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Abstract. We consider compositions of random diffeomorphisms and show
that the dimension of sample measures equals Lyapunov dimension as
conjectured in the nonrandom case by Yorke et al.

The role of dimension has long been recognized in the study of chaos (see [ER]).
Roughly speaking, the dimension of a set measures the amount of information
necessary to specify points within it accurately. In practice it tells us how many
variables we should use to parametrize the set [Man]. This information is
particularly useful for dealing with attractors of relatively low dimension embedded
in a high, possibly infinite, dimensional phase space.

Various methods of experimentally computing dimension have been devised.
A widely used procedure is to estimate dimension via Lyapunov exponents,
computing a quantity called Lyapunov dimension introduced by Yorke et al
[FKYY]. The validity of this procedure relies on Yorke's conjecture, a version of
which states that "typically" Lyapunov dimension equals the usual notions of dimen-
sion. This is true for attractors on surfaces [Y] but when the phase space has
dimension greater than 2, Yorke's conjecture has not been mathematically verified.

In this paper we do not deal with the conjecture in [FKYY] exactly as it is
stated. Instead, we assume that our dynamical system is subjected to certain types
of stochastic noise. We prove under this assumption that Yorke's conjectured
formula for dimension is indeed mathematically correct. The model we use consists
of composing random diffeomorphisms with some conditions to guarantee genuine
randomness. We prove that in this setting Lyapunov dimension is equal to the
dimension of the sample measures, i.e. the natural invariant family of measures
associated with individual realizations of the random process. Our results are
applicable to flows arising from stochastic differential equations.

Introduction

Consider first the nonrandom case. Let /:MQ be a diffeomorphism of a
compact Riemannian manifold preserving an ergodic Borel probability measure
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m, and let λl > ••• > λr denote its distinct Lyapunov exponents. The authors of
[FKYY] conjecture that if / has an attractor and m is its Sinai-Bowen-Ruelle
measure, then, pathological cases excepted, the capacity of the attractor is given
by a quantity they call the Lyapunov dimension of the attractor. This quantity is
an expression involving the λfs and their respective multiplicities. We shall denote
it here by @(λί9...,λr) and refer the reader to Sect. 1 for its explicit definition.

Later on, with dim(m) denoting the dimension of the measure m, we show in
[LY1] (see also [T]) that for every ergodic invariant probability measure m,

In fact, we show that in order for dim m to equal ^(λl9...9 λr\ the partial dimensions
of m must assume a special configuration: m must take on maximal dimension in
the directions corresponding to λ1,...9λj before "spilling over" into the λj+1

direction. In particular, m must be a Sinai-Bowen-Ruelle measure.
We do not know how prevalent SBR measures are, or if this dimensional

configuration is generic among diffeomorphisms preserving SBR measures. We
will show however that the above configuration is a likely scenario for stochastically
perturbed dynamical systems.

More precisely, let v be a probability measure on Diff(M), the space of
diffeomorphisms of M. We consider the composition of maps chosen independently
with distribution v. This process together with an ergodic stationary measure μ
will be denoted 2£ = %'(M, v μ). Let {μω,ωeDiff(M)z} be its associate family of
sample measures. That is, if ω = {/n}MeZ, then μω gives the conditional distribution
on M at time 0 given that {/„}„< 0 has been applied. Recall that Lyapunov exponents
for 3£ are well defined and are nonrandom. We continue to denote them by
λ1 > ••• > λr.

In [LY2] we proved an entropy formula in this random diffeomorphism setting.
To prove this entropy formula, it is sufficient to assume that the transition
probabilities of 2£ have densities, so that the image of each point is smeared. Here
we ask for a little bit more. We need to assume that the process randomizes the
relative positions of all pairs of nearby points. This can be formulated in various
ways; see hypotheses A, A' and B in Sect. 1.

Main Result. Suppose ^(M, v μ) satisfies Hypothesis A, A' or B, and /
Then, for vz. a.e. ωeDiff(M)z,

The proofs of this and other results are carried out in Sects. 3 and 4. In Sect. 5,
we attempt to verify some of our hypotheses for stochastic flows.

1. Definitions and Statements of Results

(1.1) Setting. The general setting of this paper is identical to that in [LY2], as are

1 The limit in the definition of dim(m) does not always exist. We actually prove this inequality using
lim sup
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all the basic notations. We recall them for the convenience of the reader. A more
detailed discussion is given in [LY2].

It is assumed throughout that M is a compact Riemannian manifold, Diff2(M)
is the group of C2 diffeomorphisms of M onto itself, and (Ω, 3?) is a probability
space identified with Diff2(M) together with its natural Borel σ-algebra. For ωeί2,
we denote the corresponding diffeomorphism by /ω. Let v be a probability measure
on (ω, <F) satisfying

-f-cc.

We consider the composition of {/ωn}*=-oo> where the ωn's are chosen
independently with distribution v. Let μ be an ergodic stationary measure for this
process, i.e. μ satisfies

and is extremal with respect to this property. In the rest of this paper, this stationary
process will be referred to as $Γ(M,v;μ) or simply $Γ.

Associated with ̂ (M, v; μ) is a canonical family of sample measures (μω,ωeί2z } .
This family is the unique measurable family of probabilities on M satisfying

i) /ω0 1*<» = ̂  > where (ω)Λ = ωn , (τω)n = ωn + ί9

ii) ω -> μφ depends only on ωn for n < 0,
and

iii) $μ

Most of our arguments are carried out in the context of the skew product
representation of $Γ, which is given by the measure preserving transformation
F:(ΩZ x M), with

F(ω,x) = (τω,/ωox),
and

μ*(dω9dx) = v*(dω)μφ(dx).

(1.2) Definition of Key Words. For ωeΩ1 and n ̂  0, let

fn _ f o ...of
J ω J ωn _ j J ωo

and
f - "= f ' 1 o . . . o f - ι

J ω J (on- 1 ^ c o π _ j

The numbers λl > > λr with multiplicities ml9...,mr respectively are called the
Lyapunov exponents of 3C if for μ* — a.e. (ω, x) there is a splitting

ΓxM = £1(ω,x)(g)- ®£r(ω,x)

such that dim Ej(ω9 x) = πij and v φ Oe£y(ω, x) if and only if

and

lim-\og\D(f-")xv\=-λj.
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The integrability condition in (1.1) and the ergodicity of μ guarantee that these
numbers exist. We will always assume that λ1 > 0, for otherwise our statements
hold rather trivially.

Let Ej = ©£t . For j with λj < 0, we define the stable manifold corresponding
i^J

to EJ at (ω, x) to be

Wj(ω,x) = \ yeM lim sup-log d(f"ωx,f"ωy) ^λΛ.

The Lyapunov dimension of ̂  is defined exactly as in the non-random case (as
K

introduced in [FKYY]). Let K be the largest integer so that £ ^mj >0. Then
j = ι

the Lyapunov dimension of 9C is defined to be

dim M if ^ m7 = dim M

K. 1 Λ.

y m,. — y /L m ; otherwise.
/—i J 1 /—ί J J

We use ^(A l 5 . . . ,λr) to denote Lyapunov dimension to stress the fact that despite
the terminology, Lyapunov dimension in general does not necessarily have the
geometric properties of a dimension.

Finally, the dimension of a finite Borel measure m on a compact metric space
is defined to be σ, written dim(m) = σ, if

logmB(x,ε)
lim = σ
ε-o logε

for m — a.e.x. (Here, as in the rest of the paper, B(x, ε) is the ball of radius ε about
x.) We are interested in the dimension of the μω's. Clearly, if dim(μω) is well defined
for a.e. ω, then ω->dim(μω) is constant v^ a.e.

Throughout this paper, whenever X is understood to have a natural Riemannian
volume, we use the term "Lebesgue measure on X" to denote the measure associated
with this Riemannian volume.

As mentioned in the introduction, there are various ways of formulating the
hypotheses that would give the desired result. We state a few versions in the next
two subsections.

L

(1.3) Version A of the Result. Let L be the smallest integer so that £ /l^m^O

(i.e. L = K + l for K in (1.2)).
Recall that Ej = <

Hypothesis A. For μ —a.e.x and j = L,L+ 1, the distribution of ω-+Ej(ω,x) is

absolutely continuous with respect to Lebesgue on the space of I Σ mt 1-planes in
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Theorem A. Let 3£(M9 v μ) be so that the measure μ is absolutely continuous with
respect to Lebesgue on M and λj φ 0 for all j. Assume Hypothesis A is satisfied.
Then, for v^ — a.e.ω,

Theorem A is proved in Sect. 4.
We mention also a stronger set of hypotheses that appears quite naturally.

Recall that the Grassmannian bundle of M is:

dim M

Gr(M)= £ Gr(M,fe),
k=l

where Gr(M, k) is the bundle of /c-dimensional subspaces of tangent spaces to M.
We define the "backward derivative process" associated with 9C as follows: for
ι eGr(M) and Γ c Gr(M), the probability transition kernel Q(v,Γ) is

Hypothesis A. For all t eGr(M), the probability Q(v, •) is absolutely continuous
with respect to Lebesgue on Gr(M).

Theorem A'. Theorem A continues to hold if Hypothesis A is replaced by Hypothesis

A.
In Sect. 5, we show why Hypothesis A' implies Hypothesis A and we indicate

why Hypothesis A' is easy to verify for stochastic flows.

(1.4) Version B of the Result. In (1.3) we assume essentially that there is some
diffusion on the derivative level. We now give a nonlinear version of that, formulated
in terms of two-point processes. As we shall see, one advantage of this new
formulation is that it yields absolutely continuous transverse measures.

Let (x, z) -> v*'z be a measurable family of probability measures on Ω with the
property that for Lebesgue-a.e. fixed x, {v*'z,zeM} is a family of conditional
measures associated with the partition Px on Ω defined by Px(z) = {ω:fωx = z}.
For all yeM, we let PXtZ(y, •) denote the image of the measure vx'z under the map
ω->fωy, and p*'z denote the density of PXtZ(y, - ) i f i t exists.

Hypothesis B.

i) For Lebesgue-a.e. (x, z) and all y the measure PXtZ(y9 •) is absolutely continuous
with respect to Lebesgue on M.

ii) For all ξ>0, there exists Gξ c M x M with Lebesgue (M x M\Gξ) = 0, and
a measurable function £ξ\Gξ-*&l + such that for all (x,z)eGξ and all y with

Observe that when Hypothesis B is satisfied, then for all y the measure
P(y, -) =:v{ω:/ωj;e } is absolutely continuous with respect to Lebesgue on M. This
can be seen by integrating condition i) over z. Also when i) is satisfied, condition
ii) gives a scaling for the density p*'z in terms of d(x,y). To see that this is in some
sense a natural scaling, consider for instance a probability v on GL(n, $) with a
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bounded density and estimate the density py of the image of ye^n under these
random linear maps as \y\ goes to zero. See also [Le] for a class of stochastic
flows for which Hypothesis B can be verified.

Theorem B. Let &(M9ω;μ) be so that λj Φ 0 for all j and Hypothesis B is satisfied.
Then, for a.e. ω

We now state the geometric property of transverse measures alluded to earlier.
Let j be such that λj < 0 and let dj = Σmi = dim M - dim Ej. Let 5 c mάj be a

i<j

compact subset and let D be the unit disk in ̂ dιm£J. A mapping Φ:S x D-+Mω =
{ω} x M is said to define a continuous family of W^'-disks if it is a topological
embedding and for each seS, Φ\{s}xD maps diffeomorphically onto an open
subset of Wj(ω,xs) for some xs. We say that {μω} has absolutely continuous
transverse measures with respect to Wj if for a.e. ω, whenever Φ is as above and
μ^(Φ(S x D)) > 0, then μJΦ(S x D) projected along these W'-disks into any
smooth transversal Σ is absolutely continuous with respect to Lebesgue on Σ.

Theorem B'. Let 2£ be so that λj Φ 0 for all] and Hypothesis B is satisfied. If λj < 0
and dy<dim(μω), then {μω} has absolutely continuous transverse measures with
respect to Wj.

Theorem B and Theorem B7 are proved in Sect. 3.

2. Preparations for the Proofs

In this section, we recall some known facts from the smooth ergodic theory of
random maps. These facts were first established in the nonrandom case, and have
been observed to carry over easily (see e.g. [Ki, Ca, LY2] ).

(2.7) Properties of Local Stable Manifolds. Let us agree to write Fj(ω, x) = Ej(ω, x)1,
the orthogonal complement of Ej(ω,x) in TXM. We fix j with Λ7 <0 for the rest
of this subsection.

Let ε >0 be given. Then there are positive numbers C0,a,D0,β,EQ,δ0,δ1 and
a measurable set

Λ = Λ(Cθ9ot,Dθ9β,Eθ9δ0,δί)c:Ω* xM,

such that the following five properties hold:

(i) A depends only on x and ωn, n ̂  0, and μ*/ϊ Ξ> 1 — ε.
(ii) For (ω, x)eΛ and n ̂  0,

(iii) For each (ω, x) in Λ9 there is an embedded £ mi 1-dimensional disk WJ

Λ(ω9 x)
\i*j /

such that

a) W{(ω9x) = {y<=Wj(ω,x):dj(y,x) ^ α}, where dj is the metric along Wj(ω,x\
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b) exp"1 Wj

a(ω9x) is part of the graph of a function gωx:E
j(ω,x)^>FJ(ω,x)

satisfying

iii. I D^J = 1/1000,
iv.

and

c) 1ίzl9z2eW3

Λ(ω9x)9 then ds(fnz1,f
nz2)£C0e?(λJ+'»dJ(zl9z2) for all n^O.

(iv) Let Λω = {xeM:(ω,x)e/l}. Then for each ω with Λω non-empty, the map
x-*Ej(ω9x) is locally Holder continuous on the set W{(Λω)=: (J Wj

Λ(ω9x).
χεΛω

In fact, for all zίz2eWJ

a(Λω) with d(z1,z2)^δ0,

[We have this estimate on the entire set W{(Aω] (as opposed to just Λω) because
by virtue of (iii)c), property (ii) holds for all points in W{(Λω) with a slightly weaker
constant.]

Property (iv) follows from Proposition 5.4 of [BK]. We remark that since we
do not have uniform bounds of Df and D2/, the Holder constant and the
Holder exponent depend on ω. The constant a in [BK] must be replaced by
α(ω) = sup(l/n)log|/"|c a.

n

Finally:

(v) Let ω be such that Λω is non-empty. For xeΛω9 let 7\ and T2 be expx -images
of small disks parallel to Fj(ω,x) and at a distance smaller than δί from Fj(ω,x).
Then the map φ from T1nWj

a(Λ(^nB(x, δ 0 ) ) to T2 by sliding along ^-leaves is
absolutely continuous with | Jac(ι^)| ̂  E0.

See [BN] or [KS] Chap 11.12 for a proof of this absolute continuity property for
the iteration of one map using only positive iterates. The proof here for each fixed
sequence ω is identical to that for one map; once again, some of the "constants"
now depend on ω.

(2.2) Dimension Properties. We recall the definition of "partial dimensions" for
{μω}. These are numbers γί9i=l9...9r9 with the following properties:

(i) 0 !g ji ^ w£ for i = 1, . . . , r,

(ϋ) yio = mio if λίo = 0,

(iii) t^f = 0,
i = l

Γ(iv) hmsup tlogω *=!

for μ* — a.e. (ω, x). (This number will be denoted σ; σ is defined analogously using
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lim inf. When σ = σ we write σ.)

(v) If λj < 0, then Σ γt is the dimension
i^ί

of the conditional measure of {μω} on Wj; an analogous statement holds for Σ 7t
i ̂  J

when λj > 0.
The precise meaning of the "dimension of conditional measures on Wj" as

defined in [LY1] is as follows. (One could also say this in terms of continuous
families of W^'-disks as in (1.4).) Let ξ be a measurable partition on Ω^ x M
subordinate to W\ that is, if ξω denotes the restriction of ξ to {ω} x M, then for
a.e. (ω,x), ξω(x) contains an open neighborhood of x in Wj(ω,x). Let (μ£(x)}
be a canonical family of conditional measures of μω associated with ξω. Let
Bj

ω(x, ε) = {ye Wj(ω, x):dj(x, y) < ε}. Then property (v) says that for μ* — a.e.(ω, x),

logμ^(x,ε)
lim - ̂  - = ΣΊi-
β-*o logε ,~

See [LY1] for the non-random version of the results stated here. The proofs
in the random case are parallel, as mentioned in [LY2],

Suppose now that the stationary measure μ is absolutely continuous with
respect to Lebesgue on M. Then Pesin's entropy formula holds, or equivalently,
{μω} has absolutely continuous conditional measures on unstable manifolds [LY2].
Then, if μ is ergodic and λj φ 0 for all 7, we have

σ = σ = Σ7i (see[LY2]).

Observe that these conditions are satisfied under the hypotheses of Theorems A,
A', B and B'.

Finally we mention the relation between Lyapunov dimension and the y/s. It
r

is easy to check (using property (iii) above) that Σ Jί = ̂ (^i > >λr) always, and
ί = l

r

that if Σ ^ίmί = ̂  — which is always the case for ^(M, v μ) — then equality is
ί = l

attained if and only if there is a critical number j, denoted jc9 so that

for j<jc

O for j>je

and
0<y j c ^m j c .

Thus under the hypotheses of our theorems, this dimensional configuration is both
necessary and sufficient for the desired dimension formula

3. Proof of Version B of the Results

In (3.1) we sketch the main ideas in the proof of Theorem B. The statements in
this subsection need not be technically accurate. The formal proof is carried out in
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(3.2) and (3.3), and Theorem B' is proved in (3.4).

(3.1) Strategy of Proof of Theorem B. Let j be such that λj < 0. First we attempt
to define a notion of "transverse dimension" for μω with respect to WJ. That is,
we project μω along ^-leaves onto a transversal in M and call its dimension τ,-.
(Actually we "do not show that this transverse dimension exists, but ignore this for
now.) Recall that dj = ά\mFj and σ = dim(μj, which under the hypothesis of
Theorem B is well defined and equals £y f. The main ingredient of the proof is to

t
show that

The proof of this assertion relies heavily on Hypothesis B and is influenced by the
ideas in [Mar]. There is another inequality which is a simple and general fact
about adding the dimensions of fiber and transverse measures, namely,

σ ^ τ y + Σ f t (**)
i*j

We now argue how (*) combined with (**) give the desired result. Consider
j — γ^γ— 1? . . . ? in descending order. Initially we may have σ ̂  dj (or we may not).
Suppose σ^dj. Then (*) and (**) together imply that γt = 0 for all i ̂  j. Let L
be the first j so that σ > dj9 so in particular γt = 0 for all i > L. We observe
immediately that λL < 0, otherwise y f = 0 for all i with λt < 0, which is impossible
since

Σ (-*i)yt= Σ ^i= Σ ^>°
λi < 0 λt > 0 λl > 0

Now (*) and (**) tell us that

which together with the fact that σ = Σv; imply that γt = mf for all i < L. Thus the
i

7/s assume the dimensional configuration described at the end of (2.2) with jc = L,
and hence

(3.2) Proof of Theorem B. We now formally carry out the steps outlined in (3.1).
As before we fix j with λj < 0.

Let ξ>Q be an arbitrarily small constant. We choose δ and C>0 with
δ ̂  <50 A,α/100. (See (2.1) for the definitions of <50A and oc). Let

ii) μq,B(x9r)£Cr*-ξ Vr^(5,

and iii) (x,fωox)εGξ and ̂ (x,/ωox) ̂  δ/C}.

The definitions of Gξ and $ξ are given in (1.4). By choosing δ sufficiently small
and C sufficiently large, we may assume that μ*Γ > 0.

For (ω,x) in Γ, we let fω x - F'^exp^ Fj(F(ω,x))). (This local transversal is

chosen mostly for convenience.) Let A denote the projection along P
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onto fωx. For r > 0 we are interested in

μ f(ω,x,r) =:μ JyeΓ^(x,y) ^ δ/C and df(πω_^x) ^ r},

where d τis the distance along Tω;c. Let

logμτ(ω,x,r)
τ, (ω, x) = lim sup .3 ~ r->o logr

Proposition 3.2.1 (Main Proposition). Assume Hypothesis B. Then the following is
true for μ* — a.e.(ω,x) in Γ:

(1) Ifσ-2ξ<dj,then

. μτ(ω,x,r)
lim mf—^~2-— < oo,

so that in particular, τ7 (ω, x) ̂  σ — 2ξ.
(2) Ifσ-2ξ>dj9then

. , , ,
lim mf — — -ά - < oo,

r-^o r J

so that in particular τ7 (ω,x) ̂  dj.

The proof of this proposition is postponed to (3.3).
We now shrink Γ further to Γ' so that points in Γ' have the correct dimensional

estimates along Wj. Let η be a measurable partition of Ω^ x M subordinate to
Wj, and let {μ£(x)} denote a family of conditional probability measures associated
with η. Let δ' > 0 be fixed.

We define

Γ = l(ω9y)eT:WJ

δ,(ω,y) c η(ω,y) c WJ

δ/2C(ω,y)

Σ 7i~

and ^(y)5ί(j;, r) ̂  Cr Vί = ^ 7 for all r ̂  δ' .

By first choosing the partition η so that most points satisfy η(ω, y) c Wj

δ/2C(ω, y\
and then choosing (5r sufficiently small, we can arrange to have μ*Γ' > 0.

Proposition 3.2.2. For μ* — a.e.(ω,x)e7"/,

σ ^ ij(co9 x) + Σ 7f - ξ.
i^j

Proof. For sufficiently small r,

and since yeΓ^n£(x,r)=>?7(ω,j;) c W/i(co,y)n5(x,^/C), we have

71
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where N is a constant depending on the angles between Tωx and the relevant
Ws-leaves near x, which are uniformly bounded for (ω, x) in Γ. /

We remark that our proof so far does not depend on the fact that λ^O for
all i. The no zero exponent hypothesis is used only to guarantee that

Assuming that, we now run through the arguments in the last paragraph of
(3.1). The reasoning there is valid since ξ can be made arbitrarily small.

(3.3) Proof of the Main Proposition. Let v*)Z be as defined in (1.4). Our strategy is
to fix {ωn9 n φ 0}, x and z, and to obtain an upper estimate for μ^(ω, x, r) for v*'z-a.e.
ω, where (ω,x) = ( ω_ 2ω_ 1ωω 1ω 2 . . .,x)e/". As ω varies we will always use ω
to denote the sequence with (ω)0 = ω and fixed (ω)n = ωn for n ̂  0. Note that fixing
ωn for n < 0 determines a sample measure which we denote by μω. Our analysis
will apply to v^{0}-a.e.•• ω_ 2ω_ 1ω 1ω 2 . . .,μω-a.e. x and Lebesgue-a.e. z.

So let {ωn9 n^0},x and z be fixed for the rest of the proof and define

ar = J μτ(ω, x, r)dvx'z(ω).

We will show that

^<+oo if σ-2ξ<dj

limsup-^<+oo if σ — 2ξ>dj
n->0 F J

This, together with Fatou's lemma gives the statement in Proposition 3.2.1. Now,

0,= f μqί{yεΓgί:d(X9y)<δ/C and /(π^^

We will estimate this integrand by working in a neighborhood of z. Observes
first that whether (τω, z) belongs in A or not depends only on z and ωπ, w > 0, and
that we may assume (τω,z)e/l, otherwise vx'z{ω:(ω,x)eΓ} =0. This guarantees
that W{(ΛτφnB(z,δ)) is well behaved. Let Tτ^z = expzF

j(τω,z),πτ^z = projection
along W{ leaves onto Tτωz and dr = distance along Tτωz. (Note also that these
objects do not depend on ω.) Since all the ω's considered have the property that
\Dfω ^ C, we have for all relevant (ω,y)9

dT(Z,π^fωy)^Cdf(x,π^y)^Cr,
and

d(z,fωy)£Cd(x9y)9

so that in particular /ωye/lτωnJ5(z,(5).
We now define a set Ary such that all (ω, y) of interest to us have the property

ihatfωyeAry. For weM near z, let P(w) denote the dy -dimensional disk containing
w so that exp"1 P(w) is parallel to Fj(τω,z) in TZM. Then,
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B(z,δ)):dτ(πτ^z) g Cr

and distCF(τω, z), exp~ 1 P(w)) ̂
And so

ar^ f v^{ω:/ω3;eΛ,y}^ω= f M P
β(x,<5/C) ~ B(x,δ/C) \Arίy

where λ is the Lebesgue measure on M.
Suppose we let λp(w} denote the Lebesgue measure on P(w). Then using the

absolute continuity of the ^'-foliation (property (v) of (2.1)) we see that for all w
in question

Λp<w)(4 ,y nf(w)) ̂  EQλTr^(Ar^π Tτ^z).
Thus we have

where Q and Q are constants independent of r.
To complete the proof, we integrate in y. Let Dn = B(x, e~nδ/C)\B(x,e'(n+ ΐ]δ/C).

Then, if σ — 2ξ > dj9 we have

d 1 oo

^=30 Σ μω(£n)sup J p*>zdλ
r r n = o - yeDnAry

1 oo Q'γdj

*^ W V1 —n(σ — d ; — 2ξ)

-Q SQ

e '
where Q" is independent of r. For the case σ — 2ξ < dj9 do as above except to use
the less extravagant estimate of

vx'z{ω:fωyEAr^y} rg 1 for yeDn with e~n < r.

(3.4) Proof of Theorem B'. It suffices to show that there are measurable sets
Λ d Ω^ x M of arbitrarily large μ*-measure such that for μ*-a.e. (ω9x)εΔ9 there
exists a continuous family of FFJ-disks {Dy} with uD y containing a neighborhood
of x in Δω9 and a transversal σ so that μ ω | (uD y n4 ω ) projected into σ is absolutely
continuous with respect to Lebesgue. Once this is established we can appeal to
the absolute continuity of the Wj foliation to show that {μω\Δω} has absolutely
continuous transverse measures as defined in (1.4).

To proof this first statement amounts to observing that the proof in (3.3) works
for points in entire neighborhoods of Γω using a common transversal. More
precisely, fix {ωn,n ^0}, and z0eM such tfiat (τω,z0)e/l. Let S = expZoF

J(τω,z0).
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For each ωe/2, let Sω = f~1S and π^ = the projection along W{ onto Sω. Now
consider (ω,x)eΓ such that fωxeB(z0,δ/2) and define

μs»(ω, x, r) - μφ{yεΓφ:yeB(x, δ/2Q and /(πφx, π^) g r}.

The same argument as in (3.3) shows that for μω-a.e. fixed x, and v-a.e.ω such
that fωxεB(z0, δ/2).

liminf =^—-—< + °°
r->0 r j

This implies that for μ*-a.e. (cύ,x)eΓ nF~1(Ω^ x B(zθ9δ/2))9 there is a continuous
family of VP^'-disks {Dy} with xeuD y c:M ω such that the transverse measure is
absolutely continuous with respect to Lebesgue.

4. Proof of Version A of the Results

As with result B we first give the idea of the proof in (4.1) without attempting to
be precise. The formal proof is then carried out in (4.2) with some technical details
postponed to (4.3).

(4.1) Idea of Proof of Theorem A. Let π£>λ again denote projection along W{
onto expxF

j(ω9x). We would like to choose a good set Σ of positive μ*-measure,
fix (5>0, and for each (ω,x)eZ estimate μω{y€Σω:d(x9y)^δ9d(πJ

ω>xy9x)^r} as
r goes to zero as we did in Sect. 3. However, because Hypothesis A only guarantees
a density for ω -»E j(ω9 y)9j = L9L+ 1, and the Wj manifolds are (probably) curved,
we are only able to estimate the μω-measure of

^- j -I o r~oj ω\ 7 ? / .̂
σ s dj => lim sup ^^ ^ σ

, r ω ω , ,
σ > α , =>lιmsup - =; — = - ̂  d, + t(σ — dt)3 r-o J J

Σfa, r, 0 =:{yeΣy .dfay) ^ r\ d(n^xy9 x) g r}

for te(ί/291). Now if the transverse dimension of μω with respect to Wj (which we
do not claim to define) is as large as possible, then adding transverse and fiber
dimensions as in (3.1) should give us

(*)

for j = L, L + 1. This is what we will show. The proof is sort of a nonlinear version
of part of [Mat] and depends heavily on Hypothesis A.

Recall that L is the smallest integer j so that £ λimi < 0, so that our goal is
»^;

to show that y7 = mj for j < L and yj = 0 for j > L. It is easy to see that to force
this, it suffices to show

, v
(**)

for j = L,L+ 1. We will show that this is a general fact, not having anything to
do with random maps and valid for all j with λj < 0 — as long as t > 1 — β9 where
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β is the Holder exponent of Ej on Λω.

(4.2) Proof of Theorem A. For μ-a.e. x and j = L, L + 1, let pj

x be the density with
respect to Lebesgue of the distribution of ω->£J(ω,x) in the space $x of
]Γ mf-dimensional planes in TXM. We first make precise assertion (*) in (4.1).

l = J
Let j = L or L + 1 be fixed for a while and let ξ be an arbitrarily small constant.

We choose E and θ > 0 with θ g α/100(50 so that

£ =:{(ω,x)e/i:ρΐ ^ £ and μωB(x,r) ^ Er(σ-~ξ)Vr <, 9}

has positive μ*-measure. Let π j

ω x be the projection along W{ into expxF
7(ω,x)

as before. For (ω,x)eΓ and ίe(0,1), we define

Σ^(x,r,t)={yeΣ0;.d(x,y)^r' and d(x,<xy)gr}.

Proposition 4.2.1 (Main Proposition). Let ίe(l/2,1). For μ* a.e.(ω,x)e^, z/
σ — ξ>dj, then

lim sup =-—= ^ dj + t(σ — dj — ξ),

ifσ — ξ <dj, then

1 ' O I—CO O J \ 7 7 - / .,

lim sup =-—= ^ σ — ς.
r->o logr

Proof of Proposition 4.2.1. We fix {ωn,n<0} and xeM. For any sequence
ω+ = ω0ω1ω2"' we will write ω for the corresponding bi-infinite sequence. Let

As before we will show that for VΓ-a.e.ω + ,

br t Alim sup d +t(σ_d _ξ) < + oo π σ — ς > dj
r-^O F J J

and

lim sup -̂  < + oo if σ — ξ<dj,

which will then imply the proposition. Again we change the order of integration
in br to get

br= J v^ {ω+ :(ω,x)(ω,y)EΣ, d(x, nj

ωxy) ^ r}dμω(y).

For yeλω near x, let π^x(_y) denote the unique point of intersection of expyE
J(ω,y)

and Qxpx~Fj(ω,x).

Lemma 4.2.2. There is r0 > 0 such that for all x,ye/lω, if d(x9y) ^ r0,

^(<^,<,y)^Coί/(x,);)2.

We will not prove this lemma here, but note that it allows us to estimate br
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for r' ̂  rΰ by:

br< J v^{ω+:(ω,x)(
B(x,r<)

Here we have used the fact that (r')2 ^ r. Let

J(exP; ' x, e) g 2(C0

Note that we may assume that pj is defined. Then,

{ω+ :(ω, x), (ω, y)eΣ, d(x, π^y) g (C0 + l)r}

c (ω+ :pϊ(Ej(ω,y)) g £ and

Now, by lemma 2.6 of [Mat] we have

for some constant Q. So,

^ £ and EJ(ω9y)e<£Xίy} ^ EQ
''d(x,y)d>'

Letting y vary in B(x,rt) and integrating as we did in (3.3) we get for rr ̂  0, r0:

*r^β' Σ β-
n ^ - ί l o g r

which completes the proof of the main proposition. /

Turning to (**) in 4.1, we now allow j to be anything with A7 <0 and recall
that β is the Holder exponent of Ej as defined in (2.1). Let η be a measurable
partition of Ω^ x M subordinate to Wj, and let {μη

ωx} be a family of conditional
probability measures associated with η. We shrink Σ in two stages. First we choose
θ' > 0 so that the set

Σn-t ]
and μ^xB

j

ω(x, r) ̂  Er^ = j J for all r ̂  θ' \

has positive μ*-measure. Then we choose θ" > 0 so that

yt+t)
J J for all r < θ"

continues to satisfy μ*Σ" > 0.

Proposition 4.2.3. Lett>l-β. Then for μ* a.e. (ω,x)εΣ",

Γ ω ω , ,
hm sup - =— - - ̂  σ - (1 - ί) £ y£ + 3ξ.

r-o logr . ^ .
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Proof. Let (ω, x)εΣ" and consider r < θ, θ', θ" small enough that BJ

ω(x, r1} c ηω(x).
We can choose y 1 , . . . , y N r e B j

ω ( x , ( r / 2 ) t ) r ^ Σ f

ω such that:

/ Λ / Λ
1. BJJ yi9- I and BJlyk,-\ are disjoint for iφk

and
/ / r

2. Bΐ x, -
\ \Z

Using the estimate in the definitions of Σ' and Σ", we see that

We have arranged for the balls B(yi9rβ) to be pairwise disjoint and we will
see from Lemma 4.3.1 (stated in the next subsection) that each B(yί,r/3)r^σω is
contained in σj

ω(x, r, t). So we have

which is the desired estimate. /

Thus, by fixing t with 1/2, 1 — /? < ί < 1, comparing the conclusions of
Proposition 4.2.1 and 4.2.3 for j = L,L+ 1 and letting ξ go to zero, we complete
the proof of Theorem A.

(4.3) Proof of Remaining Estimates

Lemma 4.3.1. There exists rί>Q such that for all x,y,z in Λω and r r g r l 5 if
yeBJJx, r<) and d(y, z) £ r/3, then

We first write down the underlying estimates, which we state without proof in
the following sublemma:

Sublemma (a) Suppose φ:&^&+ satisfies φ' ^2D0φ
β.

Then for s ̂  0,

^ [(1 - £)2/V +

(b) If, in addition we have t > 1 — β, r sufficiently small, </>(0) ̂  2r/3 and s ̂  rr, then

Proof of Lemma 4.3.1. Let g1,g2:E
j(ω,x)-^>Fj(ω,x) be functions whose graphs are

exp"1 Wj

Λ(ω,y), exp"1 W{(ω,z) respectively. We need an upper bound on \gί(0) —
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#2(0)|. Let exp~ly = ( u 9 g ί ( u ) ) and define

We assume that r1 is sufficiently small that D exp ~ l in the relevant region is near
the identity. Property (iv) in (2.1) tells us that

If rί is small, then g2 has a small slope, so it follows from d(y9z) ^ r/3 that

Also \u\ ^ r'. Apply the sublemma to finish the argument. /

Lemma 4.2.2 is proved similarly. We suggest carrying out the estimates in TyM
via the exp"1 map and using property (iii) b iv. in (2.1). The constant r0 should
be chosen so that Vx9yeΛω with d(x9y)<rθ9F

j(ω9x) and Ej(ω9y) are roughly
perpendicular.

5. Proof of Theorem A' and Application to Stochastic Flows

5.1 Proof of Theorem A'. Let (;c,z)->v*'z be defined Lebesgue a.e. as in (1.4). Take

j = L or L+ 1 and let Sz be the set of I ^m^ I dimensional subspaces of TZM.
\j^ι J

Observe that EJ(τω,z) is independent of ω0 and

so that the distribution of Ej(ω, x) in $X9 conditioned on fωox = z and Ej(τω, z) = e
for ee$z is given by:

We shall prove under Hypothesis A' that for Lebesgue-a.e. (x, z) and all emSz,
the measure qXίZ,e is absolutely continuous with respect to Lebesgue on $x.
Integrating in z and e9 we prove that Hypothesis A is satisfied, and thus Theorem A'
follows.

Consider a measurable family (x, z) -» v*'z of probability measures on Ω with
the property that for Lebesgue a.e. fixed z, {vx'z,xeM} is a system of conditional
measures associated with the partition ZP on Ω defined by

Then, the measures v*'z and v*'z are carried by the same set Px(z) = zP(x\ and it
is easy to verify that they are in fact equivalent for Lebesgue-a.e. (x, z).

Now, for Lebesgue-a.e. z and every e in $z, Hypothesis A' tells us that for
Lebesgue. a.e. x, the measure qXfZ^e is absolutely continuous with respect to Lebesgue
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on $x, where
qx,z,e(Δ) = vx *{ω:Df-1eeΔ}.

Since qx>z>e and q X f Z > e are image measures of vx'z and vx'z respectively under
ω-+Df~1e, the measure qx>Ztβ is also absolutely continuous with respect to
Lebesgue on $x.

5.2 Stochastic Flows. We shall discuss Hypothesis A' in the case of the stochastic
flow arising from a stochastic differential equation. Let Xk,k = 0, l , . . . ,m, be
(m + 1)C°° -vector fields on a compact manifold M and Bk,k=l9...,m, be m
independent real Brownian motions defined on a probability space Ω. We write

for the Stratonovich stochastic differential equation associated with the X?s. Then
there exists a map

such that for every fixed ί0 > 0, we have

i) φ0 = identity,

andii) the "increments" φ(n + 1}toΦnto are i i d in Diff°°(M),

and such that ξt(ω) = φt(ω)x is the solution of (*) with ξ0(ω) = x (see e.g. [Ku]).
Asymptotic properties of the stochastic flow φ are the same as those of the

system &(M, v), where v is the distribution of φΐo. Here, ^Γ(M, v) satisfies the
condition in (1.1) (see [Ki] and [Ki2]).

Let GL(M) denote the linear frame bundle of M. Given any vector field X on
M, we define a vector field X on GL(M) as follows: let ι/^ be the flow generated
by X. Then for F in CCC(GL(M\^) we define f F by

e) = -

Consider the Strantonovich stochastic differential equation on GL(M) defined by

k = l

Observe that if φ:Ω^C(^,ΌiϊΓ(GL(M)) is the stochastic flow defined by (**),
then for (x, e)eGL(M), ωe A ί0 > 0,

ω))jee) (see e.g. [IW]).

We claim that if the operator L on C°°(GL(M)) defined by

m

LF=-X0F+ ΣX2

kF
k=l

is hypoelliptic, then the system $Γ(M, v) defined by (*) and ί0 > 0 satisfies Hypothesis
A'. This implies in particular that for m ̂  dim M + (dim M)2, there is an open dense
subset in the space of (m 4- l)-tuples of vector fields on M on which Hypothesis
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A' is satisfied.
Let us elaborate a little on the claim above. If {#£, 0 ̂  ί ̂  ί0, fe = 1, . . . , 1, m}

denotes the backward Brownian motions, then the backward equation associated
with (*) is

dηt=-X0(ηt)dt+ ΣXk(ηt)°dBΪQ^t^t0. (*).
fc = 1

Let 0:/2->C([0,ί0] x Diff°°(M)) be the corresponding stochastic flow. Then the
distribution of φ^0

1(ω) and of φto(co) in Diff°°(M) are the same (see [Ku]).
Proceeding analogously with (**) to obtain the backward equation (**), we

see that for any (y,e) in GL(M\ the distribution of (φ~1(ω)y,D(φt'
1(ω))ye) is given

by the fundamental solution of the diffusion equation associated with (**).
The hypoellipticity condition implies that for all (y,e) in GL(M) and a fixed

ί0 > 0, the distribution of (φ^0

1y,D(φ~0

1)ye) is absolutely continuous with respect
to Lebesgue on GL(M). Hypothesis A' follows since for each /c, 1 ̂  k ̂  m, the
projection from GL(M) to Gr(M,fe) preserves the Lebesgue measure class.

Acknowledgements. We are grateful to a number of friends for their comments and suggestions, in

particular to J. Palis and R. Mane for giving us references [Mar] and [Mat] which provide the key
ideas behind this work.

References

[BK] Brin, M., Kifer, Y.: Dynamics of Markov chains and stable manifolds for random diffeo-

morphisms. Preprint

[BN] Brin, M., Nitecki, Z.: Absolute continuity of stable foliation in Hubert space. In preparation
[C] Carverhill, A.: Flows of stochastic dynamical systems: Ergodic theory. Stochastic 14, 273-317

(1985)

[ER] Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys.

57, 617-656 (1985)

[FKYY] Frederickson, P., Kaplan, J. L., Yorke, E. D., Yorke, J. A.: The Lyapunov dimension of

strange attractors. J. Differ. Equations 49, 183-207 (1983)

[IW] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam:
North-Holland Kodansha 1981

[Kil] Kifer, Y.: Ergodic theory of Random Transformations. Progress in Probability and Statistics.
Boston: Birkhauser 1986

[Ki2] Kifer, Y.: A note on integrability of Cr-norms of stochastic flows and applications, 1987

preprint

[KS] Katok, A., Strelcyn, J.-M.: Smooth maps with singularities; invariant manifolds, entropy and

billiards. Lecture Notes in Math., Vol. 1222, Berlin, Heidelberg, New York: Springer 1986

[Ku] Kunita, H.: Stochastic differential equations and stochastic flow of diffeomorphisms. Ecole

d'Ete de Probabilites de Saint-Flour XII. 1982; Hennequin, P.-L. (ed.). Lecture Notes in

Math., Vol. 1097. Berlin, Heidelberg, New York: Springer 1984
[Le] Le Jan, Y.: On isotropic Brownian motions. Z. Wahrscheinlichkeitstheorie Verw. Geb. 70,

609-620 (1985)

[LY1] Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms, part II: Relations

between entropy, exponents and dimension. Ann. Math. 122, 540-574 (1985)
[LY2] Ledrappier, F., Young, L.-S.: Entropy formula for random transformations. Preprint.
[Man] Mane, R.: On the dimension of the compact invariant sets of certain nonlinear maps. In:

Dynamical systems and turbulence, Warwick, 1980. Lecture Notes in Mathematics, Vol. 898.
pp. 23.0-242 Berlin, Heidelberg, New York: Springer 1981



548 F. Ledrappier and L.-S. Young

[Mar] Marstrand, J. M: Some fundamental geometrical properties of plane sets of fractional
dimensions. Proc. Lond. Math. Soc. 4, 257-302 (1954)

[Mat] Mattila, P.: Hausdorff Dimension, Orthogonal projections and Intersections with planes.
Ann. Acad. Sci. Fennicae, Series Al Math. 1, 227-244 (1975)

[T] Thieullen, P.: Fibres dynamiques asymptotiquement compacts: Exposants de Lyapunov.
Entropie. Dimension. Ann. Inst. Henri Poincare Analyse non lineaire 4, 49-97 (1987)

[Y] Young, L.-S.: Dimension, entropy and Lyapunov exponents. Erg. Theory Dynam. Sys. 2,
109-124 (1982)

Communicated by J.-P. Eckmann

Received May 11, 1987




