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Abstract. We consider the Cauchy problem for the two-dimensional vorticity
equation. We show that the solution ω behaves like a constant multiple of the
Gauss kernel having the same total vorticity as time tends to infinity. No
particular structure of initial data ω0 = ω(x, 0) is assumed except the restriction
that the Reynolds number R — ̂ \ωQ\dx/v is small, where v is the kinematic
viscosity. Applying a time-dependent scale transformation, we show a stability
of Burgers' vortex, which physically implies formation of a concentrated vortex.

1. Introduction

This paper studies the large time asymptotic behavior of the vorticity distribution
of two-dimensional viscous incompressible flow. We consider the two-dimensional
vorticity equation

dco
, , (1)

which is known to be equivalent to the Navier-Stokes equations. Here ω = ω(x, t)
and v = (t ^x, ί), υ2(x, t)) represent the scalar vorticity distribution and the velocity

2

field, respectively; v > 0 is the kinematic viscosity and v-V = Σ vjd/dxj. The
j = ι

second equation involving the convolution * is called the Biot-Savart law. Its
explicit form is

υ(x9t)= $K(x-y)ω(y9t)dy9

R2

where K is the vector function

K(xι,x2) = (- x2>*ι)/2π|x|2, x = (x l 9x2).

* Partly supported by Grant-in-Aid for Scientific Research No. B60460042, the Japan Ministry of
Education, Science and Culture



550 Y. Giga and T. Kambe

There is a special solution to (1) called Oseen's vortex [17],

K
*κ > λ

 exP ~~-λ — (/c: real number), (2)
4τιvί Y 4vί J

where K is the strength of the vortex. Since ω^ is a Gauss kernel, ω^κ is regarded
as a solution of (1) with the initial data ω^κ(x,0) = κδ(x), where δ(x) is Dirac's
delta function.

The main goal of this paper is to show that even if we start with a general initial
vorticity distribution ω0, the solution ω of (1) behaves like the above special
solution ω^κ as ί^ oo with the total vorticity κ = $ω0dx, provided that the
Reynolds number R = $\ω0\dx/v is sufficiently small. In fact, we prove

\\ω-ω*κ\\p(t)^C(vtΓ1 + llp-δ ί>0, I g p g o o , (3)

for 0 < δ < 1/2, provided that R is sufficiently small and that J |ω 0 | ( |x | 2 + l)dx is
finite where C is a constant independent of t and v; \\-\\p denotes the ZΛnorm in
space variables. Since \\o)*K\\p(t) = Cpκ(vt)~1 + llp, (Cp: constant depending only
on p\ our estimate (3) gives an asymptotic expression of ω as t -» αo. No particular
structure of initial vorticity ω0 is assumed.

As an application of (3) we show a stability of Burgers' vortex [5], which
physically implies formation of a concentrated vortex. We consider a three-
dimensional viscous incompressible flow expressed as a superposition of two
flows — an axisymmetric irrotational flow and a two-dimensional flow the vorticity
of which directs to the symmetry axis. The axisymmetric flow is assumed to have
an inward convection and axially stretching flow which is an incompressible flow
with constant rate of strain. We show that the vorticity field tends to its equilibrium
state called Burgers' vortex as the time tends to infinity, provided that the Reynolds
number R of the rotational part is sufficiently small. In fact the three-dimensional
vorticity equations can be transformed to (1) by a time-dependent scale trans-
formation due to Kambe [11, 13] and Lundgren [16]. Such an asymptotic behavior
is shown by Kambe [12] assuming that initial vorticity is axially symmetric, but
for arbitrary R since the governing equation (1) is reduced to the heat equation.
Our results extend this because no particular structure of initial vorticity is assumed.
Although we are forced to assume that R is small, we do not restrict the speed of
the axisymmetric irrotational flow.

To prove (3) we study the integral form of (1):

- evtΔω0 + B(ω, ω), B(ω, ω) - - \ev(t~s}Δ(v V)ω(s)ds, (4)
o

where U = evtΔω0 solves the heat equation dtU — vΔU = 0 with l/(x,0) = ω0 and
ω(ί) = ω( ,ί) Unfortunately, the term B(ω,ω) cannot be regarded as a minor
term as ί-> oo, unless we use the special structure of B. Since ω^κ defined in (2)
is radially symmetric, as is easily seen ω^κ solves (1) with (v V)ω = 0. This implies
B(ω^κ,ω^κ) = Q. Applying this property to (4) we rewrite the equation for the
difference w = ω — ω^κ to obtain

w = W+ £(w, vv) + B(w,co^K) + ̂ (ω^, w), W=evtΔω0 - ω*κ. (5)
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We estimate the right-hand side of (5). Based on the decay estimate

\\ω\\p(t)£CRΓί + 1tp (6)

obtained by Giga, Miyakawa and Osada [8], one can regard B's in (5) as
perturbation terms provided that R is sufficiently small. Thus the estimate for w
in (5) is reduced to the estimate for W which is easy to derive. As is seen above,
our result (3) heavily depends on the particular structure of the nonlinear term in (1)
and the estimate (6).

It turns out that the estimate (3) is still valid even if we allow to choose a finite
Radon measure as initial vorticity rather than integrable functions. Since ω(x, ί)
is regularized instantaneously, this is not a substantial improvement of the results.
However, all estimates are parallel and there appears to be no extra difficulty. So
we rather start with a finite Radon measure because the initial value of ω^ is
κδ(x\ which is a typical example of a finite Radon measure but not an integrable
function. We note that vortex sheets of finite length is another example of finite
Radon measures.

There are many works on the large time behavior of solutions of the
Navier-Stokes equations on Rn (cf. [2, 10, 14, 18,20-22]). However, when n = 2 it
is usually assumed that initial velocity υ0 = K*ω0 is in L2(U2\ in other words
the initial total energy is finite. Our assumption does not imply t;0εL2(IR2) even
if we assume ω0EL1(IR2). So our situation is not included in those treated in the
literature. In our setting even the existence of the solution of (1) is recently proved
in [8] with a decay estimate (6). The decay results in the literature is mostly not
for the vorticity but the velocity, especially its L2-norm. For more detailed
comparison with the literature, see Remark 4.4.

We study in Sect. 2 the asymptotic behavior of the solutions of the heat equation
so that we estimate the decay of W in (5). In Sect. 3 we recall the estimate (6) and
prepare estimates for B. In Sect. 4 we state our main results including (3), which
are proved in Sect. 5. The final section is devoted to an application of our results
in Sect. 3, which is mentioned in the third paragraph of the Introduction.

2. The Heat Equation

The goal of this section is to prepare various estimates for the solution of the heat
equation as time t tends to infinity. We are especially concerned with estimates
for the second term in the asymptotic expansion of the solution as ί-> oo.

Let G be the Gauss kernel on IR" defined by

t>0.

As is well known the function

l/(x, ί) = J G(x - y, t)a(y)dy( =G*a)
u"

solves the heat equation

dtU-ΔU = 0 for ί>0
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with
LΓ(x,0)= lim t/(x,t) = α(x).

f-> + 0

The meaning of the convergence of U(x, t) as t -> + 0 depends on a class of func-
tions a. We shall write U by eMα. The semigroup etΔ is used only for the con-
venience of notation; we shall not use the abstract theory of semigroups in this

paper.
We collect various estimates for G(= etΔδ) and etΔa. A direct calculation shows

(2. la)

H^.GL-c r^-1/2, dj = d/dxj9 (lib)
where Cr and Cr are constants depending only on n and r. When r = GO, (2.la)
and (lib) still hold if we regard || /1|«, as the supremum of | /1 on Un and σ(co) = n/2.
Applying the Young inequality.

II/*011^ I I / I I I 0 1 1 , (2.2)
for l/p = l/r + 1/q - 1, 1 ̂  p, g, r ̂  oo with f=G,g = a,wG see (2.la, b) yields

|| £Mα ||p ̂  CΓ(n/q'n/p)l2 II a \\q, t > 0, 1 ̂  4 ̂  p ̂  oo, (2.3a)

Hfy^αll, ^ cr(n/q-n/p}/2-112 \\a\\q, t > 0, 1 ̂  9 ̂  p ̂  oo, (13b)

where C = max(suprCr,suprC;) depends only on n. This gives a decay estimate
for etΛa as ί ̂  oo, provided α is in Lq(Rn). In particular, (2.3a) yields

Hβ t Δ f l l l p ^Cr σ ( p ) ] lβ l l ι ί>0, l ^ o ^ o o . (2.4)

This estimate extends to a finite Radon measure a on [R". A finite Radon measure
μ is a Schwartz distribution which is a bounded linear functional on the Banach
space BC(Un) of bounded continuous functions on Rn. The space of finite Radon
measures on Rn denotes M(R"). The norm of μ in M((R") is called the total variation
of μ denoted by || μ || i Its explicit definition is

= SUp
φeBC(R")

f φ(x)μ(dx]

where \φ(x)μ(dx) denotes the canonical duality pairing. The estimate (2.4) holds
for αeM(R") if we regard \\a\\! as the total variation of a. In fact, (2.2) is valid for
a Radon measure g by setting q=l and p = r.

We next approximate etΔa by ocG with α = Jα(x)dx for large ί. Formally,

(eMα)(x) = J G(x - y, t)a(y)dy = G(x) f exp

= αG + 0(t ~ "/2 ' ̂  as ί -̂  oo (pointwise),

since exp ((2x y - y2)/4t) =l+(2χ-y- y2)/4t + - . We give a rigorous meaning for
this approximation. Since we are interested in uniform estimates in x, we lose ί~1/2

in estimating the error term.
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Lemma 2.1. Assume that 1 ̂  p g oo and that a is a finite Radon measure on Un.
Let α = J α(rfx). T/2£7i

w/zere σ(p) = n(l — ί/p)/2 and C depends only on n. In particular,

\\etΔa-ocG\\p^Ct~σ(p}~1/2\\(\x\2-\- \}a\\l for t > 0. (2.6)

Proof. The idea of the proof is standard. Estimates similar to those used in the
proof often appear in constructing the fundamental solutions of parabolic equations
(see eg. [6,15]). However, since the proof is short we give it here for completeness.
We write the proof pretending that the measure has the density, i.e., 0eL1(IR'1) only
to use a standard calculus notation. The proof is the same for general αeM((R/ί)
if we modify notation by replacing a(y)dy, \a(y)\dy by a(dy\ \a\(dy\ respectively,
since all functions appearing below are continuous in each variable for t > 0.

Since $Gdx = 1 we see

etΔa — αG = J/ί(x, y, f)a(y)dy
with

where the integration is over Rn. By the mean value theorem we have

\x\2

:,j,,ί)= exp ' '•" -1 exp -l-
V 4ί / J V ^ /

— exp( ), (2.7)
4ί \ 4ί /

where C is a number between zero and 2χ y — \y\2. If 2χ-y — \y\2 Ξ>0, then
ζ ^ 2x-y — \y\2, which yields

Applying this to (2.7) gives

4t

Since Aβ = sup z > 0zexp(— βz2/4) < oo for β > 0, we see

4t

We take β such that 0 < β < 1, and fix β to obtain

, 7 =

provided 2χ y — \y\2 ^ 0. If 2χ y — \y\2 < 0, we see ζ < 0. This time (2.7) yields

4ί
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As before we obtain

(2.9)

provided 2x-y — \y\2 < 0.
The estimates (2.8) and (2.9) yield

G(x9γt) $k\a\dy).

Applying (2.4) and (2. la) gives

with C depending only on n. This is the same as (2.5), since fe ̂  C ( \ y \ / t 1 / 2 + \y\2/t).
The estimate (2.6) for ί ̂  1 follows from (2.5). Since |α| ̂  H α ^ , the estimate (2.6)
for t ̂  1 follows from (2. la) and (2.3a) with t ̂  1. We thus obtain (2.6). Π

3. The Two-Dimensional Vorticity Equation

The first part of this section reviews the existence of solutions to the two-
dimensional vorticity equation with measures as initial vorticity. We also recall
decay estimates for the vorticity as time tends to infinity.

The second part is devoted to the study of properties of the nonlinear term in
the vorticity equation which is useful in the sequel.

Existence results mentioned above are not classical because the initial velocity
may not be locally square summable even if initial vorticity is in LV(U2). The first
attack is done by Benfatto, Esposito and Pulvirenti [3], where they prove the
global existence for small initial vorticity consisting of a linear combination of
(5-functions supported at a point of the plane. Recently, Miyakawa, Osada and
the first author [8] improve their results. Without the smallness assumption they
[8] constructed a global solution even if initial vorticity is a finite Radon measure,
and also give decay estimates for the vorticity as time tends to infinity.

We consider the two-dimensional vorticity equation:

ω f-4ω + (t; V)ω = 0, (3.1)

ϋ = K*ω, (3.2)

where K is the vector function

K(xί9x2) = (-x29x1)/2π\x\2

9 x = (xι,x2);

we shall always assume the space dimension n — 2. Here the vorticity ω = ω(x, ί)
is scalar since n = 2. The convolution operator K * improves differentiability of
order one. Another expression of this regularizing property of K* is

\ \ K * f \ \ P ^ C \ \ f \ \ q l / q = l / p + l/29 \<q<2, (3.3)

obtained by the Hardy-Littlewood-Sobolev inequality (see e.g. [19, p. 28]), where
\\f\\q denotes the norm of/ in Lq(U2) and C depends only on q. We consider (3.1)
and (3.2) with initial condition

ω(x, 0) = lim ω(x, £) = ω0(x). (3.4)
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If ω0 is a finite Radon measure on ίR2, i.e., ω0eM([R2), the convergence should
be understood under the weak topology of measures, that is,

lim J φ(x)ω(x, t)dx = J φ(x)ω0(dx)

for every bounded continuous functions φ on [R2. We write ω(x,t)dx rather than
ω(dx, t) because the solution ω we handle is smooth for t > 0.

Proposition 3.1. Suppose that ω0eM([R2), i.e. ω0 is a Radon measure on R2 such
that the total variation \\CUQ\\I is finite. There is a global solution of (3.1), (3.2) and
(3.4) such that

ί>0, 1^4^00, (3.5)

ί>0, 2<p^oo, (3.6)

sup | |Vk^ω||0 0(τ)<oo, k,h = 0, 1,2,.. . ί>0 (3.7)
t^τ^T

ί>0 (3.8)

with C = C(m\ C = C'(m,p)for \\ ω0 || 1 ̂  m. The estimate (3.7) in particular implies
that ω is smooth for t > 0.

Proof. This is essentially a combination of Theorems 4.2 and 4.3 in [8] with initial
velocity u0 = K*ω0. In fact, Theorem 4.2 in [8] asserts that there is a smooth
solution u(x, t) for t > 0 to the Navier-Stokes system:

ut-Δu + (u V)u + Vp = 0, V M = 0

with initial velocity MO and initial vorticity ω0. Taking V x of the first equation
shows that ω = V x u with t; = u solves (3.1) for t > 0. Since Theorem 4.2 (4.1) in
[8] implies \\u\\r(t)<co for ί>0, r>2, applying Lemma 2.2(ii) in [8], we see
ω = V x u solves (3.2) with v = u. We thus conclude that ω = V x M, i; = w solves
(3.1)-(3.2) for ί > 0, where u is in Theorem 4.2 [8].

The initial condition (3.4) is contained in Theorem 4.2(ii) of [8]. The estimate
(3.5) is the same as (4.7) of Theorem 4.3 in [8]. This together with (3.3) yields (3.6).
The estimate (3.7) immediately follows from Theorem 4.2(iv) in [8]. Theorem 4.3
in [8] also gives a representation for ω,

with Γ(x, t,y,s) > 0 and j Γ(x, t,y,s)dx = 1, where the integration is over IR2. This
yields the conservation of the vorticity (3.8). (We note that the representation for
ω together with estimates for Γ yields (3.5).)

Remark 3.2. If the point vortex part of initial measure ω0 is small we have the
uniqueness of solution in a certain class of functions [8]. In particular, if H ω o l l j
is small or ω0 contains no point vortices, one can claim the uniqueness with
additional conditions (cf. Theorem 4.5 in [8]). For general initial data in M([R2)
we do not know what conditions guarantee the uniqueness of solutions. However,
since our ω in Proposition 3.1 has as physically reasonable properties as (3.8), by
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a solution of the vorticity equation, we shall always mean ω(x, ί) in Proposition 3.1.
It is convenient to write Eqs. (3.1), (3.2) and (3.4) in its integral form. Formally

the system (3.1), (3.2), (3.4) is equivalent to

ω(t) = etΔω0 + B(ω, ω), (3.9)

t

B(ω, ω) = \bt(ω, ω)(s)ds,
o

bt(ωl9ω2)(s)=-V e«-*Δ(vlω2)(s), v,=K^,

= - Σ 3/'-s)M(s)ω2(s), (3.10)
j=ι

since V t; = 0 implies V (vω) = (vV)ω, and since V commutes with etΔ. Here etΔ

is the solution operator of the heat equation defined in Sect. 2, i.e., etΔf = G*f,
and ω(ί) = ω( , ί).

Proposition 3.3. Suppose that ω(x, t) is a solution of the vorticity equation, where
ω(x,0) = ω0eM((R2). Then ||ft ί(ω,ω)||1(s) is integrable on (0, ί), where bt is defined
in (3.10). Moreover ω(t) = ω( ,t) solves the integral equation (3.9).

Proof. Applying (2.1b) yields

KbtfaωKsn^CV-sΓ112 \\vco\\!.

The estimates (3.5) and (3.6) now show that ||bί(ω,ω)(s)||1 is integrable on (0, ί).
It remains to prove that ω solves (3.9). By (3.7) a classical uniqueness theorem

of solutions of the heat equation [6] shows that

ω(t) = e(t~ε)Δω(ε) + \bt(ω9ω)(s)ds (3.11)
ε

for ε > 0. We shall show that for t > 0,

e(t~ε}Δω(ε)^etΔω0 weakly in M([R2) as e-»0, i.e.

lim((/>, e(t~ε}Δω(ε)) = (φ, etΔω0) (3.12)
ε->0

for every bounded continuous function φ, where (φ, ψ) = §φψdx. We have

(e«-*Λω(8) - etΔω0, φ) = ((e«-*Δ- etΔ)ω(ε), φ) + (etΔ(ω(ε) - ω0), φ)

= (*«-«> Vε),(/ - eεΔ)φ) + (ω(β) - ωθ9e
tΔφ) = !,+ I2.

Using (2.4) and (3.5), the first term is estimated as

Since eεΔφ-*φ uniformly as ε -» 0, 1{ -> 0 as ε -+ 0. Since ω(ε) -> ω0 weakly in M(R2)
as ε-*0, we see /2->0 as ε->0. We thus obtain (3.12). Since H^^ω^)^)!^ is
integrable on (0,ί), (3.12) now yields (3.9) by letting ε-»0 in (3.11). Π

The remaining part of this section is devoted to the study of B defined in (3.10).

Lemma 3.4. Let bt and B be the bilinear forms defined in (3.10). Then (K*f-V)g = 0,
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so bt(f, g) = Q cmά B(f, g) = 0, provided that f and g are radially symmetric, where
K = (-x29xl)/2π\xl2.

Proof. This is elementary and well known. If / is radial, the derivative (X*/ V)
contains only the angular derivative. If g is also radial, this implies (K*f-V)g = 0.
We thus conclude bt(f, #) = 0 so B(f, 0) = 0. Π

The second property of B we need is the estimate for B. As we see later, it is
convenient to divide the integral in B into two parts — the region where 5 is close
to t and 5 is close to zero. We write

ί/2

Bί(wί,w2)(t) = J bt(wί9w2)(τ)dτ,
o

B2(w!,w2)(ί)= f bt(w^w2)(τ)dτ (3.13)
t/2

with
frf(w l9w2)(τ)= -V ^-^w.Xτ), ι; 1=A:*w 1,

so that
B(w1,w2) = β1(w1,w2) + β2(w1,w2).

To simplify notation, for a function / on [R2 x (0, Γ) we encode the decay in t in
norms:

C/V =

[/W =

For example \_f]pT ^ 1 for all T is equivalent to || / ||p(ί) ̂  1/ί1 ~ 1/p for all ί > 0.
We estimate the decay rate of B by using the decay rate of each variable in B.

Lemma 3.5. Suppose that l ^ s ^ p ^ o o , 1 <q<2, δ^O and 1 ̂  r ̂  oo with
1/s = l/q + 1/r — 1/2. There is a positive constant C depending only on p, q, r and δ
such that

]/.Γ, [wĵ ^]^), (3.15)

with δ < 1/5 - 1/2 and that

[52(w1,w2)];7δΓ^Cmin([w1]^Γ[w2]rT,[w1],Γ[w2]rδΓ), (3.16)

wiί/i l/s< 1/2+ 1/p. Here w t and w2 are functions on R2 x (0, T); J5t αnrf 52 are
defined by (3.13).

Proof. Since v1 = K*w 1 ? we have by (3.3),

IKII^CJwJ, l/θ=l/q-l/29 Kq<2.

Using Holder's inequality, we have

Applying (2.3b) now yields

- - 1 / 2 - 1 ' s + 1 " 1 w 2 L ( τ ) , p^s^l
~σ(q}~σ(r}~ό ( '
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with M = [w1]^Γ[w2]rΓ or [w1]gΓ[w2]l.5Γ, where C,- is a constant depending only
on p, q and r and σ(q) = 1 — 1/g. The restrictions on exponents p, q, r we use so far
are

1^5^/?^oo, l < g < 2 , l ^ r ^ o o with 1/5 - l/q + 1/r- 1/2. (3.18)

Since we see

rj(ί-τΓατ-^τ = c(α,β)rα^ + 1 for /? < 1
o

(c(α,jβ): constant independent of ί)

by setting τ = if, the estimate (3.17) now yields

ll^iίw^w^ll^^jll^w^w^ll^τ^τ^C^r^-^ t > 0, (3.19)

provided that

σ(q) + σ(r) + (5 < 1,

which is equivalent to
δ<l/s-1/2. (3.20)

The estimate (3.19) yields (3.15) under the restrictions (3.18) and (3.20).
It remains to prove (3.16). Since, as before,

J(ί-τ)"βτ- / ϊdτ = c/(α,j8)ί-α-/ϊ + 1 for α < l ,
ί/2

the estimate (3.17) now yields

l|£2(w1?w2)||,(O^C5Mrσ(^ ί>0, (3.21)

provided that
l / 2 + l / 5 - l / p < l ,

which is equivalent to

1/5 < 1/2 + 1//7. (3.22)

The estimate (3.21) yields (3.16) under (3.18) and (3.22) which completes the proof.

4. Large Time Asymptotics of the Vorticity

This section states our main results on the large time behavior of solutions of the
vorticity equation.

Let ω0 be a finite Radon measure on [R2, i.e. ω0eM([R2). We denote the total
vorticity (at time zero) by

κ= Jω0(dx). (4.1)
R2

We define the Reynolds number (at time zero) by

Λ = v- 1 | |ω 0 | (dx)=| |ω 0 | | 1 /v, (4.2)
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where v > 0 is the kinematic viscosity which is assumed one in (3.1). The function

(4.3),
4πvί

is a solution of the heat equation

ωt — vΔω = 0

with ω(x, 0) = κδ(x). Since ω^κ is radially symmetric, Lemma 3.4 implies that
(VχK'V)cύχκ = 0, where ι;5jίκ = K*ω*κ. We thus see ω^κ solves the vorticity equation
with v > 0,

ωt-vΔω + (v V)ω - 0, (4.4)

v = K*ω (4.5)

with initial data κδ(x)eM(U2). To avoid later confusion by a solution of the vorticity
equation with v we shall always mean a solution of (4.4)-(4.5) with (3.4) which
satisfies (3.5)-(3.8) with ω(x,0) = ω0eM((R2). Since one can reduce (4.4)-(4.5) to
(3.1)-(3.2) by a normalization, Proposition 3.1 guarantees the existence of such a
solution for ω(x,0) = ω0eM([R2). For a solution ω, (3.8) implies that the total
vorticity is conserved for all time, namely

κ= J ω(x,ί)dx, t ^0,
u2

where K is defined in (4.1). This says that the total vorticity is defined independent
of time.

We claim that a solution ω of the vorticity equation with v behaves like ω%κ

with the same total vorticity K provided the Reynolds number R is small no matter
what the initial vorticity ω0eM([R2) is.

Theorem 4.1. Suppose that the kinematic viscosity v equals 1 and that ω(x, ί) is a
solution of the vorticity equation for ω(x,0) = ω0eM([R2). For every δ, 0 < δ < 1/2,
there is ε > 0 depending only on δ such that if the Reynolds number R in (4.2) is
smaller than ε, then

, (4.6a)
p-δ, t > 0, l ^ p ^ o o (4.6b)

with a universal constant C and N = | |( |x|2 + I J ω o H u where K is the total vorticity
of ω and ω^κ is defined in (4.3).

We postpone to prove this theorem in the next section. Admitting Theorem
4.1, we derive various results. First, we observe that Theorem 4.1 gives the large
time behavior of a solution ω(x, t) of the vorticity equation with v > 0 just by a
normalization. In fact ώ(x, t) = v'1ω(x,t/v) is a solution of the vorticity equation
with v = 1, where ώ(x, 0) = v~1ω(x, 0). Using this relation one can rewrite Theorem
4.1 for general v >0.

Theorem 4.2. Suppose that ω(x, t) is a solution of the vorticity equation with v > 0
for ω(x,0) = ω0eM([R2). For every δ, 0 < δ < 1/2, there is ε > 0 depending only on
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δ such that R<ε implies

\\ω-ω*κ\p(t)^CN(tvΓ1 + 1/p-δ, (4.7a)

|| ω - evtΔω0 \\p(t) ^ CN^v)'1 + 1/p~δ, t > 0, 1 ̂  p ̂  oo, (4.7b)

with a universal constant C and N = | |( |x | 2 + I)ω0 1 | 1 ? where K is the total vortίcity
of ω and ω#ιc is defined in (4.3).

Since \\ω^κ\\p(t) = Cpκ(tv)~1 + ί/p by (2. la), Theorems 4.1 and 4.2 give an
asymptotic expression of a solution as ί-> oo. We at least observe that ω^κ is the
main term in the asymptotics as ί -> oo and that the solution of the linear equation
mainly describes the behavior as ί-> oo. We now discuss an asymptotic expansion
of the velocity v = K*ω corresponding to (4.7a), (4.7b).

Theorem 4.3. Suppose that ω(x, t) is a solution of the vorticity equation with v > 0
for cφc,0) = ω0eM([R2). For every δ, 0 < δ < 1/2 there is ε > 0 depending only on
δ such that R<ε implies

\\Vv- Vv*κ\\q(t)^C'N(tvΓ1 + ί/q-δ, Λ Γ = | l ( W 2 + l)ω 0 | l ι , (4.8a)

|| Vv - Vevt\ ||, (ί) ̂  C'N(tv)~ ' + 1/q~δ, (4.8b)

\\v-VtK\\r(t)^C"N(tvΓ1/2 + 1/r~ό, (4.9a)

\\v - evtΔv0 \\r(t) ^ C"N(tvΓ1/2 + 1/r~δ t > 0, (4.9b)

with C depending only on q, 1 < q < oo and C" depending only on r, 2 < r ̂  oo,
where v^κ = K*ω^κ and v0 = K*ω0.

Proof. Since VK is the Calderon-Zygmund kernel, we have

by applying the Calderon-Zygmund inequality [9, Chap. 9]. The estimate (4.7a, b)
now yields (4.8a, b). Estimate (4.9a,b) for 2 < r < oo follows directly from (4.7a,b)
and (3.3).

It remains to prove (4.9a,b) for r = o o . Applying the Gagliardo-Nirenberg
inequality (see e.g. [7, p. 24]) || g \\ ^ ̂  C \\ g \\l

p~
2lp \\ Vg \\2

p

/p for p > 2 to g = v - v*κ

or v- evtΔv0, we see (4.8a, b) and (4.9a, b) for 2 < r < oo yield (4.9a, b) for r = oo.

D

Remark 4.4. There are several results [2,10,14,18,20-22] on the decay of the
velocity v for the π-dimensional Navier-Stokes equations assuming that the initial
velocity v0 is in some Lp. When n = 2, their main results read:

lim||ι; | |2(ί) = 0 if v0εL2(U2\ [10,14,18]
ί->oo

and
II v I I 2 (ί) ̂  CΓ1/q + 1/2

9 II v - etΔv0 \\2(t) ^ CΓ1/q+1/2-δ,

v0eL2(U2)nLq(R2l δ = l/q- 1/2, 1 ̂  q < 2, [10,20-22], (4.10)

where the viscosity v is assumed one. The estimates (4.10) give an asymptotic
expansion. Since our assumptions do not in general imply t;0eL2([R2)nLi([R2),
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(4.9b) is not included in (4.10). Also, (4.10) is not included in (4.9b) since r = 2 is
excluded in (4.9b). Among them Kato [14] studied the decay of || v ||r(ί), r > 2 other
than energy. His results yield

provided ι;0eL2(IR2). Our results (4.8a), (4.9a) claim the faster decay if
K — §ω0(dx) = 0.

5. Proof of Theorem 4.1

We study the integral equation (3.9):

ω(ί) = etΔω0 + B(ω, ω).

A naive idea to prove (4.6b) would be to estimate B(ω, ω). If we were successful
to prove || B(ω, ω) \\p(t) ^Ct~1 + 1/p~δ, we would obtain (4.6b), and using the estimate
for the linear part (2.6), (4.6b) would yield (4.6a). Unfortunately this idea appears
not to work. In fact the optimal decay rate estimate for ||ω||p(ί) is t~1 + 1/p even
if ω0 decays rapidly at infinity unless the total vorticity K = 0; the simplest example
is ω#κ, where ω^κ(x,0) = κδ(x). Using Lemma 3.5, all we can derive from the
estimate of | |ω||p is \\B(ω,ω)\\p(t) ^ Ct~1 + 1/p in general, which is too weak to
derive (4.6b). To overcome this difficulty we would rather study the difference
w = ω — ω^, where ω^ = ω^ in (4.3).

Proposition 5.1. Suppose that ω(x, t) is a solution of the vorticity equation for
ω(x9 0) = ω0eM([R2). Then the difference w = ω — ω^ solves

with

w = W + B(w, w) + B(w, ωj + 5(ω# , w),
(5.1)

where
K = J ω0(dx).

= — e x p -

Proof. By Proposition 3.3 we may assume ω solves (3.9). Since B is bilinear,
plugging ω = w + ω^ yields

w = W+ £(w, w) + B(w, ωj + ̂ (ω^, w) + B(ω^ , ωj.

Since ω^ is radial, Lemma 3.4 implies that the last term vanishes identically. We
thus obtain (5.1). Π

We shall prove (4.6a) by estimating W and B in (5.1). Roughly speaking, we
appeal to a perturbation method. We estimate [w]̂  by using the right-hand side
of (5.1). Here [w]p<5Γ is defined by (3.14) and is finite since T< oo and (3.5) holds;
this is why we take T< oo rather than T= oo. We eventually have

pδT9 (C constant),
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where -R is the Reynolds number. If R is small enough, one gets

T9 c>ι.

Since [ί̂ ]p̂ Γ is bounded independent of T by (2.6), we conclude the desired
estimate. Unfortunately, since there are restrictions of exponents in Lemma 3.5
such an idea only works for p, 1 < p < 2. After we prove (4.6a) for 1 < p < 2, we
shall prove it for p = oo and p = 1 and interpolate these results. Even if we are
interested only in the case p = oo or p = 1, we should check the result for 1 < p < 2.

Proposition 5.2. Suppose that ω(x, t) is a solution of the vorticity equation for
cφc,0) = ω0eM(IR2) and that 1 < p < 2. Then for δ,Q<δ<\/2 there is a constant
ε = ε(p, δ) > 0 such that R<ε implies

with a universal constant c > 0, where R is the Reynolds number and w = ω — ω^,
ω* — ω*κ- Here κ is the t°tal vorticity; K — jω0(Wx).

Proof. We may assume N < oo, otherwise the result is trivial. Since 1 < p < 2, one
can handle Bl and B2 simultaneously and estimates look symmetric for both
variables in B. In fact, we take 5= 1 in (3.15) so that (5 < 1/2. Since 1 <p<2
implies 1/s = 1 < 1/2 + 1/p, we can also apply (3.16). Taking q = p or r = p in (3.15)
and (3.16) yields

[£(w1? w2}~]pδτ ^ 2Cmin([w1]p<5Γ[vv]0Γ, [vvJ^CwJ^)

with 3/2 = 1/θ + 1/p. Applying this to (5.1) we get

p,r[ω JΘΓ. (5.3)

Since T< oo, we note [w]^Γ is finite. By (2.1a) we have

[>J,r = Crκ ^ c{R l ^ r ^ o o , (5.4)

where Cj (j = 1, 2. .) is a universal constant. Since w = ω — ω^, for fixed m > 0 the
estimates (3.5) and (5.4) yield

fθΓ R ̂  W, (5.5)

where c2 may depend on m. Applying (5.4) and (5.5) to (5.3) now yields

WP*τ^[.Wlp*τ + C'RWpΛT (5.6)

with C = 2C(3c1 + c2) depending only on p and δ. We take ε sufficiently small, say,

0 < ε - ε(p, δ) = min (1/2C, 1). (5.7)

If R < ε, then (5.6) gives

The estimate (5.2) now follows from (2.6).
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If p is large, one cannot take s = 1 in (3.16), so we should split the integral in
B into two parts, B1 and B2. We next prove (5.2) for p = oo.

Proposition 5.3. Suppose the same situation as in Proposition 5.2. For δ, 0 < δ < 1/2,
there is a constant ε^ > 0 such that R < ε^ implies

[*]„„£ cN, (5.8)

where c is a universal constant.

Proof. We take 5=1 and r = q = 4/3 in (3.15), which gives

[Bι(w,w)]pίΓgC[w]ίίΓ[w]βΓ, 0 = 4/3,

[Biίv^ωJ]^, lB^^w)^pdT^C[yi\qoT[co^]qT9

where (5 < 1/2. To estimate B2, we take 5 = 4 in (3.16) so that 1/5 < 1/2 = 1/2 + l/p.
Applying (3.16) with q = 4/3 and r = oo yields

[52(w,w)]ooδΓ^C[w]^τ[w]ooΓ,

[^(^ωJl̂ ^CM^CωJ^, (5.10)
[#2K, w)]^ = C[ω J^w] ,̂ q - 4/3.

We apply (5.9) and (5.10) to (5.1) and use (5.4) and (5.5). Similarly to (5.6), we obtain

WaotT = [WGcoar + CiΛIVU + C2K[VUΓ, (5.11)

where q = 4/3, Cx = 2C(3c1 + c2), C2 = c^C. We take

εoo=min(ε(4/3, δ\ 1/2C2, 1/2CO-

If # < βoo, the estimate (5.11) together with (5.2) now yields

Applying (2.6), we now obtain

which is the same as (5.8) by replacing 2c by c. Π

Unfortunately we are forced to treat the case p = 1 separately because one
cannot take s = 4 in (3.16) which requires p ̂  s = 4.

Proposition 5.4. Suppose the same situation as in Proposition 5.2. For δ, 0 < δ < 1/2,
there is a constant ε1 > 0 such that R < ε1 implies

(5.12)

where c is a universal constant.

Proof. We observe that (5.9) holds even for p = 1. However, we need modification
to (5.10). We take 5 = 1 and r = g = 4/3 in (3.16) which yields the estimate (5.9)
where B1 is replaced by B2. Similarly to deriving (5.6), one gets

MIST ^ WIST + 2C\RMqΛT9 4 = 4/3,
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with C\ = 2C(3ci + c2). We take

ε1=min(ε(4/35δ),l/2C ;

1).

Applying (5.2) with (2.6), we observe

provided R < ε1. This is the same as (5.12) by replacing 2c by c. Π

We now obtain similar estimates like (5.2) for all I r g p r g o o , just by an
interpolation.

Proposition 5.5. Suppose the same situation as in Proposition 5.2. For δ, 0 < δ < 1/2,
there is s depending only on δ such that R < ε implies

WrδT^cN, l ^ r ^ o o , (5.13)

where c is a universal constant.

Proof. The Riesz-Thorin interpolation (see e.g. [4]) yields

Interpolating (5.8) and (5.12) now shows that [w]rίr ̂  cN, provided R<ε =
εj. Π

Proof of Theorem 4.1. Since c is independent of T, (5.13) yields (4.6a) by the
definition of the norm (3.14).

It remains to prove (4.6b). Since

ω — etΔω0 = ω — ω^ — W — w — W9

(4.6b) follows immediately from (4.6a) and (2.6).

6. Stability of Burgers' Vortex — Formation of a Concentrated Vortex

This section is devoted to an application of our large time asymptotic expression
for the vorticity (Theorem 4.2). We consider a three-dimensional viscous incom-
pressible flow written as a superposition of an axisymmetric irrotational flow and
a two-dimensional flow whose vorticity vector directs to the symmetry axis. We
study the large time behavior of such a flow when the axisymmetric flow is a
inward convection-axially constant stretching flow. We shall show the vorticity
tends to Burgers' vortex [1,5] as the time tends to infinity provided the Reynolds
number of two-dimensional flow is small. No particular structure of initial vorticity
is assumed. There are no assumptions on the speed of the axisymmetric flow. Our
asymptotic results physically imply formation of a concentrated vortex.

We consider the Navier-Stokes equations in the three dimensional space IR3:

— -v4M + (w V)w + Vp = 0, V M = 0, (6.1)
cτ

where u = u(y, τ), p = p(y,τ\ y = (>Ί,^2>) ;3) Suppose that our velocity field u is
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expressed as

u = U + V,

U : an axisymmetric irrotational divergence-free velocity field,
V: a two-dimensional rotational velocity field, (6.2)

where the vorticity of u (or V) directs to the symmetry axis. To fix the idea, we
take y3-axis as the symmetry axis. The vector field U is assumed to have the form

U(yί9y2,y39τ) = (~ Wi, ~ αy2,2αy3) α = α(τ), (6.3)

which evidently satisfies V U = 0 and V x U = 0. If α is a positive constant, U is
a steady convection-axially stretching flow. The vector field V has the form

y29τ\V2(y^y29τ\Q) (6.4)

so that the vorticity is

(0,0,12(^,^2^)), (6.5)

where Ω = V x V = (d/dyJV2 - (d/dy2)V1. We first derive the vorticity equation
forfl.

Proposition 6.1. The equations (6.1) with (6.2)-(6.5) are formally equivalent to

— - vAΩ- α(j; V)β- 2αΛ + (V V)Ω = 0, (6.6)
dτ

V=K*Ω, K = (-y2,yι)/2π\y\2, (6.7)

provided that α is a constant and that V decays at space infinity.

Proof. This is very similar to the proof of the equivalence of the vorticity equation
and the Navier-Stokes equation. Plugging u = U + V in (6.1), and noting

(U-V)U = VP, P = (X2(yl + y2

2 + 4jφ/2,

(V V)17 - - αK, (U-V)V= - α(y V)K,
we obtain

dV
— -vΔV- φ V)K- αF+ (V V)V+ V(P + p) = 0, V K= 0. (6.8)
^τ

Taking V x of (6.8) yields (6.6), since

Since V F=0 and F decays at \y\ = oo, we have (6.7). This shows that (6.1) with
(6.2)-(6.5) yields (6.6) and (6.7). Since the above calculation shows that (6.6) implies
that du/dτ — vΔu + (u-V)u is irrotational, (6.1) now follows from (6.7). Π

Our main goal is to study the large time asymptotic behavior of the vorticity
Ω of (6.6)-(6.7) with arbitrary initial data Ω(y,Q) = ί20eM([R2). If α = 0, Theorem
4.2 already gives an answer, since (6.6)-(6.7) is nothing but (4.4)-(4.5). The vorticity
Ω (y, τ) is asymptotically equivalent to ω^κ in (4.3) called the diffused vortex filament
of Oseen [17] with the total vorticity K provided that the Reynolds number R is
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sufficiently small. We shall always assume that α is a positive constant unless
otherwise claimed. As before, we define the Reynolds number R and the total
vorticity K by

R = v-^\ΩQ\(dy) = v ~ l \ \ Ω Ό \ \ , 9 κ = $ΩQ(dy). (6.9)

We observe that (6.6)-(6.7) has a special steady (circular symmetric) solution called
Burgers' vortex [1,5]:

4c = ̂ w2/'2, / = (2v/<2. (6.10)

We shall claim below that Ω in (6.6)-(6.7) converges to Ωκ as τ -> oo provided the
Reynolds number R is small.

Theorem 6.2. For a general initial vorticity ί20eM(IR2), there is a solution Ω(y,τ)
of(6.6)-(6.7) having the following properties. For every <5, 0 < δ < 1/2, there is εδ>0
(independent of α, p and τ) such that

= 0(e-2^) αsτ^αo, (6.11)

where 1 ̂  p ̂  oo, provided R<sδ. Here Ωκ is Burgers' vortex defined in (6.10) and
K is the total vorticity defined in (6.9). Moreover, the total vorticity is conserved, i.e.,

κ = $Ω(y,τ)dy for all τ ̂  0. (6.12)

Proof. We first observe that (6.6)-(6.7) can be reduced to (4.4)-(4.5) by a
time-dependent scaling transformation which is introduced by Lundgren [16] and
by Kambe [1 1, 13] for the axially symmetric case. We introduce x, ί, ω(x, ί) such that

x == A(τ)y, t = λ2(σ)dσ, ω(x, t) = A~2(τ)Ω(y, τ),

L (6.13)
dτ

Since at = A2(τ)dτ, dx = A(τ)dy, we have

dtω(x, t) = A~ 2dτ(Ω (x/A(τ), τ}Ά~2) = A- 4(dτΩ - A' A ~ \y, V)Ω - 2 A A

= A-4(V'Vy)Ω with v=V/A(τ).

Observing A = aA, we see ω solves (4.4). By a dilation of the variable of the
integration, we obtain (4.5) by putting v=V/A(τ). (The transformation (6.13)
reduces (6.6)-(6.7) to (4.4)-(4.5) even if α is time dependent.)

Suppose that ω(x, t) is a solution of the vorticity equation with v whose existence
is proved in Proposition 3.1 with an appropriate scaling. Since ^4(0) = 1 implies
ω0 = ω0(x,0) = ί20(x,0) = Ω0(y90)9 our asymptotic result (4.7a) yields

', 0 < δ < 1/2, 1 ̂  p ̂  oo,

provided that R = v ~ 1 1 | ω01| 1 = v ~ 1 1 | Ω0 \\ 1 is sufficiently small, say, R < εδ, where
ε = εδ is the same as in Theorem 4.2. Using original variables y9τ9Ω in (6.13), this
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estimate yields

ί/P

\\Ω-Ω*κ\\p(τ)( =( $\Ω(y,τ)-Ω*κ(y,τ)\pdy'
V \R 2

where

since t = (e2"τ - l)/2α, A = e«τ. Since

lim A(τ)2/vt = 4/ί2,
τ-»oo

we have

In particular

|| Ω - Ω^κ \\p(τ) = 0(έΓ2α<5τ), 0 < δ < 1/2 (6.15)

as τ->oo. Clearly,

where Ωκ is Burgers' vortex in (6.10). More precisely, a direct calculation to (6.14)
shows that

asτ->α). (6.16)

The estimates (6.15) and (6.16) now yield (6.11).
It remains to prove (6.12). Since

(3.8) now yields (6.12). Π

Remark. For radial initial data Ω0 the estimate (6.11) is pointed out by Kambe
[12] at least for p = oo without the assumption on the Reynolds number. In this
case by Lemma 3.4, (V-V)Ω in (6.6) vanishes so the problem is reduced to the heat
equation. For the heat equation (2.6) shows that (4.7a) holds even for large R.
Parallel to the above proof, we see (6.1 1) holds without the assumption on # which
extends results in [12].
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Note added in the proof. Professor Kawashima kindly pointed out that the right-hand side of (2.6) can be
replaced by Ct~σ(p)~1/2\\ \x\a\\ x. A proof for n = 1 is found in Lemma 8.1 of his article published in Proc.
Royal Soc. of Edinburgh, 106A, 169-194, 1987 and it works for several space dimensions with necessary
modifications. By this remark one can replace (|x|2 + I)ω0 by |x|ω0 in the definition of N in Sect. 4, 5
and 6.




