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Abstract. Certain generalizations of one of the classical Boussinesq-type
equations,

«» = uxx - (u2 + uxx)xx, (*)

are considered. It is shown that the initial-value problem for this type of equation
is always locally well posed. It is also determined that the special, solitary-wave
solutions of these equations are nonlinearly stable for a range of their phase
speeds. These two facts lead to the conclusion that initial data lying relatively
close to a stable solitary wave evolves into a global solution of these equations.
This contrasts with the results of blow-up obtained recently by Kalantarov
and Ladyzhenskaya for the same type of equation, and casts additional light
upon the results for the original version (*) of this class of equations obtained
via inverse-scattering theory by Deift, Tomei and Trubowitz.

1. Introduction

In the 1870's, Boussinesq derived some model equations for the propagation of
small amplitude, long waves on the surface of water. These equations possess
special, travelling-wave solutions called solitary waves, and Boussinesq's theory
was the first to give a satisfactory, scientific explanation of the phenomenon of
solitary waves discovered by Scott-Russell and reported more than thirty years
earlier. In one of his papers (Boussinesq, 1872) he also proposed what we would
now call a Lyapunov function, which he argued was connected to the stability of
these solitary waves.

The original equation due to Boussinesq is not the only mathematical model
for small-amplitude, planar, long waves on the surface of water. Different choices
of the dependent variables, plus the possibility of modifying lower order terms by
the use of the leading order relationships can lead to a whole range of equations,
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all of which have the same formal validity (cf. Bona and Smith, 1976, for a discussion
of various alternatives). All of these models possess one obvious characteristic,
however, which is that they are perturbations of the linear wave equation that
take account of small effects of nonlinearity and dispersion.

Despite that status of Boussinesq-type equations as the first model for nonlinear,
dispersive wave propagation, the mathematical theory for such equations is not
nearly so complete as is the case for the Korteweg-de Vries-type equations. The
latter equations are similar in scope to the Boussinesq equations, but they are first
order in the temporal variable instead of second order.

Part of the reason for the relative paucity of results concerning Boussinesq-type
equations may be due to the recently discovered fact that the initial-value problem
is not always globally well posed. There exist initial wave and velocity profiles
which are themselves smooth, but for which the solution that emanates from them
loses regularity in finite time, becoming infinite in fact (see Kalantarov and
Ladyzhenskaya, 1978, and Deift et al. 1982).

In the present article, a generalization of one of the Boussinesq-type equations
is considered which arises in the modelling of nonlinear strings, namely

«« - uxx + (f(u) 4- uxx)xx = 0. (1.1a)

With regard to this class of equations, the following program will be pursued.
First, a theory of local existence of smooth solutions for the initial-value problem
for (1.1a) is briefly recounted in which the auxiliary conditions

u(x,0) = uo(x) and ut{x,0) = ul(x) (l.lb)

are specified. Next, properties are presented which allow the inference that local
smooth solutions may be extended uniquely to solutions defined globally in time.
Then, the nonlinear stability of the solitary-wave solutions of these equations is
proved for a certain range of the wave's speed of propagation and pure power
nonlinearities. Finally, local existence coupled with the stability result is shown to
imply the conditions that lead to global existence, at least for initial data that
resembles one of the stable solitary waves.

The plan of the paper is as follows. Section 2 contains an abbreviated description
of the local existence theory for these equations along with the theorem specifying
sufficient conditions for a local solution to be globally continuable. The stability
theory is presented in Sect. 3, following the lines laid down by Grillakis et al.
(1987). These results are combined in Sect. 4 to deduce the aforementioned global
well posedness. A few concluding remarks are to be found in the last Section.

2, Local Existence Theory

The present section features two accomplishments. A theorem asserting the local
well-posedness of the initial-value problem (1.1) is stated and sufficient conditions
are established that ensure the local solution to be continuable to a smooth solution
defined globally in time. The well-posedness theorem is a straightforward conse-
quence of the abstract techniques of Kato (1975, 1983) for quasi-linear evolution
equations, and consequently the proof is omitted. The theorem concerned with
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global existence uses the local theory, a regularizing operator, and energy-type
estimates.

To apply Kato's theory to the initial-value problem (1.1), view the equation in
an equivalent form as a system of equations, namely

(

 Ut = Vχ

 f( u j ΐorxeU. t>09 (2.1a)
υt = (u-uxx-f(u))x\

with

' ° ; J forxeR, (2.1b)

where f:R->R is a C°°-function with /(0) = 0. (The latter normalization is made
without loss of generality since f(u) only appears differentiated.) The particular
form of the nonlinearity is not important for the local theory, though in the next
sections substantial restrictions on / will be imposed.

The notation employed is standard, and may be found explained in detail in
Lions and Magenes (1968). Except for the abbreviation \\g\\s for the Hs(U)-norm
of a function g, the usual norm on some Banach space X of functions will be
denoted \\g\\x.

In discussing the local existence theory it is convenient to introduce another
abbreviation, namely, for T > 0 a finite real number and s an arbitrary Sobolev
index, set

Xs(T) = C(0, T;Hs + 2(M))nC1(0, T;HS(M)). (2.2)

Theorem 1. Let U0EHS + 2{U) and voeHs+1(U) for some s> 1/2. Denote by Y the
product space HS + 2(U) x i ί s + 1([R). Then there exists T > 0 which depends only upon
II (wo> vo) II YJ and unique functions ueX S(T) and veXs-γ(T) which solve the initial-value
problem (2.1). Moreover, the pair (u,v) depends continuously on (uo,vo) in the sense
that the mapping sending (w0, v0) to the associated solution of (2A) is continuous from
Y into the space XS{T) x X^^T).

This theorem follows directly from the general results of Kato (1975, 1983) on
quasi-linear evolution equations. The functional-analytic setting for Kato's theory
consists of a pair of reflexive Banach spaces X and 7, with 7 continuously and
densely imbedded in X. A central role in the theory is played by a Banach-space
isomorphism S of 7 onto X, and the norms on these two spaces are chosen in
such a way that S is an isometry. The theory applies to the abstract, quasi-linear
evolution equation

for 0 < ί, with (2.3)

where φ is a given, initial value. The theory asserts that there exists a positive time
T such that (2.3) possesses a unique solution in C(0, T; 7)nC 1 (0, T X), provided
that certain assumptions are in force.

To apply Kato's theory to the situation envisaged in Theorem 1, take
X = HS(U) x H^^U) with s > ^ , take Y as in the statement of the theorem, let
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S = (I — dl, I — dl) with / connoting the identity operator, let A be the matrix of
differential operators

and take the nonlinear operator F to be

F = F(t,u,υ) = ( ° Y (2.4b)

With this choice of A and F, and writing

(2.3) reduces to (2.1) if φ = {uo,vo), and it is straightforward to verify that the
hypotheses appertaining to Kato's theory are valid.

The consequences of Theorem 1 need interpretation as regards the initial-value
problem (1.1) for the second-order equation. An interesting point arises in this
interpretation. To focus the discussion, a direct consequence of Theorem 1 is stated
in the following corollary.

In the statement of the corollary, the following spaces come naturally to the
fore. Let T be positive and s a Sobolev index as before. Define

(2.5)

Corollary 2. Let u0eHs + 2(U) and υoeHs+1(U), where s>i Then there exists a
T > 0 , depending only upon the norm of (uo,vo)eHs + 2(M) x f/s+1(IR), and a unique
function ueYs(T) which is a solution of Eq. (1.1a) in the distributional sense on
U x [0, T], and for which u( ,0) = uo and wt( ,0) = ί/o. The solution u depends
continuously upon the data (uθ9vQ) in the sense that the mapping that associates to
{uθ9vo) the solution u is continuous from HS + 2(U) x Hs+ί(U) into YS(T). If s > f ,
then the solution is classical, which means that all the derivatives featured in the
equation exist pointwίse and are jointly continuous functions of x and t.

The restriction that the initial velocity ut( , 0) be equal to v'o is mathematically
somewhat unnatural. A more natural presumption is that both u0 and uγ in (1.1b)
be restricted simply as regards smoothness and decay to zero at infinity. A result
similar to that given in Corollary 2 holds good in this case also, as the following
theorem makes clear.

Theorem 3. Let u0eHs + 2(U) and u{eHs(M), where s>l Then there exists T > 0 ,
depending only upon the norm of (wo,u1)G/ίs + 2([R) x H\U\ and a unique function
UEYS(T) which is a solution of Eq. (1.1a) in the distributional sense on U x [0, T],
and for which w( ,0) = wo and ut(-,0) = uί. Moreover, the solution u depends
continuously upon (uo,ux) in the sense that the mapping sending (MOSWI) t0 u *'5

continuous from HS + 2(U) x HS(U) into YS(T). If s > | , then the solution is classical
in that all the derivatives featured in the equation exist pointwise and are jointly
continuous functions of x and t.
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This result may also be proved using Kato's theory, but the details are slightly
different. Write (1.1) as a system in the form (2.3) with

° - ' • (2.9a,

and
/ 0 \

(2.9b)

where U is as in (2.4c) and the initial data φ = (w0,wj. The system (2.9) is formally
equivalent to the initial-value problem (1.1), with no implied restriction on the
initial data.

Take X = HS(U) x HS~2{U\ Y = HS + 2(U) x H\U\ and choose S as before. With
these choices, the hypotheses of Kato's theory are valid, and so the stated con-
clusions hold.

Remarks. Of course, Theorem 3 implies Corollary 2, but Theorem 1 and Theorem
3 appear to be separate results, neither of which implies the other.

The apparently trivial difference in the assumptions on the initial velocity are
not without consequence as regards both the stability theory and the global
existence theory. The stability theory relies upon the Hamiltonian form of the
system (2.1). Indeed, the Hamiltonian functional

H(u, v) = \ \ \Ό\X, t) + u2(x, t) + ul{x, ΐ) - 2F{u(x9 ί))]dx, (2.10)

where F' =/and F(0) = 0, plays a central role in the analysis underlying our proof
of stability. The stability theory, in turn, is crucial for the global existence theory.
it is clear that H will not be finite at the initial instant of time unless the initial
data u1 is the derivative of a square-integrable function. As the in variance of H
under the flow generated by the equation is used in an important way in our proof,
we have thus far not been able to write a stability and global existence theory
based upon the unrestricted problem (1.1) or its equivalent (2.9).

It is worth emphasis that all of these results imply the existence of solutions
of the respective equation or system of equations that are only local in time. Note
especially that in Theorem 1 and Corollary 2, the time of existence T depends only
upon | |u0 \\s + 2 f || v0 \\s+ι, whereas in Theorem 3 the existence time depends upon
llwolL + 2 + II ui II,s ^ a solution emanating from some particular initial data can be
inferred to remain bounded in the appropriate norm, at least over bounded time
intervals, it then follows by repetition of the local existence theorem that this
solution extends to a global solution of the relevant initial-value problem. By the
term "global solution" we mean that if Γ* denotes the maximum temporal interval
of existence of the solution in question, so that for T < T*, the solution lies in the
function class set forth in the relevant theorem on the interval [0, T], then

A question of central interest to the qualitative analysis of an initial-value
problem is whether or not solutions are necessarily global. In the case of the
problem (1.1), the results of Kalantarov and Ladyzhenskaya (1978) show conclusive-
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ly that one cannot expect global solutions just on the basis of smoothness and
decay assumptions. Our next result presents relatively weak a priori conditions
that imply the local solutions obtained in either Theorem 1 or Theorem 3 to be
global.

Theorem 4. Let (w, v) be a local solution of either of the initial-value problems
(2.1) or {2.9) corresponding to initial data (uo,vo) as specified in Theorem 1 or
Theorem 3, respectively. Suppose that there exists a constant Mo such that
||M( , 0 I I I + \\v(',t)\\0^M0for all ίe[0, Γ*), where [0, T*) is the maximal temporal
interval of existence of the solution (u, υ). Then Γ* = -f oc, and the solution is global.

Proof This result is proved in the context of Theorem 1. The proof in the context
of Theorem 3 is very similar. According to the local existence theory as expounded
in Theorem 1, the stated result will follow as soon as it is demonstrated that the
norm of (u, υ) in HS + 2(U) x HS+1(U) remains bounded on the time interval [0, T*).
To prove this, let Sε denote a smoothing operator, say Sε = (I — εdl)'1 for c > 0,
and define U = Sεu, V = Sεv. Then the pair (U, V) satisfies the system

with

where G(U) = Sεf(S~1U). For fixed, positive ε it follows that {U,V)e
Xs + i{T) x χ

s+ i(T) for all T < Γ*. Thus for any r ^ s + 1, the formal calculations
below are justified (indeed, this is why Sε is applied at all).

Define Dr for any r ^ O as the Fourier-multiplication operator whose action
on a function / is given by

EΓf(ξ) = \ξ\'f(ξ). (2.12)

Then Dr is a self-adjoint, linear operator which is a bounded map of HS(U) to
Hs'r(U) for any real s.

Apply cxD
r to the first equation in (2.11a) and multiply by DrUx. After

integration with respect to x, this yields the relation

l~\\DrUx\\2

0 = (D'Ux,D
rVxx). (2.13)

Similarly, apply Dr to the second equation in (2.11a), multiply by DrV, and integrate
with respect to x. Integration by parts, along with the fact that D2 = — d2., leads
to the equation

~ , WV\\l = {DrV,D<υx)-(DrUx,D>Ύxx)-(DΎ,D'δxG(U)). (2.14)
2 at

Adding (2.13) and (2.14), we come to the relation

\jt(\\ DrUx \\2

0 + || DΎ\\2

0) = (D'Ύ, D'UX) - (DΎ, DrvxG(U))

l \ l k l (2.15)
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By the composition of functions inequality (cf. Kato, 1983, Lemma A3),

||DrdxG(U) \\l ζ || G(U) \\2

+ ι = \\ SJ(u) \\2

+, S \\ f(u) \\2

+ 2 g [f(l\ u I)]2 U u \\2

+ x,

(2.16)

where / is a continuous, increasing function that depends only on / and r. Using
this in (2.15) gives the inequality

(2.17)

Integrating (2.17) over the temporal interval [0,ί], letting ε tend to zero, and
using the dominated convergence theorem leads to an upper bound on || Drdxu \\Q -f
\\Drv\\2

0 of the form

τ) ||g + 21| Drυ( , τ) ||g + 2(/(M r))2 || w( , τ) ||r
2

+ J dτ, (2.18)

where, for any real number q, Mq is defined as

Mq{T)= sup {||M( , )t\\q + IIK ,ί)llg-i} (2.19)

By hypothesis, MX(T) ^ M o for all Γ < Γ*. By applying GronwalΓs lemma to
(2.18) and arguing inductively from the bound on M^T), it is easily ascertained
that Mr{T) is uniformly bounded on [0, Γ*) for all r such that uoeHr(U) and
voeHr~ ^U). It follows that )| u{ , ί) ||5 + || u( , i) \\s^1 is uniformly bounded on [0, T*),
and in consequence of our previous remarks, it must be the case that T* = + oo.

As mentioned at the outset, the proof for the system defined in (2.9) is in every
respect similar.

In the next section, it is shown that the a priori estimate hypothesized in
Theorem 4 can be provided for solutions corresponding to initial data that lies
close enough to stable solitary waves.

3. Nonlinear Stability of Solitary Waves

In the special case of pure power nonlinearities, it is shown for a range of wave
speeds that the solitary-wave solutions of (1.1) are stable in form. This means
that a solution emanating from initial data near the solitary wave in question
remains close to the orbit of that wave for as long as it exists.

As mentioned earlier, our proof of stability uses the Hamiltonian structure of
the system (2.1), which we now explain. Let (g,h) lie in HS(U) x HS~1(U), where
5 ^ 1 . Define the Hamiltonian functional H by

H(g9h)= J jr(g(x),h(x))dx, (3.1)

where the Hamiltonian density J^ is

(3.2)
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and F\z) =f(z) with F(0) = 0. It is straightforward to check that the system (2.1)
is formally equivalent to the Hamiltonian system

(3.3)

where β is the skew-adjoint operator

0 dx

A o
Here δG denotes the gradient of the functional G computed with respect to the
L2([R)-inner product. That is, if G is a functional defined on H\U) x L2(R), then
δG has components δuG and δvG belonging to i / " 1 ^ ) x L2([R), which satisfy the
relation

— G(u + εύ, v + εv) (3.5)

for all (ύ9v)eH\R)xL2(U). The brackets <, >s with subscript s refers to the
HS(U) - H'S(U) dual pairing.

The system (2.1) is invariant under translation in x, so that if (u(x, t\ v(x, t)) is
a solution pair, then so is (M(X+ xo,ί),t;(x + xθ 5ί)). This invariance corresponds to
a commuting integral

I(u,v)= ] y{u(x,t\v(x,ή)dx (3.6)
- oo

with density J?~(u, v) = uv. Note that H and / are continuous, smooth functional
on Hι(U) x L2(U).

The solitary wave of speed c, if it exists, is a solution of (2.1) depending only
on ξ = x - cί. Substituting M(X, ί) = Uc(x - ct) = L/C(ξ), ι;(x, ί) = Vc(x - ct) = Vc(ξ)
leads to the system

-cU'c=V'c,

' ( 3 ' 7 )

where ; connotes dξ. This system is recognized as having the variational form

Vc) = 0. (3.8)

The characterization of the solitary wave (Uc, Vc) of speed c as a critical point of
the functional H + cl is crucial to the stability argument.

The proof of nonlinear stability follows from the abstract results of Grillakis,
Shatah, and Strauss (1987). Particular results of this type may be found in Benjamin
(1972), Bona (1975), Bennett etal. (1983), Weinstein (1986), Albert etal. (1987), and
Bona etal. (1987). The basic idea, which goes back to Boussinesq (1877) is to use
the invariant (H -f- cl)(u,v) — (H -f- d)(Uc, Vc) as a Lyapunov function to control
the distance from (M, V) to the orbit oϊ(Uc, Vc). Since δ(H + cl) = 0, when evaluated
at the solitary wave, the second variation or Hessian determines the local behavior
of the aforementioned invariant. For typical solitary-wave problems, this Hessian



Solitary Waves for a Generalized Boussinesq Equation 23

is never positive definite. Translational invariance mentioned earlier implies that
zero will always be an eigenvalue of the Hessian with eigenfunction given by the
x-derivative of the solitary wave (in the present case, (U'c, V[)) Worse yet, solitary
waves generally come in continuous families parametrized by the wave speed,
and waves of different speeds will of course separate. In many cases, this
corresponds to a negative eigenvalue. Alternatively, one may note that if Uc is
even in x (implying U'c is odd) and the equation for the solitary wave reduces to a
Sturm-Liouville problem, then the fact that U'c has a zero implies that it is not
the eigenfunction corresponding to the lowest eigenvalue. The potential difficulties
associated with the lack of positivity of the Hessian are obviated by only asking
for orbital stability, following Benjamin (1972). That is, provided that (u( , 0), v( •, 0))
lies close to a given solitary wave, we shall only attempt to establish that
d((u9v),(UC9 Vc)) is small, for all t for which (u,v) exists, where

^ (3.9)
yeU

(The choice of norm in (3.9) is dictated by the form of the Hessian and varies from
problem to problem.) If (3.9) holds, the solitary wave is said to be stable in form
in H\U) x L2{U).

Grillakis etal (1987, and see also Albert etal. 1987) prove a theorem which,
when interpreted in the present context, yields the following result.

Theorem 5. Assume that (2.1) has a family of solitary waves which belong to
H3(U) x H2(U) as c ranges between c1 and c2 with c->(i7c, Vc)a Cι mapping of the
interval (cuc2) into Hι(U) x L2([R). Moreover suppose that U'c has one simple zero
and decays rapidly to zero at ± oo. Then the solitary wave (Uc, Vc) is stable inform
in H\U) x L2{U) if the condition

?0 (3.10)τ?(c)>0
dc

holds, where

m(c) = (H + cI)(Uc,Vc).

Remarks. The quantity m(c) is called the moment of instability, after a term used
by Boussinesq in his discussion of solitary waves. Condition (3.10) is equivalent
to the condition d/dcI(Uc, Vc) > 0 since (Hr + cΓ)(Uc, Vc) = 0.

Grillakis et al. also prove an abstract instability result, but technical difficulties
associated with the operator β obstruct the direct application of their results to
the case considered here.

The proof of Theorem 5 follows from the sufficiency part of Theorem 2 of
Grillakis, Shatah, and Strauss. In the special case wherein translational symmetry
is featured, their set-up includes a Hubert space X, a continuous Hamiltonian
functional H, and a skew-adjoint, closed linear operator / . Their results assert
the validity of the stability criterion (3.10) if the following three assumptions hold.

Assumption 1. (Existence for the initial value problem) For each UoeX there exists
t0 > 0, depending only on μ, where || U0\\x^ μ, so that the Hamiltonian system
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dU/dt = fH'(U) has a solution defined at least on [0, ί0) such that w(0) = uθ9 and
for which H(U(ή) = H(U0)9 I(U(ή) = I(U0) for ίe[0, ίo).

Assumption 2. (Existence of solitary waves) There exist real numbers c1 and c2

with c1 < c2 and a mapping c-+φc from the open interval (cl9c2) into X such that
for each ce(c1,c2),

(i)

κdx
(ii) φceD( Ύ-ι ) (that is, φ"ceX\ and

(iii) — φcΦ0.
dx

Assumption 3. (Spectrum of the Hessian) For each ce(c1, c2), Lc = (H" + cΓ)(Uc, Vc)
has exactly one negative eigenvalue which is simple, has its kernel spanned by
dxφc and the rest of its spectrum is bounded away from zero.

Thus Theorem 5 will hold if these assumptions hold. For the case under
consideration here, Assumption 1 holds in a slightly modified form as proved in
the previous section. Namely, it was shown to hold in the dense subspace
HS + 2(M) x HS + 1(U) for some s > 1/2 rather than Hι(U) x L2{U). This does not alter
the stability proof if the initial data is restricted to lie in this subspace and the
evolution takes place there as is the case for our examples. The existence of solitary
waves is assumed in Theorem 5 so that Assumption 2 holds.

To verify Assumption 3, compute the Hessian operator Lc by calculating the
associated quadratic form, which is denoted by Qc. By definition, Qc(g9h) is the
coefficient of ε2 in H(UC + εg, Vc + εh) + cI(Uc + sg, Vc + εh\ and so is given by

00

ί {Uβ2 + (gx)
2 + h2) - y(Uc)g2 + cgh} dx

— oo

00

= ί {{([l-c2)g2 + {g')2-f'{Uc)g2) + \{h + cg)2}dx (3.11)

Note that Qc is therefore the sum of a Sturm-Liouville form Q{

c

1} and the
non-negative term ^\\h + cg\\l. From Eqs. (3.7) for the solitary wave (UC,VC) it
follows that g = U'c, h=V'c satisfies Lc(g,h) = O. To see that it is the only
eigenfunction with eigenvalue 0, view the quadratic form Qc(g, h) as the pairing of
(g,h) against (g,h) in the H^U) x L2{U)-H~\U) x L2(U) duality, where (g9Hf is
the unbounded operator

Li =
c 1

2 2

(3.12)

applied to (g, hf. Then lig, hf = 0 implies that h = - eg and £(1 - c2 - δ2 -f'(Uc))g = 0.
The second solution to this ordinary differential equation grows exponentially
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since U'c decays exponentially, hence the kernel of Lc in H\U) x L2(U) is spanned
by(U'C9V'c).

To prove that there is a single, simple, negative eigenvalue, consider Q[l) defined
in (3.11) above. By Sturm-Liouville theory, since U'c has a single, simple zero by
hypothesis, there is precisely one eigenfunction corresponding to an eigenvalue
smaller than zero, say G1. Since β[ 1 } achieves a negative value, so does Qc and
therefore the lowest eigenvalue of Lc is negative. If λλ is the lowest eigenvalue of
Lc, Assumption 3 will hold if it is shown that the next eigenvalue λ2 is 0, which is
known to be simple, and it is shown that λ3 is in fact strictly positive. These results
are proved using the min-max characterization of eigenvalues (Courant and Hubert,
1953, Chap. VI), namely

min

Choose φί = Gli φι = 0 to obtain an estimate from below, namely

The right-hand side of (3.14) is non-negative since on the displayed subspace,
Q^ig) ^ 0 by Sturm-Liouville theory. Thus λ2 = 0 and, from earlier considerations,
λ2 is simple. To estimate λ2 from below by a strictly positive quantity, the same
argument is used with respect to the two dimensional subspace spanned by (G 1 ;0),
(1^,0). This completes the proof of Theorem 5.

To obtain useful information from Theorem 5 one must demonstrate the
existence of solitary waves and compute the moment of instability

m(c) = (H + cI)(Uc,Vc) (3.15)

explicitly (or at least prove m"(c) > 0). In general, this may be non-trivial. For the
special case of pure power nonlinearities, complete answers may be obtained quite
readily.

By a pure power nonlinearity, we mean that f(u) = up for some integer p. In
this case, the solitary-wave solution of (2.1a) is given explicitly by

Uc{ξ) = Asech2lip-1\Bξ\ Vc(ξ)= - cA sech2/(p~ i](Bξ\ (3.16a)

where the positive roots are meant in both cases,

,3,6b,

and ξ = x — ct as before. For this case, Theorem 5 has the following corollary.

Theorem 6. For p > 1, the system

(3-1
vt = ( u - uxx — u p ) x
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has solitary waves (Uc, Vc) given by formulas (3.16) for all speeds c such that c2 < 1.
For p < 5, these solutions are stable in the Hι(U) x L2((R) norm for speeds c such that
(p — l)/4 < c2 < ί. In particular, when p = 2 (the classical case), the solitary wave is
stable for speeds c such that 1/4 < c2 < 1.

Remarks. For general, smooth functions f(u), the stability criterion may be
computed at least implicitly by eliminating Vc and expressing Uc as an implicit
integral using the relation

U2 (U1)2

2^K£F(V) = 0. (3.18)

For f(u) sufficiently close to a pure power, one may also use continuity to decide
the stability of the solitary wave.

Proof The hypotheses of Theorem 5 are verified easily from the explicit form (3.16)
of the solitary wave. The smoothness in c of the family (Uc, Vc) is immediate as is
the rapid decay and the fact that U'c has a simple zero.

Applying the stability criterion gives the condition (p — l)/4 < c2 < 1. This
follows by computing explicitly

30 ί Up+ι *)
m(c) = (H + cI)(Uc9Vc)= f UiUc+m' + V2) c

 +cUcVc\dξ
- x I P ~r I J

- J (Ό'c)
2dξ=-Γ

A~~1Λ
2B ] sech^-^tanh^j/Kv (3.19)

-oo (P ~ 1) - x

for some positive constant Kp. Here the system (3.7) was used to eliminate Vc and
(3.18) was used to simplify the resulting expression in the second line. It is then
simple to check that the second derivative of (1 — c

2 ) ^ + 3)/2(/?-1) j s positive exactly
when c2 >(p — l)/4.

Remark. It is worth noting that the stability theory presented above goes over
intact for non-integer values of p in the range 1 < p < 5, provided that we define
f(μ) = \u\p~1u. Indeed, with only the occasional insertion of absolute values, the
proof proceeds line for line as given above.

While this latter point appears to have little practical interest since nonlinearities
arising in physical and mechanical models feature integer powers of the dependent
variable, it is interesting enough mathematically to warrant a formal statement
which we designate a corollary to the proof of Theorem 5.

Corollary 1, For any real number p > 1, the system

i v 1 ^ (3 2°)

vt = (u-uxx-\u\p~1u)x,
 ]

has solitary-wave solutions (UC,VC) given by formulas (3.16) for all speeds c with
c2 < 1. These solutions are stable in the Hι(U) x L2(U)-norm for all speeds c with
(p~l)/4<c2<L



Solitary Waves for a Generalized Boussinesq Equation 27

4. A Global Existence Theorem

In this section it is shown that if p < 5, and the initial data (uo,vo) lies close enough
to the initial data (Uc, Vc) corresponding to a stable solitary wave, then the local
solution of (2.1), guaranteed by Theorem 1 admits a unique extension to a global
smooth solution. As far as we are aware, this is the only global well-posedness
theorem pertaining to this type of nonlinear string equation.

Here is a precise statement of the result in view.

Theorem 8. Let s jg 1, p < 5, and (p - l)/4 < c2 < 1. Let (Uc, Vc) denote a solitary-
wave solution of(2.1) or, ifp is not an integer, of (3.20) corresponding to these values
ofp and c. Then there exists δ = δ(p,c)>0 such that it (u0, vo)eHs + 2(U) x HS+1(U),
and there is a number θ such that

then the solution (u,v) of (2.1) or (3.20) corresponding to the initial data (uo,vo) is
global and lies in XS(T) x XS-1(T) for all positive T. Moreover, for all T > 0, the
mapping sending (uo,vo) to the solution (u,v) of (2.1) or (3.20) is continuous from
HS + 2(U) x HS+1(U) into XS(T) x X^^T).

Proof. Let T* be the maximal time of existence of the solution (u, v). The goal is
to show that T* = oo, which means that the solution exists for all t > 0. By Theorem
4, it suffices to show that the pair (u,v) remains bounded in HX(U) x L2(U) for all
0 ^ t ^ T < T* with bound independent of T. This is true for all initial values
sufficiently close to a stable solitary wave by Theorem 6. Thus the proof is finished.

In terms of the scalar equation (1.1) this yields

Corollary 9. Let s ^ 1, p < 5, and (p — l)/4 < c2 < 1. Let Uc denote the solitary-wave
solution of (1.1) with f(u) either up,p integer, or \u\p~ιu for p real. Then there exists
aδ = δ(p,c) > 0 such that ifiμo.u^eH^2^) x HS(U), ux = υxfor some veHs+1(U),
and there is a number θ such that

| | « 0 ( ) - Ue( + 0)IIi + IIv( ) + cUc( + 0)\\()<δ,

then the solution of (1.1) corresponding to the initial data (u 0, wx) is global and lies
in YS(T) for all positive T. Moreover, for all T> 0, the mapping sending (wo?wi) t0

the solution u of (1.1) is continuous from the relevant subspace of HS + 2(U) x HS(U)
into YS(T).

5. Conclusion

A local existence theory and a stability theory for solitary waves has been established
for the nonlinear, dispersive string equation (1.1), and for its system analog (2.1).
In the special case wherein the nonlinearity is a pure power, the stability theory
is known to apply, and to imply the existence of global solutions emanating
from data that is close to a stable solitary wave.

The global existence theory is interesting for at least two reasons. First, solutions
of the same equations without the dispersive term (the term — uxxxx in 1 .la) typically
lose regularity in finite time, a fact that becomes clear upon consideration of the
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characteristics associated with the non-dispersive equation. Hence, as with other
nonlinear evolution equations, dispersion is seen to counteract the steepening
effects of unbridled nonlinearity.

However, unlike some nonlinear, dispersive evolution equations, global
existence does not subsist just upon smoothness and decay properties of the initial
data. Thus our theory is especially interesting when considered in juxtaposition
with the blow-up results of Kalantarov and Ladyzhenskaya (1978). These authors
prove that certain solutions of (1.1) (and many other equations) cannot exist for
all time, thus suggesting strongly that something other than straightforward
energy-type estimates are needed to establish global existence. The non-global
solutions of Kalantarov and Ladyzhenskaya occur for negative-energy initial data
which satisfies an additional hypothesis. Our results indicate that something like
their hypotheses are needed to deduce blow-up.

For the special case p = 2, the methods of inverse scattering apply (Zakharov,
1974; Deift et al. 1982). Certain global solutions are then found, including
multi-solitons and a special class of complex-valued solutions (Deift et al 1982).
However, a theory of well-posedness centered around these ideas appears to be
difficult, though the formal inference that the evolution of initial data is carried
in part by a finite number of solitary waves is certainly intriguing. On the basis
of their blow-up results, Kalantarov and Ladyzhenskaya (1978) called into
question the efficacy of the inverse-scattering theory as applied to the nonlinear
string equation. The discovery reported here that some of the solitary-wave
solutions are stable would seem to indicate that if smooth initial data is predicted
by the inverse-scattering theory to resolve itself into solitary waves in the stable
range, then the resulting solution will probably be global and smooth, so that the
calculations made using the inverse-scattering theory will apply to it for all time.

Acknowledgement. The authors want to thank P. Deift for helpful discussions and for simplifying the
argument in the proof of Theorem 5.
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