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Abstract. We discuss the two known multiply connected Calabi-Yau manifolds
which give rise to three generations of elementary particles when chosen as the
classical vacuum configuration of the E8 x E8 heterotic superstring. It is shown
that these two manifolds are diffeomorphic.

1. Introduction

In addition to providing a potentially consistent unification of the fundamental
forces, superstring theory [1,2] has the appealing aspect of leading to highly
constrained low energy models of particle interactions. Once a vacuum state is
chosen much of the low energy structure of such models is determined. There is,
of course, a catch [3]. One must first choose a vacuum configuration. Ideally, one
hopes that further investigation of the underlying theory will ultimately show that
the vacuum state is determined dynamically. For now, however, one does the next
best thing by combining the demands of internal consistency and phenomenological
viability. Analysis of this sort from a number of viewpoints has shown [4], that
this favours vacuum configurations based upon Calabi-Yau compactifications; that
is, vaccua of the form M 4 x X, where M 4 is four dimensional Minkowski space
and K is a three complex dimensional Kahler manifold with vanishing first Chern
class. This certainly narrows down the choice, but, alas, there are many Calabi-Yau
manifolds to choose from [5,6]. As noted, though, after a choice of the Calabi-Yau
vacuum configuration K is made, much of the resulting low energy phenomenology
may be extracted from the topological and cohomological properties of the
manifold. In fact, in the case of the E8 x E8 Heterotic string, the number of
generations of elementary particle multiplets (i.e. 27's of E6) is given by one half
of the Euler characteristic of X, \χ(K)/2\ (after the SU(3) spin connection ω of K

* Part of this work carried out at and supported by the IBM T.J. Watson Research Center, Yorktown

Heights, NY

** On leave from Lyman Laboratory of Physics, Harvard University



106 B. R. Greene and K. H. Kirklin

is identified with an SU(3) subgroup of one of the E8 factors of the Yang-Mills
group), the unbroken gauge group in such a scenario depends upon the fundamental
group πx(K) [7], and the Yukawa couplings upon certain products in the
cohomology ring of K [8,9],

Low energy phenomenology may thus be used to adjudicate amongst the many
Calabi-Yau manifolds which a priori are equally viable vacuum configurations.

The easiest phenomenological constraint to impose is that of the number of
generations; present experimental evidence indicates that Calabi-Yau manifolds
with \χ(K)\ = 6 are most favoured as they lead to three generations. A recent
computer search [10,11] for three generation Calabi-Yau manifolds realizable as
smooth complete intersections in products of complex projective spaces modded
out by freely acting projective discrete symmetry groups has shown that such
manifolds are very rare, ΐn fact, only one such manifold was found.

This manifold (originally constructed by Yau [5]), which we shall denote by
Kl9 is defined by the complete intersection in CP3 x CP3 of bidegree (3,0),
(0,3) and (1,1) homogeneous polynomials, modded out by a freely acting Z 3 discrete
symmetry group. For definiteness, letting the four homogeneous coordinates of
the first CP3 space be denoted by (X 0,...,X 3) and similarly for the second with
X replaced by Y,Kι is given by

) (l.i)

modded out by the Z 3 group G generated by the map g:

g:(X0,XuX2,X3,Y0,YuY2,Y3)^(X0,a
2XuaX2,aX3,Y0,xYu^Y2^

2Y3l

(1.2)

where α is a nontrivial cube root of unity. (The defining equations (1.1) correspond
to a particular choice of the complex structure for K1; varying these equations in
a G-invariant manner yields a space which if nonsingular, is diffeomorphic to K1.)

This manifold, has been shown to yield remarkably realistic phenomenology
when chosen for the vacuum configuration [12]. In addition to Kx, two other
Calabi-Yau manifolds with |χ| = 6 are known to exist, both constructed by Yau
[5]. One of these is simply connected and hence is not amenable to the flux trapping
method of gauge symmetry breaking, making it less phenomenologically promising.
The other, which we denote by K2 is as follows [5].

K2 = £jG/

2Ί, (1.3)

where K'Q is a bidegree (3,3) hypersurface in CP2 x CP 2, G 2 7 is a non-freely acting
symmetry group of order 27, and the tilde denotes that the resulting fixed points
are resolved.

At present therefore, detailed search for Calabi-Yau manifolds which give rise
to three generations has provided two multiply connected (and hence of pheno-
menological interest) possibilities. In this note we show that these 'two' possibilities
are actually diffeomorphic, with the three generation model analysed in [12] giving
the relevant phenomenology for a particular choice of the vacuum moduli.
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2. Fundamental Group and Hodge Diamond

At first sight this claim seems unlikely as the Hodge diamonds and fundamental
groups of these two manifolds have been reported as being distinct [5]. We now
show that they are in fact identical.

Recall from [5] and that fundamental group of K1 is Z 3 and from [12] that
the Hodge diamond for Kι and its covering space Ko are given by:

1
0 0

0 6 0
1 9 9 1 (2.1)

0 6 0
0 0

1
and

1
0 0

0 14 0
1 23 23 1 (2.2)

0 14 0
0 0

1

respectively.
To construct K2 we choose the nonsingular defining polynomial for the bicubic

K'o to be

Σ xbϊ + »( Σ (*?)>?+1 + *?)>?-1)) = 0, (2.3)
i = 0 \ ί = 0 /

where δ is a complex number, the x's and y's are homogeneous CP2 coordinates1,
and we mod through by the (non-freely acting) group G 2 7 generated by the three
maps:

σλ\{x0,xux2) x O W i ^ H ^ i ^ ^ o ) x(;Vi>;V2>3>o)> (2 4 )

σ2:(x0,xux2) x (yo,yl9y2)-+(x0,ocxux
2x2) x (y0,ocyuoc2y2l (2.5)

σ 3 :(x 0,x 1,x 2) x ( j ; 0 ,y l 9 y 2 )->(x o ,x u x 2 ) x {yo,ayux
2y2). (2.6)

Notice that σ3 and σ|σ 3 each have three fixed tori when acting on the manifold
K'o [5].

To compute the Hodge diamond, we proceed in stages. On K'o we apply the
Lefschetz Theorem in the form

hp'q(K'o) = hp-q(CP2 x CP2) for p + q < 3 (2.7)

t o c o n c l u d e t h a t hlΛ=29 hlt0 = h0Λ = 0, a n d of c o u r s e , h°'° = l. F r o m t h e
a d j u n c t i o n f o r m u l a [ 1 3 ] w e h a v e χ(Kf

0)— — 1 6 2 , a n d h e n c e h1Λ —h1'2 = — 8 1 .

1 Throughout this letter, CP2 homogeneous coordinates are given by lowercase letters, and CP3

homogeneous coordinates are given by uppercase letters
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Thus, we have the Hodge Diamond:

1
0 0

0 2 0
1 83 83 1 (2.8)

0 2 0
0 0

1

The group generated by σι and σ2 does act freely and hence K'0/(σι, σ2) is smooth
and has Euler characteristic 18. Also, h1Λ remains two, as these are just the
pullbacks of the two CP2 Kahler forms which are invariant under σί and σ2. Thus,
h1'2 on this quotient space is 11.

The final step in the construction is modding out by o3. The easiest way to
analyse the resulting cohomology is to split it into a sum of that derived from the
non-singular part of the space with that derived from blowing up the singular tori.

For the nonsingular part, F, we employ the same reasoning as above to write
the contribution to the Hodge Diamond of K2 as:

1
0 0

0 2 0
1 5 5 1 (2.9)

0 2 0
0 0

1

The value of χ(V) is —6.
To analyse the changes in the cohomology which result from blowing up the

singularities, we first study these singularities locally. Around any will-be fixed
point on V, we may construct a B4 (the four ball) with boundary being an S3. On
modding out by σ3, this <$3 becomes the Lens space L(3,2). Thus, to resolve a
single fixed point (on any of the singular tori) we must ςglue' in a smooth four
space Q4 with dQ4 = L(3,2).

The construction of such a Q4 is a well studied problem and has been solved
for the general L(p,q) scenario [14]. ϊn this case, we must take Q4 to be the plum
product of two copies of S2(~ 2), where S2(~2) is the disk bundle over S2 with
first Chern number equal to — 2. (In singularity theory resolving spaces of this
type are known as (A2) Hirzcbruch-Jung strings [15].)

To address the full problem of blowing up the fixed tori, we must examine the
structure of their respective normal bundles in order to understand how they are
embedded in the ambient threefold. Consider one such torus (the other five are
found by cyclically permuting these coordinates and swapping x and y coordinates):

(xl + ό(xϊ + xl) = 0) x (1,0,0). (2.10)

At any point on this torus, we may take (ς1?C2X where ς. = _y./j/0

 a s suitable
normal bundle coordinates, giving us a global frame. The triviality of the normal
bundle allows us to extend the resolution procedure described above merely by
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extracting a tubular neighborhood around any of the fixed tori of the form

7 2 x £ 4 (2.11)

on KQ, and replacing it by

Γ 2 x β 4 (2.12)

on /<2. Viewed on K2, this procedure extracts T2 x CL(3,2) (where CL(3,2) is the
cone over L(3,2)) and replaces it by T2 x Q4. Since the Euler characteristic is
multiplicative, we see that this procedure preserves the χ{K2) = — 6.

However, the individual Hodge numbers are not preserved. The Hodge
diamond of T2 is simply:

1
1 1 (2.13)

1

While, similarly, the Hodge diamond of T2 x Q4 is that of T2 x {S2 A S2) (where
the Λ denotes the plum product, and equality follows because the latter is the
deformation retract of T2 x Q4). This gives Hodge diamond for T2 x Q4:

1
1 1

0 3 0
0 2 2 0 (2.14)

0 2 0
0 0

1

On K2 we must perform this procedure twice (for each of the two pairs of three
fixed tori). This yields the net change in the Hodge diamond being:

0
0 0

0 4 0
0 4 4 0 (2.15)

0 4 0
0 0

0

Finally, combining this result with that for the non-singular part V of K2 we find
that the resolved Hodge diamond is:

1
0 0

0 6 0
1 9 9 1 (2.16)

0 6 0
0 0

i

which is precisely that of K1. Furthermore, following from the above, the preimage
under o\ of each of the resolved tori gives a three sheeted cover, as σι permutes
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the tori in two groups of three. Diagonalizing this Z 3 we thus see that the resolution
contributes 12 (2,1) and 12 (1,1) forms which each comprise three regular
representations of Z 3 . Thus, we see that a covering space for K2 has the Hodge
diamond:

1
0 0

0 14 0
1 23 23 1 (2.17)

0 14 0
0 0

1

Notice that this is precisely that of Ko. One might fear that this resolution
procedure may have effected the vanishing of the first Chern class and Kahlerity
properties manifest for K'o; it can be shown however that K2 inherits both of these
characteristics [15].

To address the identity of the fundamental group on the blown up threefold,
it is simplest to reverse the order of the original construction. Starting from the
manifold K'o as given in (2.3), we mod through by the group generated by σ2 and
σ3. As noted, not only does σ3 have three fixed tori, but σ|σ 3 has three fixed tori
as well. These codimension two fixed point sets then allow us to contract any
would-be nontrivial loop associated with the passage to the quotient space; i.e.
X/

0/(σ2,σ3) is simply connected. Upon resolving the fixed tori using the procedure
described above, we then arrive at a smooth simply connected manifold, XQ, with
Euler characteristic 18, this is the covering space of K2. The final step is then to
mod through by σx. As this transformation acts freely, when extended to permute
the exceptional divisors of the toroidal blow-up's rather than the singular tori
themselves, it gives rise to a fundamental group of Z 3 on the quotient manifold K2.

The above arguments make our claim that Kx and K2 are diffeomorphic a
strong possibility, Before making the diffeomorphism explicit, we note the intuitive
identification we shall make.

First recall the standard result from algebraic geometry that a cubic hyper-
surface in CP3 may be realized as a CP2 with six points blown up [16]. Then
notice that if the CP3 coordinates are chosen to be cubic functions of the CP2

coordinates, the bicubic equation in K2 is mapped to a bilinear equation, i.e. a
bidegree (1,1) relation. Apparently then, the two CP3 cubic surfaces which are part
of the definition of Kι may arise from the ambient CP2 spaces (via the resolution
of singularities), and the (1,1) hyperplane arises as the image of the bicubic defining
equation. We make this intuitive notion explicit in the next section.

3. Explicit Diffeomorphism

Thus far we have shown that the two χ = — 6 manifolds Kι and K2 have precisely
the same Hodge diamond and fundamental group. This suggests quite strongly,
but does not prove, that Kγ and K2 are diffeomorphic. Before outlining a proof
that this is indeed the case, we must discuss a few results from the theory of complex
surfaces [15,17,18,14].
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Consider a relation, /, from CP2 to CP3 given by

/:(x o ,x 1 ,x 2 )->(X^X^X^XQX^) = (Xo, * i , ^2, * 3 ) (3.1)

This relation is three-to-one except at the three CP2 points (0,0,1), (0,1,0), and
(1,0,0) where it is one-to-one. The image in CP 3 is the singular cubic surface
defined by

Xl-X0XίX2 = 0. (3.2)

This surface is singular at the three CP3 points (0,0,1,0), (0,1,0,0), and (1,0,0,0)
which are precisely the images of the three one-to-one points of/. Now if we mod
through by the nonfreely acting Z 3 on CP2 generated by

h:(x0,x1,x2)-^(x0,ocxuσ
2x2) (3.3)

we get a homeomorphism / between singular spaces from / in the obvious way.
(The action of h makes the map one-to-one everywhere on CP2/Z3.)

f: CP2/Z3 ->{X3 - X0XxX2 = 0) c CP3. (3.4)

If we blow up the three singular points on either side of the homeomorphism
/ we get a diffeomorphism between Kahler manifolds. The relevant blow-up
procedure for each of the points involves an Λ2 Hirzebruch-Jung string (as
discussed above this is a certain disk bundle over the plumb product of two S2's)

[14].
It is a important result of the theory of the resolution of rational

singularities of complex surfaces that the resolution of the singular points of

(Xl~X0X1X2 = 0)c:CP3 yields a surface which is diffeomorphic to the

generic nonsingular cubic surface in CP3 [19]. This result and the above discussion

imply: f~\_s

CP2/Z3 ^ (Nonsingular Cubic Surface) c CP3 (3.5)

(where the Z 3 is generated by the m a p h above and the tilde denotes resolution).
Equat ion (3.5) is one form of the fact that the cubic surface is diffeomorphic

to the CP2 with six (nonsingular) points blown-up [16]. (We can move a r o u n d
the six exceptional divisors differentially, and (3.5) depends roughly on them
coinciding in three pairs.)

We can apply these facts to show that the covering spaces of Kί and K2 are
diffeomorphic. T o this end it is convenient to slightly deform the CP2 x CP2 bicubic
polynomial from which K2 is constructed to the form:

Σ *?J>? + χoχiχ2yoyiy2 + &( Σ (*?3>?+1 + xfyf-i)) = o ) c CP2 x C P 2 .
ί = 0 \ι = 0 J J

(3.6)

(This change does not effect the construction of K2\ it corresponds to a slight
change in moduli. To prove K1 and K2 are diffeomorphic it suffices to show that
any two nonsingular points in their respective moduli spaces are diffeomorphic.)

As discussed above the covering space of K2 is constructed by resolving the
singular curves of a CP2 x CP2 bicubic which are introduced by modding out the
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nonfreely acting group generated by

σlσ3:(x0,xι,x2) x (yo,yi,y2)-*(Xo>(χχi><x2χ2) x ( jWi*^) (3 7)
and

σ 3 : (x 0 ,x ι , x2) x (y0, >Ί,J>2)~»(*o> *i>^2) x ϋ>o> αJ>i»22)>2) (3 8 )

We write the two generators in this way to exploit the fact that they have
precisely the same form as h defined in (3.3) above; σ\σ3 acts on the left CP2 and
σ3 on the right CP2. If we ignore the bicubic equation for the moment, the discussion
above gives the homeomorphism:

F: (CP2 x CP2)/(σ2 5 σ 3 ) - > ( ^ - X0X1X2 = 0) x (Y3 - Yo Yλ Y2 = 0) c CP 3 x CP 3

(3.9)
with

F\(χ0,χi,χ2)
 x Owi,y2)«-*(*o, *i,χ|,χo-^1^2) x (yo?y??yiyoyi>'2)

- ( x 0 ; x 1 ? x 2 , x 3 ) x ( y 0 ? y l 5 7 2 , y 3 ) . (3.10)

In addition note that the map F carries the bicubic equation to a bidegree (1,1)
polynomial in CP3 x CP3. Thus as singular spaces,

aCP3xCP3 (3.11)

Thus, before resolution of the six singular tori to yield the covering space of
K2, the singular space B/(σ2,σ3) is homeomorphic to a 'singular point' in the
moduli space of bidegree (3,0), (0,3), (1,1) complete intersections in CP3 x CP 3 .
Generic nonsingular points of this moduli space correspond to the covering space
of Kx. Thus to show that the two covering spaces are diffeomorphic, we need to
show that resolving the codimension two singularities of the space (3.11) yields a
manifold diffeomorphic to a nonsingular manifold with the same degree defining
polynomials. (In one lower dimension, this would be analogous to the property
of rational surface singularities discussed above.) In general this is not the case for
three complex dimensional algebraic varieties [20]. However, in the case (3.11) at
hand, we can resolve three of the singular tori by an A2 resolution of the three
singular points of the Y-space cubic (Yj — Yo Yλ Y2 = 0) thought of as a surface in
CP 3 . (We can think of the Yt as indexing a family of hyperplane sections of this
cubic via the bidegree (1,1) polynomial. The locus where these hyperplanes meet
the singular points of the X-space cubic sweeps out three singular tori in the
complete intersection. Thus resolving the Y-space CP3 cubic singular points in
this manner is equivalent to resolving the singular torus given in (2.10) (along with
its two partners obtained by cyclically permuting the coordinates).

We can clearly repeat this procedure for the X-space cubic and thus the theorems
of [19] imply that the resolution of the singular curves in (3.11) yields a manifold
which is diffeomorphic to the generic nonsingular bidegree (3,0), (0,3), (1,1)
complete intersection in CP3 x CP3. This completes the proof that the covering
spaces of K1 and K2 are diffeomorphic.
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To extend this proof to Kx and K2 themselves we must consider the nature of
the freely acting Z 3 actions relevant to each space. As discussed earlier, the map
σί of (2.4) is readily extended to an action on the smooth covering space KQ of
K 2; under the map F this extension is carried to the transformation g:

g:(X0,Xl9X29X3) x (Yo, Yl9 Y2, Y3)-+(XuX2,X0,X3) x (Yl9 Y29 Yθ9 Y3) (3.12)

in CP3 x CP3. This Z 3 is in turn related by a PGL symmetry of the ambient
CP3 x CP 3 to the one employed in [12]. (From another point of view, a basis can
be chosen for the exceptional divisors of K\s covering space in which the action
of the free Z 3 is identical to that of σx above [21].) More details concerning the
equivalence of these Z'3s shall be presented in [10].

4. Phenomenological Implications

As noted earlier, low energy superstring phenomenology, to a large extent, is
determined by the manifold of compactification. Beyond the (topological) Hodge
numbers which determine the number of generations and antigeneralions of
elementary particle multiplets, the Yukawa couplings follow from quasitopological
computations in the cohomology ring of the chosen manifold. For negative Euler
characteristic Calabi-Yau manifolds (such as those discussed in this letter) the
Yukawa couplings amongst the antigenerations (the (1,1) forms) are independent
of the complex structure imposed on the manifold, while those amongst the
generations (the (2,1) forms) certainly are dependent on the complex structure [8].
One diffeomorphism class of Calabi-Yau manifolds thus has the potential to give
rise to many possible low energy models. Our result, therefore, does not preclude
the possibility of building phenomenologically interesting models based on this
diffeomorphism class of compactifications leading to three generations other than
that presented in [12], but shows that any such models will differ from that of
[12] merely by a change in the choice of the complex structure.

Acknowledgements. We would like to thank S. Donaldson, N. Hitchm, J. Morgan and T. Phillips for

valuable discussions. We also acknowledge useful discussions with P. Aspinwall, P. Miron and J. Distler.

BRG is partially supported by NSF contract PHY-82-15249 and he gratefully thanks J. Cocke,

G. Lasher and the Physical Sciences department of the IBM Watson research center for hospitality and

financial support. KHK acknowledges the support of an NSF graduate fellowship.

Note added in proof

After the completion of this work, we received a preprint fiom R. Schimmrigk [22] presenting a third

construction of a γ — — 6 Calabi-Yau manifold with h1 1 = 6, h2Λ = 9, and π1 = Z 3 . This manifold is

built from a bidegree (3,0), (1,3) complete intersection in CP1 x CP2 by resolving the fixed curves of

a Zλ similar to that generated by h in (3.3) above, and then modding out a freely acting Z 3 . The

discussions of this letter can easily be shown to imply that this third manifold is diffeomorphic to Kx

and K2.

References

1. Schwarz, J. H.: Superstrings. Singapore: World Scientific 1986
2. Green. M. B. Schwarz, J. H. Witten, E.: Superstring theory. Cambiidge. Cambridge Univ. Press 1987



114 B. R. Greene and K. H. Kirklin

3. Heller, J.: Catch-22, New York: Simon and Schuster 1961

4. Candelas, P. Horowitz, G. Strominger, A. Witten, E.: Nucl. Phys. B258, (1985)

5. Yau, S.-T.: Argonne symposium on anomalies, geometry and topology. Singapore: World Scientific
1985

6. Hύbsch, T.: University of Maryland preprint (1986)
7. Witten, E.: Nucl. Phys. B258, 75 (1985)
8. Strominger, A. Witten, E.: Commun Math. Phys. 101, 341 (1985)
9. Strominger, A.: Phys. Rev. Lett. 55, 2547 (1985) and in: Unified String theories. Green M. Gross,

D. (eds.), Singapore: World Scientific 1986

10. Aspinwall, P. Greene, B. R. Kirklin K. H. Miron, P. J.: Searching for three-generation Calabi-Yau
manifolds, Oxford preprint

11. Candelas, P.: in preparation

12. Greene, B. R. Kirklin, K. H. Miron, P. J. Ross, G. G.: Nucl. Phys. B278, 667 (1986), Phys. Lett.
180B, 117 (1986) and Oxford preprint 11/87

13. Griffths, P. Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

14. Brieskorn,: Die Ausflosung der Rationalen Singularitaten Holomorpher Abbildungen. Math. Ann.
178(1968)

15. Barth, W., Peters, C, van de Ven, A.: Compact complex surfaces. Berlin. Heidelberg, New York:
Springer 1984

16. See Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977 for a full
discussion

17. Hitchen, N.: Polygons and gravitons. Math. Proc. Camb. Phil. Soc. 85 (1979)
18. Milnor, J.: Singular points of complex hypersurfaces. Princeton, NJ: Princeton Univ. Press 1968
19. Atiyah, M.: On Analytic surfaces with double points. Proc. Roy. Soc. London Ser. A247, (1958)

20. Hitchin, N.: private communication

21. Distler, J. Greene, B. Kirklin, K. Miron, P.: (to appear)

22. Schimmrigk, R.: Texas preprint

Communicated by A. Jaffe

Received March 27, 1987




