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Abstract. In this paper we show that the existence of certain orbits or minimal
sets in an area-preserving monotone twist map is necessary and sufficient for
the non-existence of invariant circles with specified rotation numbers. The
necessity of these conditions follows from classic results of Birkhoff and recent
results of Mather. The sufficiency of these conditions depends on the notion
of a rotation band which associates a set of rotation numbers with a given
orbit or invariant set. We also make some remarks on Mather's paper [M4].
In particular, we use his main theorem to give a lower bound on the width of
the interval of rotation numbers associated with the zone of instability
that "contains" the irrational ω when / has no invariant circle with rotation
number ω.

Section 0

In this paper we generalize some results of [B-H] by showing that the existence
of certain orbits or minimal sets in an area-preserving monotone twist map of the
annulus is necessary and sufficient for the non-existence of invariant circles with
specified rotation numbers. The necessity of these conditions follows from classic
results of Birkhoff ([Bl, B2 and B3]) and recent results of Mather ([M4]). The
sufficiency of these conditions depends on the notion of the rotation band which
is defined in Sect. 2. The rotation band of an invariant set is an open interval of
real numbers whose endpoints, roughly speaking, quantify the fastest and slowest
rate of rotation associated with the set. It can be viewed as a generalization of
Birkhoff s definition of an inner and outer rotation number associated with an
invariant set that separates the annulus ([B3]).

The main lemma (Lemma 2) states that an area preserving monotone twist
maps has no invariant circle whose rotation number lies in the rotation band of
an orbit or minimal set. If / preserves the angular order on an invariant set, its
rotation band is empty. Thus the non-existence of invariant circles is seen to be
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closely related to the existence of orbits on which / does not preserve the angular
order. The importance of the order structure of orbits of monotone twist maps
was first noted by Aurby and Mather and the notion of an "ordered" invariant
set was central to Katok's proof of the Aubry-Mather theorem ([K]).

Our main theorem which is proved in Sect. 2 is:

Main Theorem. If f\A->A is an area preserving monotone twist map and ω is an
irrational number between the rotation numbers of f restricted to the boundary circles
of A, then the following are equivalent:

(1) / has no invariant circle with rotation number ω,
(2) fhas a periodic orbit with ω contained in the rotation band of the periodic orbit,
(3) / has an orbit with ω contained in the rotation band of the orbit,
(4) / has a Denjoy minimal set with ω contained in the rotation band of the

minimal set.

A number of other authors have given criterion for the non-existence of
invariant circles (see [M-P] for a summary). In most cases, the relationship of these
criterion to ours is somewhat unclear.

In the last section of the paper we make some remarks on Mather's paper
[M4]. In particular, we use his main theorem in conjunction with our main lemma
to give an explicit lower bound on the width of the interval of rotation numbers
associated with the zone of instability that "contains" ω when / has no invariant
circle with rotation numbers ω. This bound depends on a number of factors, the
most significant being the maximum value of the Peierls' energy barrier at ω and
the Diophantine properties of ω.

Section 1

We begin by fixing notation. The annulus, A = S1 x [0,1] has universal cover
i = R x [ 0 , l ] with covering projection p:A -> A. The function / will always denote
a diffeomorphism f:A-+A that is isotopic to the identity. The map F.A-+A is a
lift of / if it is a lift in the usual sense and in addition, F(0,0)e[0,1] x {0}. We
let π1,π2:A-+R denote the projections onto the first and second coordinates
respectively. For each zeA, define the rotation number of z under / as

. .. r 71,(^(2))-TI^Z)

p(z, f) = hm sup ,

where p(z) = z. We often suppress the dependence on / and write p(z) for p(z,f).
If Z is an /-invariant set, we let p(Z) = {ρ(z):zeZ}.

An invariant circle for f is an /-invariant subset Γ which is homeomorphic to S1

and is homotopically nontrivial in A. Note that if Γ is an invariant circle, / restricted
to Γ is a circle homeomorphism and thus p{Γ) is a single number. If / has two
invariant circles, Γ1 and Γ2, and there are no other invariant circles in the annulus
bounded by Γ1 and Γ29 then this region is called a zone of instability. The map /
is an area-preserving monotone twist map if / preserves Lebesgue measure and
dπ1°F/δy > 0. In addition, to simplify the statements of our theorems we require
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that / can be extended smoothly to a neighborhood of A. (This is so we can use
Mather's theorem as stated in [M4]). The classic result about invariant circles of
such maps is due to Birkhoff ([Bl, B2 and B3], for a more modern treatment, with
generalizations, see [Fa, H2, K, Ml and M2]).

Theorem. (Birkhoff) iff'.A -> A is an area preserving monotone twist map and Γ is an
invaraint circle with lift Γ, then Γ is the graph of a Lipschitz function R->[0,1].
Further, ifΓ1 and Γ2 are invariant circles which bound a zone of instability, then given
any two neighborhoods U1 and U2 ofΓ1 and Γ2, respectively, there exists z'? zeΛ and
integers nx > n2 and n\ < ri2 withf"ί(z)eU1J

n2{z)eU2J
>h{z')eU1 and fn'2{zf)eU2.

We note that there is a uniform Lipschitz bound on the functions whose graphs
are the invariant circles of/ ([B4, H2 or K]). This implies that the set of invariant
circles of / is closed in A and further, that the set, {p(Γ):Γ is an invariant circle of/}
is closed in R. Thus if/ has no invariant circle with p(Γ) = ω, then there exists a zone
of instability with boundary circles Γ1 and Γ2 with p(Γx) < ω < p(Γ2).

Next, we introduce the terminology we shall use in our statement of Mather's
theorem. As noted in the introduction, invariant sets on which / preserves the
angular order have been central to the study of monotone twist maps and have
been given a variety of names. We use the definition from [K] and adopt the
descriptive terminology from [M-S].

An invariant set Z is called a monotone set under / if

(a) p~1(Z)(^A is the graph of a continuous function π 1(p~ 1(Z))-^[0 ? 1],
(b) JF restricted to p~ι(Z) is order preserving in the first component, i.e.: if

zx,z2ep-\Z) and π 1 ( z 1 ) < π 1 ( z 2 ) , then π 1 (F(z 1 ))<π 1 (F(z 2 )) .

Note that if Z is a monotone set, then there exists a homeomorphism h S1 -+S1

with h(π\(z)) = π\(f(z)) for all zeZ (here π\\A-*Sι is the projection).
Now we extend the notion of a monotone set to that of an n-fold monotone

set which is an invariant set which lifts to a monotone set in some finite cover. An
n-fold monotone set looks like the invariant set of a circle homeomorphism that
"wraps n times around the annuals." We formalize this notion as follows.

Let A{n) denote the n-fold cover of A, i.e. A(n) = A/Tn, where T:A^>Ά is
T(x9y) = (x + l9y). Let pin):A(n)-+A be the covering projection and f{n)\A{n)-+A{n)

be the lift of / that is the projection of the lift F : I - > A A n /-invariant set Z ^A
is called an n-fold monotone set if there exists an /(Π)-invariant set Z{n) c A{n) with
p(n) (Z(Λ)) = Z and Z{n) is a monotone set under f{n). (For this to make sense, we
identify A{n) with the annulus A) Equivalently, Z is an n-fold monotone set if there
is an F-invariant set Z' c A with p(Z') = Z, Tn(Z') = Z and further, (a) Z' is a graph
and (b) F restricted to Z' is order preserving (in the sense of (a) and (b) above).
Such a lift Z' for Z will be called a monotone lift ofZ. Note that if j divides n, any
/-fold monotone set is also an n-fold one.

The n-fold monotone sets in Mather's theorem have the additional property
of being Denjoy minimal sets. An invariant set Σ <= A is a Denjoy minimal set if
(Σ,f) is topologically conjugate to an exceptional minimal set in a Denjoy circle
homeomorphism (see, for example [N] or [M4]). Each Denjoy minimal set carries
a unique, invariant probability measure ([Fu, HI]). These measures may be used
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to put a topology on the set of Denjoy mmimal sets for /. This topology is called
the vague topology (see [M4] for more details). If Σ c A is a Denjoy minimal set
that is also an n-fold monotone set, we will call Σ an n-fold Denjoy minimal set.
Mather's theorem asserts the existence of many such sets with rotation number ω
for an area preserving monotone twist map with no invariant circle with rotation
number ω. It is convenient to parametrize these n-fold Denjoy minimal sets by
parametrizing their monotone lifts. If Σ is an n-fold Denjoy minimal set, let Σ' <ΞΞ A
be a monotone lift. We use the unique invariant probability measure on Σ to get
an F-invariant measure on Σ\ denoted μ r , with μΣ.({yeΣ'\ξ ^ τc1(y) ^ ξ + n} = n
for all ξeR. We now define φ:Σ'-+R via φ{z) = μΓ{{yeΣ':0 ^ πx(y) ^ π^z)}).
Since Σ' is a monotone lift, we may also define a function ι//:R—>R via
φ(x) = max {φ(z):zeΣf and π1(z)^x}. For future reference, we note some pro-
perties of φ and φ. These properties can be easily derived from standard results
on Denjoy minimal sets using the fact that Σ' is a monotone lift.

(i) If we let Rω\R^R be Rω(x) = x + ω, then for zeΣ', φ°F(z) = Rω°φ(z).
(ii) φ is weakly order preserving, i.e. for z1,z2eΣ\ π 1 ( z 1 ) < π 1 ( z 2 ) implies

_
(iii) φ(x + n)
(iv) For beR, φ~ι{φ{b)) is at most two points.
We can now define the function which will parametrize Mather's n-fold Denjoy

minimal sets. Given ξeR, define ^{monotone lifts of n-fold Denjoy minimal
sets} -*RW by defining its Ith coordinate as,

Thus Ψi(Σ') is the measure of the portion Σ' that lies in the vertical strip
[_ξ + i+l,ξ + ϊ] x [0,1]. Note that Ψ depends on ξ, and we will denote this

n

dependence (when needed) by writing Ψξ. Also, £ Ψi(Σ') = φ{ξ + n + 1) —

Mather's theorem states that the image of Ψ contains an n — 1 dimensional
disk. Moreover, he precisely specifies this disk. As this will be crucial to our
applications, we give this specification. Given δ > 0, let Bδn = (veRn~1:\vί — Vj\<δ
and \Vi\<δ for i,j = l , 2 , . . . , n — 1}. Now define an affine map / l : R n ~ 1 ^ R "
via A(v1,...,vn-ί) = {l + vl9l+v2-vl9...9l + l+vn-1-vn-2A-vn-1) and let
Cδn = Λ(Bδn). Since A is injective and Bδn is a topological disk, we have that Cδtn

is an n — 1 dimensional disk. Ψ will turn out to be a homeomorphism onto Cδ>n

when the domain of Ψ is restricted to the monotone lifts of a certain collection of
n-fold Denjoy minimal sets. If M is a collection of n-fold Denjoy minimal sets, let
#(M) = {Σ' c A:Σ' is a monotone lift of a ΣeM}. The vague topology of #(M) is
obtained from the vague topology on M and the projection #(M) -> M.

Before stating Mather's theorem, we informally describe its contents. An n-fold
Denjoy minimal set Σ, is a minimal set that wraps n-times around the annulus. If
Σ has rotation number ω, the average speed for traversing all n loops is ω. The
function Ψx gives the amount of measure of Σ that is contained in the Ith loop.
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Since the invariant measure on Σ' may be used to define a semiconjugacy to rigid
rotation by ω, one may view Ψt as measuring the 'speed" of orbits under iteration
in the ith loop of Σ. Thus Ψ parametrizes the monotone lift of an rc-fold Denjoy
minimal set via the speeds in each of the n — 1 loops of its projection to A. Since
the average speed to traverse all n loops must be ω, there are only n — 1 free
parameters. Mather's theorem asserts the existence of sufficient n-fold Denjoy
minimal sets so that this parametrization gives "speeds" in an rc-dimensional ball.

Theorem. (Mather) Letf:A-+A be an area preserving monotone twist map and ω
be an irrational number between the rotation numbers off restricted the boundary
circles of A. If f has no invariant circle with rotation number ω, then there exists a
ξeR such that for each positive integer n there exists a δ > 0 and a collection Mn

of n-fold Denjoy minimal sets for f so that Ψξ:Ή(Mn)-+Cδn is a homeomorphism
when ^(Mn) is given the vague topology.

The quantities ξ and δ and the collection Mn in this theorem are explicitly
described in [M4]. They are given in terms of data derived from the function /
and the arithmetic properties of the number ω and will be described in Sect. 3.

The implication of this theorem that is perhaps of most interest is obtained by
noting that the set Mn with the vague topology contains a topological n—\ disk.
To see this, one projects ^{Mn)-^Mn and notes that the projection is n to 1 except
for those exceptional sets in Mn which are also 7-fold Denjoy minimal sets for
some 7 that divides n. Mather states his result in this more interesting form. We
have chosen the above formulation as it is more suitable for the applications that
follow.

Section 2

In this section we give two preliminary lemmas and then the proof of the main
theorem. We begin by associating an open interval of real numbers, called the
rotation band, to each /-invariant set Z. The rotation band of Z, denoted RB(Z\
will have the property that any invariant circle, Γ, will satisfy ρ(Γ)φRB(Z)
whenever Z has a dense orbit.

If Z^A is an /-invariant set, define // + :R-»R by //+(x) = sup{π1(F(z)):
π1(z) !g x and zep"1(Z)}. We note some simple properties of H+ whose proofs are
elementary.

(1) H+ is weakly order preserving, i.e. if xx < x2, then H + ix^ ^ H+(x2).
(2) ff+(x+l) = H + ( x ) + l .
(3) For each xeR, one may define the rotation number of x,ρ(x,H + \ in the

obvious way. By virtue of (1) and (2), p(x,H + ) exists and is independent of the
choice of x, and so p(H+) is a single number.

(4) If there exists a zep~γ{Z) with π(Fs(z)) ^ π(z) + r, then ρ(H + ) ^ r/s.
In a certain sense, p(H + ) captures the fastest rate of rotation associated with

Z (although one may have p(H + )> ρ{z,F) for all zeZ). One may also define a
weakly order preserving map associated with the slowest rate of rotation on Z.
Define iί_ R ^ R via H_(x) = inf {π1(F(z)):π1(z) ^ x and zep~ι(Z)}. The rotation
band of Z is defined as the open interval RB(Z) = (p(H _), p(H +)). If ρ(H _) = ρ(H +),
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then RB(Z) is the empty set. This will be the case, for example, if Z is a monotone
set for /. However, if Z is monotone in some n-fold cover and not monotone in
A, it will usually have nontrivial rotation band. In the case where Z is a periodic
orbit, Sect. 2 of [B-H] gives a technique for computing RB(Z).

Lemma 1. Letf:A->A be an area preserving monotone twist map and Γ ^ A be an
invariant circle. If Z <Ξ A is an f-invariant set with a dense orbit, then p(Γ)φRB(Z).

Proof. Since clearly RB(Z) c; RB (closure (Z)), it suffices to prove the result for the
case when Z is compact. Since Γ is a homotopically nontrivial invariant circle in
A, it divides the annulus into two invariant subannuli. Since Z has a dense orbit,
it must be contained in one of them. We shall assume that Z is contained in the
annulus bounded by Γ and the inner boundary of A and show that p(Γ) ^ p(H +),
where H+ is constructed from Z as above. If Z is contained in the other subannulus,
a similar proof shows that p(Γ) ^ p(//_). We shall work in the cover, A, with Γ
and F lifts of Γ and /, respectively. For the balance of the proof we let π = π±.

First, since F(z + (l,0)) = F(z) + (l,0), we have H+(x) = sup{π(F(z)):x - 1 ̂
n(z) = χ a n d zep~1(Z)}. This is the supremum of a continuous function over a
compact set and is thus achieved. Therefore, given xeR, there always exists a
zep~ι(Z) with π(z)^x and π(F(z)) = H+(x).

Next, we prove by induction that if xeR and aeΓ with x ^ π(α), then
Hn+ W ^ π{Fn{a)) for n = 0,1, This will finish the proof as it clearly implies that
p(H+)^p(Γ). To prove the inductive step using the result of the previous
paragraph, find a z'ep'^Z) with π(z') ̂  H\(x) and π(F(z')) - H + (Hn

+(x)). Using
the inductive hypothesis, π(z') ̂  Hn

+(x) ^ π(Fn(α)). Now since z' is below /^ and to
the left of Fn(a\ the monotone twist hypothesis implies that π(F(z')) ^ π(F(Fn(a))).
Thus Hn

+

+1{x) = π(F{z')) ^ π{Fn+i{a)) as required. •
Note that in this proof, the hypothesis that Z has a dense orbit is only used

to get Z completely below or above 7". Any other conditions on Z which insure
this are sufficient to imply the conclusion of the lemma.

If Σ is an n-fold Denjoy minimal set, the next lemma allows one to compute
information about RB(Σ) using the function ψ (or equivalently Ψ) defined in
Sect. 1. The intuitive idea is very simple. If ρ(Σ) = ω and Ψ(Σ') ̂ ( 1 , 1 , . . . , 1), then
orbits are moving with speed faster than ω in some of the "loops" of the minimal
set. This implies that p{H + ) is bigger than this faster speed. Similar comments
hold for p(if_).

In the statement of Lemma 2 we are assuming that the ξ used in the definition
of Ψ is equal to zero. This can clearly be done without loss of generality.

Lemma 2. Let Σ^A be an n-fold Denjoy minimal set with p(Σ) = ω and define
ι^:R->R using a monotone lift, Σ' <^A, as in Sect. 1. If there exist integers rhr'hs
and s' for i = 1,2 which satisfy φ{r'2) — ψ(r\)> s'ω > r'2 — r\ and φ{r2) — */Φ*i) <
sω<r2 — r1, then ωε(r'2 — r\)/s'9 {r2 — r^/s ^ RB(Σ).

Proof. As noted in Sect. 1, for each 5eR, ψ~ 1(φ{b)) consists of at most two points
which we denote as z'b and z£ and which we assume are chosen so that
π1(zf

b)^b^π1(zl). We claim that the hypotheses of the lemma imply that
π ^ F ^ z j ) > r2. This will imply that p(H+) ^ (r2 - rj/s, using property (4) of H+
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given above because

n^F'&J) >r1+{r2-r1)^ π^J + (r2 - rx).

The proof of the inequality />(#_) ^ (r2 - r\)/sr is similar.
To prove the claim, since φ°F = Rω°φ on Σ\ then φ(Fs(z'rι)) = Rs

ω(φ(z'rί)) =
Rs

ω(φ(rι)) = φ(r1) + sω>φ(r2). Since φ is weakly order preserving and
ΦΉΦ(r2)) = {<2> <2}> we have π^F^z^)) > π^z' j ^ r2 as required. •

We remark that the hypothesis of this lemma necessitates r1 φ r2 mod n for if
rι = kn + r2 for some fceZ, then yHri) — φ(kn -f r2) = Φ(r2) + kn, so ^(r x ) — φ{r2) =
rλ —r2. A similar argument shows that r\ φ r'2 mod n.

Proof of Main Theorem. The equivalence of (1) and (2) is contained in [B-H]. Lemma
1 shows that (3) or (4) imply (1). To see that (1) implies (3), by the remarks following
Birkhoff s Theorem, there exists a zone of instability with boundary circles Γx and
Γ2 with p(Γx)<ω< p(Γ2). Now pick rationals pjqί and p2/q2 with p(Γ\)<
Pi/Qi <ω<Pilcί2 < P(Γ2) Using the continuity of /, we may choose neighbor-
hoods U1 and U2 of Γλ and Γ2, respectively, which are small enough to ensure
that π 1 ( F 9 l ( y 1 ) ) < π 1 ( y 1 ) + p 1 and π 1(F g 2(y 2)) > π ^ ) + p2 whenever p^.Jel/f.
Thus using Birkhoff's theorem, we may find a zeA and integers nί and
n2 so that πί{Fqι{Fnί{z)))<π{Fnί

t(z)) + p1 and π1{Fq2(Fn2{z)))> π{F"2(z)) + p2.
Therefore, using property (4) for H+ given in Sect. 1. (and its analogue for //_)
we have ωe(ρ1/qlip2lq2)^(p{H.\ p(H +)) = RB(o(z)\ where z = p(z).

To see that (1) implies (4), using Mather's theorem, choose any integer n>\

and any Σ c Mn so that Ψ{Σ') Φ (1 ,1 , . . , 1). If this is the case (we have let ξ = 0),
n

since by definition, Ψi(Σ') = ij/(i+ l)-φ(ί) and £ Ψi(Σ') = n, there exist r^rje
i = l _ _

{!,...,n} for /=1,2 with r2>rx and r;

2 > r'x and φ(r2) — φ(rι)<r2 — r1 and
*?(r2) ~ ^A(ri) > r2 — r i Thus 0 < (ίA(r2) — φ(rx ))/n < (r2 — r^/rKl, and since the
orbit of zero in S1 under rotation by ω/n is dense, we may find positive integers
s and k with (φ(r2) — φir^/n < s(ω/ή) — k<(r2 — r^/n, and so φ{r2) + kn — φ{rγ) <
sω <r2

Jrkn — r1. But since φ(x + n) = φ(x) + n, letting r2 — r2 + kn, we have
φ(F2) — φ(r1)<sω<r2 — r1. Similarly, we may find a r 2 and s' with φ(r'2) —
φ{r\)> s' ω >f'2 — r'l9 and so by Lemma 2, ωe((r'2 — r\ )/s\ (r2 — r^/s) ^ RB(Σ).

Section 3

In this section we make some remarks on Mather's paper [M4]. In particular, we
use the specification of the δ in his theorem, in conjunction with Lemma 2, to give
a lower bound for the width of the interval of rotation numbers associated with
the zone of instability that "contains" ω when / has no invariant circle with
rotation number ω.

We shall restrict consideration to the class o f / : R 2 - > R 2 considered in [M4],
Sect. 2 and call such a map a area-preserving monotone twist map of the infinite
cylinder. Given such an / :R 2 -»R 2 , there always exists a generating function
h:R2 -»R with f(x,y) = (x',yr) if and only if y = — h1(x9x

f) and / = h2(x, x'\ where
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h1 and h2 denote the partial derivatives with respect to x and x'. For each irrational
ω, using h, one may define a continuous function, Pω :R->R, called the Peierls'
energy barrier which has the property that / has an invariant circle with rotation
number ω if and only if Pω is identically zero (see [M3] Sect. 14 also [A-LD-A]).
Since Pω is periodic, we may define P(ω,h) = max {Pω(ξ):ξeR}. We note that the
quantity A Wω studied in [M3] is a lower bound for P(ω) ([M3] Sect. 25). Mather
has examples for which ΔWω< P(ω).

We now give the specification of δ. Given h, an irrational ω and a posi-
tive integer n, define C(h,ω,n) = sup^/i^x,x') | + \h2(x,x')\:n[ω/ή] — l^x' — x^
n[ω/n] + n + 1}, where [ω/n] means the greatest integer gω/n. Now define
N(h, ω, n) to be the least integer > 4C(h, ω, n)/P(ω, h), and let δ(h, ω, ή) = min {| iω +
j\:i,jeZ and 0<i^N(h,ω,ή)}. This δ(h,ω,ή) is the largest value of δ which is
specified in Mather's theorem. It corresponds to a ξ that satisfies Pω(ξ) = P(co,h),
i.e. ξ is any value at which the maximum of the energy barrier is achieved.

We also need to recall some elementary facts about continued fractions (see
[H-W] or [N-Z] for details). Using the standard notation, each irrational ω > 0
may be expressed in a unique way as a continued fraction, ω = [ α o , α l 9 . . . ] for
posit ive integers a{. T h e fh convergent of ω is pi/qj = [ao,a1,...,aj'], w h e r e pj/qj is
in lowest form. If we let A^q^ω — p^ then the sequences \A^\ and \Pj/qj — ω\
monotonically decrease to zero and alternate signs according to

and ^ - ω = ( - Pj
^ - - ω

In addition, p^_ ί-pj-1qj = (- 1)7'+1 and pfij-2 -Pj~2<li = {- l)7(α7 ). Note that
this implies that pj and pj+1 are relatively prime. Finally, if r and s are positive
integers with \sω — r\< \qkω — p k | , then s ^ ^k + 1 (see [N-Z], Theorem 7.13). Note
that this implies that δ(h7ω,n) = \Δk\, where k = max {ϊ'eN:^ ^ N(h9ω9n) and p^,-
is a convergent of ω}. If a and b are two real numbers, let <α,fc> denote the convex
hull of {α, b}. For two integers m and n, the notation m/n means m does not divide n.

Theorem 3. L e ί / : R 2 ^ R 2 be an area-preserving monotone twist map of the infinite
cylinder with generating function h, ω be an irrational, n be a positive integer and
N(h,ω,ή) be defined as above. If f has no invariant circle with rotation number ω and
we let j(n) = mm{i:pi/qί is a convergent of ω and qt > N(h, ω, n)}, then for any
f-invariant circle Γ,

m + ^ J ' ( n ) + 1 Pj(")+1 + Pj(n) + 2

(n) + q.j(ri) + 1 #j(«) + 1 + Qjin) + 2

Proof Fix n and let δ(h, ω, n) = (5. We first claim that if r, s, r' and s' are positive
integers which satisfy (1) n\r and n\r' and (2) 0 < s'ω — r' < δ and 0 < r — sω < δ,
then / has no invariant circle Γ with ρ(Γ)e(r'/s\r/s). To prove this claim we will
produce an n-fold Denjoy minimal set Σ with (r'/s\ r/s) £ RB(Σ) and use Lemma 1.
Let p,d,p7 and d! be integers with 0 <p,d,d' < n, 0 < p ; ^ n and J Ξ Γ mod n,d' = r'
modπ, and p' = d + pφd' modn. Now choose veBδn(Bδn was defined in Sect. 1.)
whose components satisfy vd = υd, = vp = δ1 and υp, = 0, where 5X is chosen so that
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s'ω — r'<δ1<δ and r — sω < δ1 < δ. By Mather's theorem, we may find a ΣΈMn

with Ψ{Σf) = A(υ).
Now using the definitions of *Fand φ given in Sect. 1, it is easy to see that if

k φ 0 mod n, then φ(k) = k + vi9 where 0 < i < n and i = k mod n. If k = 0 mod n,
then φ(k) = fc, and the above formula makes sense if we let υn = 0. Thus, using
property (2), φ(r') — φ(0) = r' + vά> = r' + δ1 > s'ω > r'. Using the other half of (2),
ψ{r + p) — ψ(p) = r + p + vp, — (p + vp) = r — δλ < sω < r. So using Lemma 2, we
have {r'/s\ r/s) ̂  RB(Σ\ and we have proved the claim.

Now we wish to choose the interval (r'/s',r/s) as large as possible subject to (1)
and (2). The convergents of ω provide a good choice but condition (1) on r and r'
may not always hold, so we need to distinguish several cases. The three cases we
consider are (a) n\pj9(b) n\pj+ x and (c) n][pj and n][pj + 1, where we have let j = j(n).
Note that using the notation from above the theorem we have δ(h,ω,ή) = \Δj_1 .
We shall assume that j is even, the case where j is odd is similar.

In case (a), since Pj and pj+1 are relatively prime, we have the (1) is satisfied if
we let r = pj+ x, s = qj+1, r' = pj+ ί + pj and s' = qj+ί+ qy Further, (qj+1 + q5)ω -
(Pj+i +Pj) = Δj+ι +Δj and 0<Δj+1+Δj<\Δj-1\ = δ, since j is even. Also,
0<pj + 1 — qj+1ω = —Δj + 1<\Δj-1\ = δ9 and so (2) is satisfied. In case (b), using

t h e fact t h a t njlpj a n d nlpj + 2, o n e m a y c h o o s e r' = pj,sf = qj,r = pj + 1 + pj + 2, a n d
s = qj+1 + qj + 2 and use a similar argument to show that (1) and (2) hold for these
choices. In case (c), let r' = pj9 sr = qj9 r = pj+1 and s = qj+1 and show that (1) and
(2) hold. To complete the proof of the theorem, note that

As is clear from the various cases considered at the end of this proof, one may
obtain a better lower bound than the one given in the statement of the theorem
in specific instances. For example, in case (c), there will be not invariant circles in
the wider interval ipj{n)lQj{n)^Pan) + ilQj{n) +1^- Also, if a given n falls into cases (a)
or (b), it may be possible to increase n so that it falls into case (c) while not
increasing j(n).

We also note that it may be possible to improve the general estimate in the
theorem as follows. First, find a Σ as in the first paragraph of the proof but with
δ1=δ. This would necessitate extending Mather's theorem slightly so that the
image of 'Pis the closure of Bδn. This may be accomplished using the appropriate
limit arguments. Then one would like to strengthen Lemma 2 so that its conclusion
holds when ψ(r/

2) — ψ(r'1) = s'ω and φ(r2) — Ψ(ΪΊ) = sω. Using this, the proof of
Theorem 3 would yield the same conclusion as before but with j(n) — 1 in place
of j(n). Unfortunately, the extension of Lemma 2 is not possible without
strengthening its hypothesis to include more information on how the measure on
Σ' is distributed. The problem is that φ~1(φ(b)) for b = rt or r can be two points,
i.e. Denjoy minimal set can have a gap containing the vertical segment {rt } x [0,1].
This is in fact always the case for the minimal sets in Mather's theorem (see [M4],
Theorem 15). This situation could perhaps be remedied by a closer analysis of how
the function φ varies with ξ for a fixed Σ'.
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As a last remark, we do some calculations with an example to illustrate the
theorem. Let / : R 2 - > R 2 be the much studied standard map

k k
(x, y) h-> (x + y sin 2πx, y sin 2πx).

2π 2π

In this case the generating function is h(x,x') = (x' — x)2/2 + (7c/4π2)cos2πx.
Let us restrict to n = 2, 0 < ω < l and k < 4/3, since it is known that / has no

invariant circles when /c>4/3 ([M2]). We also assume that P(ω)< 1 as this is
reasonable in this range (see numerical calculations in [M-M-P]). We thus have
C = 6 + k/2π, and so

Λ r 4C 1 26
Λ Γ + 1^P(ω) P(ωY

Using the standard identities involving pi9qi given before the theorem and
letting 7 = 7(2), the width of the interval from which p(Γ) is excluded is

Now by definition, ^ _2 < A7" and ^7 _ 1 :g A/". If we assume that ω is an irrational
of constant type, i.e. there exists a constant A with at^A for each partial quotient
at in [0,α 1 ,β 2 , . . . ] = ω, then using the identity ^ = ajqj^ι + ^ _ 2 J one has

(A5 + 4A* + 9 A3 + 12A2 + 10A + 4)N 2 '

Since A^.1, calculus yields that the polynomial in the denominator is always less
than 40 A5.

Combining the above using aj + 2 έ 1, we get

i (P(ω))2 1 (P(ω))2

D>
40A5 (26)2 27040 A5

Although we have made no attempt to optimize the estimate in this calculation,
it does give some idea of the importance of the size of the partial quotients, at, of
ω. In particular, for a fixed value of P(ω), the irrational that "sweeps out of widest
zone of instability" corresponds to A = 1, i.e. the golden mean. This gives at least
a vague notion of why this circle should be hardest to break.

Of much greater practical importance would be a computation of this type
that was valid at rationals p/q. There is an analog of Theorem 3 for rationals (see
[B-H], Theorem 5) but it assumes the existence of a non-monotone periodic orbit.
What is lacking is a computable quantity that implies the existence of a
non-monotone p/g-periodic orbit.
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