By definition, ξ and ζeZn and, by 8° of Theorem VI. 1, both ξ and ( belong
to S +1. This implies in particular that π'(ξ — ζ)eK — K. Now π(ξ) — π(ζ) = 0 means
that ξ-ζeΛE,. Therefore, by Lemma V.2 and Remark V.I, ξ-ζ = O. QED

VII. Conclusions

We conclude here by two comments on a more general level in the geometry of
tilings. The first one is related to tilings involving the same tiles as the quasiperiodic
ones discussed in the course of the present article but possibly different long range
order; the second one deals with tilings made of different tiles but characterized by
the same type of quasiperiodic ordering.

Among the basic open questions related to quasiperiodic tilings is the
following: can the global (long range) quasiperiodic ordering be inferred from local
criteria such as the number and shape of the prototiles, matching rules, etc. For the
famous 2-dimensional Penrose tilings, a positive answer was given by de Bruijn in
[7]. There, the local prescriptions consist e.g. in drawing arrows on the sides of the
rhombi and fulfilling a simple set of matching rules; any covering of the plane by
Penrose's rhombi satisfying the rules is quasiperiodic. Another type of local

7 Section is meant here in the topological sense as an inverse of the projection
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prescriptions, albeit related to the previous ones, is to select a restricted number of
incidences among all those which are possible a priori (an incidence around a
vertex x of the tiling is the pattern of all the tiles sharing x as a common vertex).

In this direction, we claim the following: in any tiling built from a "compatible"
non-planar section through the oblique one, the list of incidences is the same as in
the quasiperiodic case. What we mean by compatible is the following - the claim is
proved in the argument below:

A section over £ is a continuous map s: E-+Rn which maps diffeomorphically E
onto σ = s(E). Moreover, a section is compatible with tiling if it satisfies

Φ, (7.1)
where diE)(D is given in (4.2). A compatible section (simply: c-section) crosses the
oblique tiling 0 and thereby selects a simply connected chain of oblique tiles in R";
by projection, such a chain defines a unique tiling of E:

Ύs = π(σn<D). (7.2)

The prototiles are the same as those of the strictly quasiperiodic ones which
were obtained, in Sect. IV, by letting s be s(x) = x-\-t for suitable teE'; but the long
range order may differ from being quasiperiodic when σ is not an affme subspace.
Non-planar sections over E may conveniently describe "perturbed" quasiperiodic
tilings, defects in the ordering, phasons etc., they may, as well, be considered in
trying to understand why and how the quasiperiodicity sets in among the various
possible orderings compatible with a prescribed set of prototiles or, more
generally, local constraints. The above claim means that compatible "undulations"
of the section keep constant the protoset and the incident list. Whether such a list
implies quasiperiodicity, i.e. whether compatible sections are necessary planar (or
homotopic to planar ones) is not yet known.

Argument. To prove the claim, note that the vertices are given by π(σnΓ), where
Γ = Zn — K. Suppose that x is such a vertex. This means that σ cuts ξ — K for some
ξeZnnπ~ί(x); we let y be this intersection point. On the other hand, there is an
affine subspace E -f1 containing y, so that the induced quasiperiodic tiling Ψt (see
Proposition IV. 1) shares, with Ύs given by (7.2), the same vertex x. Now, by
continuity, the incidences around x in Ψt and in T s coincide since, in both cases, the
incidence is the projection of all the oblique tiles having y in their boundary [notice
that y necessarily lies in the open subset (ξ — K)\d{E)<D of ξ — K by hypothesis
(7.1)].

Back to quasiperiodicity, a direct characterization of such an ordering for
tilings without explicitly referring to particular point symmetries or to Fourier
transforms (the Fourier transform of the quasiperiodic tiling is not a measure but a
wilder distribution) consists in viewing quasiperiodic tilings as affine sections of
periodic tilings in higher dimensions. Given a generic affine cut E through a lattice
A imbedded in R", only a special class of periodic ^-dimensional tilings are able to
produce true tilings of E, namely those of the "oblique" type: a tiling is oblique if all
its (proto-)tiles are direct sums of a polyhedron in E and a polyhedron in the
complementary space Έ. In this paper, we have shown how to build such a tiling
starting from Z" and its related standard fundamental cell, the unit cube yn. The
corresponding sections - the "canonical" quasiperiodic tilings - have been
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analysed in detail; the canonical tiles are parallelohedra obtained as projected
facets of the lattice; moreover we have proved that the whole canonical
quasiperiodic tiling itself is the projection of a simply connected faceted surface [of
dimension d = dim(E)] which is the unique faceted surface selected the strip E + yn.

The canonical tilings, albeit representative, are, of course, not the only ones
showing quasiperiodic order. A number of different tilings with different prototiles
and local patterns could be conceived. The long range order is related to the
imbedding lattice A and to the orientation of the subspace E with respect to it, as it
clearly appears, e.g., in the Fourier transforms. However, it is not difficult to build
quasiperiodic tilings showing the same type of (pseudo-)symmetries as a given
canonical one but which do not correspond to decorating, dissecting, or
redistributing the canonical tiles according to a finite number of prescriptions
(modulo translations).

Given an arbitrary quasiperiodic tiling, to find a higher dimensional periodic
tiling producing the given one by section may be a delicate problem: the polyhedra
of E entering the definition of the rectangular tiles are, of course, the prototiles of
the quasiperiodic one; on the other hand, as shown in the canonical example, the
polyhedra in E' would rather be related to the sets of translations involved in the
congruence classes of the tiles.

However, the cut method provides a general method to build quasiperiodic
tilings and models. It insures, ipso facto, that one gets 1: a true tiling, 2: a
quasiperiodic tiling if the section is affine.

VIII. Appendix: Zonohedra

Let £ be a d-dimensional real vector space and assume that aλ, α 2,..., an are n ̂  d
vectors spanning E.

Definition VIII.ί. The zonohedron Z — Z (aua2, ••-,«„) is the set of x = λίaι

+ λ2a2 + ...+λnan, where O^λ^ί for i = l, ...,n.
Let V=V(a1,a2,...,an) denote the set of 2" points x = λιa1 +λ2a2+ ... +λnan

with λt = 0 or 1. V contains the vertices (extremal points) of Z and possibly other
interior points if n>d.

For any subset /C{1, ...,n] define ZI = {Σλiai\λie[0,1] for iel and /Lf = 0 for
ίφl} and let Vι denote the corresponding set of 2 [ / | ponts including the vertices of
Z,.

For any /C{15 ...,n} and any point x of Z} there exists a system of positive

coordinates {μσjσ e^ l 5 the sum of which equals one, such that x— Σ μσ<y*

Example 1. If εuε2, ...,£„ is the standard basis of R", Z(εuε2, ...,£„) is the unit
hypercube of Rn.

Example 2. If ±eu ±e2,..., ±e6 are the vertices of a regular icosahedron in R3,
Z(e1,e2,...,eb) is a triacontahedron, a convex polyhedron with 32 (external)
vertices, 60 edges and 30 identical facets.

Zonohedra satisfy the following properties:

Pi. For any J c {!,...,n}, Zι is a closed bounded convex subset of E.
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P2. For any 7c{l,...,rc} the following holds:

Π (Z-x)= Π (Z-σ).
xeZi σeVi

Proof. The inclusion f] (Z — x)C Π (Z — ̂ ) is obvious.
xeZi σeVi

Suppose I = {ί1,...,ik} and let a be any point of f] (Z — σ). For any σeVj,a
σεVj

belongs to Z — σ so that there exist λσ>l5 ...,Aσ>n in [0,1] such that
β = A σ Λ a x + ... + Λσ?nαn — σ; if x is any point of Z / 5 there exist positive coordinates
{liσ]σevI with s u m equal to 1 such that x = £ μ σ σ ; therefore

« k - ^ thus α e Z - x and finally

ae Π (Z-x).
xeZjr

P3. For any 7c{l,...,n} the following holds:

Π ( Z - σ ) = Z / c , where 7C={1, ...,n}\7.

Proo/ The inclusion f] (Z — σ)^ZIC is obvious. Let us show that
Π (Z~σ)CZ/c.

σeV1

Assume I={i} and let x be any point of Zn(Z -at): there exist λu ...,/LB and
μ1? ...,μw in [0,1] such that x = Σλjaj = Σμjaj — α; ; let αe[0, 1] be such that aλt P4.

- a ) ( ^ - l ) = 0; then

= ax + (l—a)x= X [a/L; + (l — ajμ^ ]^- belongs to Z / c .

Suppose now that 7 = {ί}uJ and assume that the property holds for J. Since

•tfW n <

Remark VIII J. Let K be a subset of £. For any 7?c£, define the X-polar of B as
K-pol(J3) = {teE\B + ίCK} [13]. By the simple identity K-pol(B) = f](K-b\ P2

beB

means that Z-pol(Z/) = Z-pol(F/) and P3 asserts that this polar is Z / c .

P4. Z — Z(aι,a2, .., an) can be viewed as the union off ίi-dimensional zonohedra

Zh conveniently translated by vectors of V, where 7 = {il5 ...Jd} runs over Md;
these zonohedra have non-overlapping interiors (this partition of Z is not unique

iϊn>d). (d-\\
The boundary dZ(au α 2,..., an) consists in 2 )(d— l)-facets correspond-

e d - Λ \ n '

ing to opposite pairs of I )(d — l)-dimensional zonohedra Z(aiί,...,aid_ι),

where {r l 3... ?i d_ 1} runs over all subsets of d—1 indices in {\,...,n}.

Proof The property is obvious for n = d for Z is an hypercube. Let
ϊ 1 , . . . , α π ) = Z ( ί ! l 3 . . . 3 α n _ 1 ) + Z(α, l )

and assume the property holds for n — ί; Z(au ...,an_ί) is tiled by I

translated zonohedra with indices in {l,...,n— 1} and translations in
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F(α 1 ? . . . , α λ J _ 1 ) . The boundary 5Z(α l s . . .,«„_!) of Z(au.,.,an^1) consists in

2 ί ){d — l)-facets like Z(ail,...,aid_ί\ each one occurring in two opposite
\n—ij

positions. The translation of Z(au . . . , α n _ 1 ) by Z(an) results in adding to

ίd-\\
Z{a1,...,an-λ) a "layer" of 1 zonohedra like Z(ah, ...,aid_ι,an)

= Z(aiι, ...,aid_ι) + Z(an), which achieves the proof since I J + I

Acknowledgements. We owe to Pierre Collet our being aware of [4]; it is a pleasure to thank him
for discussions. One of us, CO., thanks the Fonds National Suisse for financial support.

References

1. Adler, R.: Similarity of automorphisms of the torus. Mem. Am. Math. Soc. 98 (1970)
2. Bowen, R.: Ergodic states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes

in Mathematics, Vol. 470. Berlin, Heidelberg, New York: Springer 1975
3. Bowen, R.: Proc. Am. Math. Soc. 71, 130-132 (1978)
4. Bedford, T.: Ergodic Theory Dyn. Syst. 6, 325-333 (1985)
5. Shechtman, D., Blech, I, Gratias, D, Cahn, J.W.: Phys. Rev. Lett. 53, 1951 (1984)
6. Les Houches, Workshop on Aperiodic Crystals, 11-22 March 1986; Michel, L., Gratias, D.

(eds.). J. Phys. Colloque
7. deBruijn, N.G.: Kon. J. Nederl. Akad. Wetensch. Proc. A84, 38-66 (1981)
8. Levine, D., Steinhardt, P.: Phys. Rev. B34, 596 (1986)

Socolar, J., Steinhardt, P., Levine, D.: Phys. Rev. B32, 5547 (1985)
9. Janssen, T.: Acta Crystallogr. A 42, 261 (1986)

10. Bak, P.: Phys. Rev. Lett. 56, 861 (1986)
Frenkel, D., Henley, C, Siggia, E.: Phys. Rev. B34, 3649 (1986)
Socolar, J., Lubensky, T., Steinhardt, P.: Phys. Rev. B34, 3345 (1986)

11. Kalugin, P.A., Kitaev, A.Yu., Levitov, L.C.: JETP Lett. 41, 145 (1985); J. Physique Lett. 46,
L-601 (1985).
Elser, V.: Phys. Rev. Lett. 54, 1730 (1985); Phys. Rev. B32, 4982 (1985)

Duneau, M., Katz, A.
12. Gahler, F., Rhyner, J.
13. Katz, A., Duneau, M.

Phys. Rev. Lett. 54, 2477 (1985)
J. Phys. A 19, 267(1986)
J. Physique 47, 181 (1986)

14. deBruijn, N.G.: Les Houches, Workshop on Aperiodic Crystals, 11-22 March 1986; Michel,
L., Gratias, D. (eds.) (J. Phys. Colloque), p. c3-9

15. Bohr, H.: Fastperiodische Funktionen. Berlin, 1932; and Almost periodic functions. New
York: Chelsea Co. 1951

16. Besicovitch, A.S.: Almost periodic functions. Cambridge: Cambridge University Press 1932
17. de Wolf, P.M., Janssen, T., Janner, A.: Acta Crystallogr. A37, 625 (1981)
18. Kramer, P.: Mod. Phys. Lett. B 1, 7-18 (1987) and Int. Mod. Phys. B1,145-165 (1987) (where

the imbedding dimension is respectively n = 2 and n = 3). Space-group theory for a non-
periodic icosahedral quasilattice, to be published. In: J. Math. Phys. (in this last work, the
proof relies on the particular point symmetry)

19. Penrose, R.: Math. Intell. 2, 32-37 (1979)
20. Rokhsar, D.S., Mermin, N.D., Wright, D.C.: Rudimentary quasicrystallography: the

cosahedral and the decagonal reciprocal lattices. Preprint Nov. 1986
21. Cartier, P.: C.R. Acad. Sci. Paris 304, II, 798 (1987)

Communicated by A. Jaffe

Received December 17, 1987




