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Abstract. We derive a set of inequalities for the d-dimensional independent
percolation problem. Assuming the existence of critical exponents, these
inequalities imply:

1, —

where the above exponents are /: the flow constant exponent, v(v'): the
correlation length exponent below (above) threshold, μ: the surface tension
exponent, βQ: the backbone density exponent and ζ: the chemical distance
exponent. Note that all of these inequalities are mean-field bounds, and that
they relate the exponent v defined from below the percolation threshold to
exponents defined from above threshold. Furthermore, we combine the
strategy of the proofs of these inequalities with notions of finite-size scaling to
derive:

where d is the lattice dimension. Since βQ^2β, where β is the percolation
density exponent, the final bound implies that, below six dimensions, the
standard order parameter and correlation length exponents cannot simulta-
neously assume their mean-field values; hence an implicit bound on the upper
critical dimension: d>6.
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Introduction

The upper critical dimension of a system is the dimension above which its critical
behavior can be described by mean-field theory. Indeed, if one calculates
exponents in a mean-field (or Bethe lattice) theory and substitutes these exponents
into hyperscaling relations (relations between exponents which involve the spatial
dimension), the upper critical dimension is obtained by solving for dimension as
the unknown. More sophisticated treatments, based on the renormalization group
approach to "equivalent" field theories, generally yield satisfactory agreement with
this procedure.

The first rigorous proof of mean-field behavior was the work of Aizenman [A]
and Frόhlich [F], who showed, among other results, that in Ising-like systems, the
susceptibility exponent, y, assumes its mean-field value in dimension exceeding
four. (See also [AG, AF, FS] for improvements and some refinements at d = 4.) The
basic ingredient in these proofs is the question of convergence, divergence or
marginality of integrals of products of two-point functions. Thus, if the two-point
function tends to zero as <cr 0 σ x >Hxp ( d ~ 2 fλ/) a t t n e critical point, one has y = l
whenever d + lη — 4>0. Since, by the bounds of [FSS], one has ^ ^ 0 in all
dimensions, there is mean-field behavior provided d>4.

A similar approach to percolation has met with only limited success. In [AN],
the relevant diagrammatics were identified, the result being that y = 1 whenever
d + 3η — 6>0. However, no a priori lower estimate on η was available for this
system. Worse yet, the β-expansion shows that to low order, η is actually negative
[PL, AKM], and high-density series are consistent with η^O in d = 3 [GS].

Since establishing useful bounds on η for percolation problems in any
dimension (other than two) seems almost hopeless at the present time, one might
pose the less ambitious question: How low must the dimension be to force non-
mean-field behavior in percolation?

For two-dimensional percolation, non-mean-field behavior can be explicitly
demonstrated with upper and/or lower bounds on various exponents [ K l ] . In
d > 2, results have been somewhat limited. Based on finite-size scaling, the bound

2
v ̂  - was obtained in [CCFS] for the correlation length exponents in a general

class of disordered systems which includes percolation. One direct consequence of
this bound is that v cannot assume its mean-field value (of χ| when d<4.
Unfortunately, the arguments used in [CCFS] did not distinguish percolation
from the other systems to which the results apply. The price of this generality is of
course reflected in the poor estimate of an upper critical dimension for percolation
- that is, d>,4.

In this work, we will derive inequalities for percolation which (if various critical
exponents exist) imply

max {dv,dv'}^ 1 + 2 0 , (1)

where v and V are the correlation length exponents above and below threshold and
β is the order parameter (percolation density) exponent.

If, as in the analysis of mean-field theories, one substitutes the mean-field values
of β = 1 and V = v = \ into (1), and solves for dimension, the result is d ̂  6. Explicitly,
(1) implies that the correlation length and order parameter exponents cannot
simultaneously assume their mean-field values when the dimension is lower than
six.
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Some amusing features of (1) are:
i) (1) relates critical exponents from above and below the percolation

threshold, and
ii) (1) involves the explicit (additive) appearance of a constant.
As will become clear from the derivation, (i) and (ii) are closely related.
In fact, (1) represents the end product of several related inequalities, and is not

the first item on the agenda:
After a brief (but inevitable) section in which the relevant definitions are

reviewed, in Sect. 2 we will derive what is perhaps the fundamental inequality of
this note:

/ + v ^ l + j 8 Q . (2)

Here / is the flow capacitance exponent and βQ the backbone density exponent.
In Sect. 3, we will describe surface tension from a finite-size scaling perspective

and show that in (2), the exponent / can be replaced by the surface tension
exponent, μ, to obtain

μ + v^l+/? Q . (3)

In Sect. 4, we will supplement the derivations of previous sections to obtain the
inequality (1). The necessary ingredient is an acceptable definition of the
correlation length, ξ', in the percolating regime. We therefore discuss in some detail
the current status of the rigorous work on ξ\ and introduce a (superfluous but
aesthetically pleasing) finite-size scaling ξ from which the inequality (1) is easily
derived.

Finally, in Sect. 5, we will quickly define a chemical distance exponent, ζ, and
show that all our previous considerations are actually a gilded version of a (rather
trivial) mean-field inequality for ζ:

\ A
(4)

1. Notation and Definitions

We will attempt to be as brief as possible; the reader is urged to skip this section
and refer back to it if necessary. More background details and further discussion
can be found in [CC 1].

The percolation problems we consider will take place on the unit-spaced
d-dimensional hypercubic lattices Έά. The nearest neighbor pairs of 7Ld will be
called bonds. Bonds are said to be connected if they share a site.

Percolation problems are defined by choosing a pe(0,1) and declaring each
bond to be "occupied" (or "vacant") with independent probability p (or \—p).
Occupied bonds may be visualized by drawing a line segment connecting the
endpoints. The event that a given bond fails to be occupied may be visualized in
one of two equivalent ways: no line segment is drawn, or the (d— l)-cell orthogonal
to the vacant bond whose center lies at the center of the (missing) line segment is
declared to be occupied. These orthogonal cells are called dual (d— l)-cells (bonds
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in d = 2, plaquettes in d = 3,...), and live on the dual lattice (Z+^) d . Events and
configurations of occupied bonds always admit an equivalent description in terms
of these dual cells.

The (product) measure at parameter value p on the set of all possible bond
configurations will be denoted by Probp( —) or μp{—\ and is called Bernoulli
measure at density p. More generally, expectations with respect to these measures
will be denoted by Ep{ — ).

It is known [BH] that if d^2, there is a pce(0,1) such that, with probability
one, whenever p > pc, there is an infinite connected cluster of occupied bonds, while
if p<pc, all bonds belong to clusters of finite size. The value pc is called the
percolation threshold. We will denote by P^ip) the probability that a bond belongs
to an infinite cluster. If both ends of a bond belong to separate (disjoint) infinite
occupied clusters - that is, clusters which need not both make use of any given
occupied bond - the bond is said to belong to the backbone of the infinite cluster.
We will denote the backbone (bond) density by Q^lp).1

For p <pc, the probability that two distant sites belong to the same connected
cluster of occupied bonds tends to zero. The correlation length below pc is defined
by considering τon(p), the probability that the origin and (n, 0,..., 0) are connected
by a path of occupied bonds. It turns out that [τo n(p)]1 / π converges to a limit which
is denoted by e~i/ξip\ The quantity ξ(p) is called the correlation length. It has been
shown [AB, MMS] that for p<pn ξ(p) is finite, diverging continuously as p/[pc.
Above pc, a different notion of a correlation length must be introduced [since ζ(p) is
identically infinite]. This will be discussed in Sect. 4.

It is a widely held belief that, in these problems, P^p), Qadp), and ξ(p) are
smooth functions of p, vanishing or diverging at pc with a power law. Other
quantities of interest ("scaling quantities") are also believed to have power laws at
the critical point. Various aspects of this issue have been established under certain
conditions - which we will not attempt to list. It is worth stating that these
questions are, to the largest extent, open.

Most of the results in this paper amount to bounds relating various scaling
quantities. Thus, if the scaling quantities have power laws (critical exponents), the
bounds imply inequalities between these exponents. We will use the symbols β and
βQ for the exponents with which the percolation and backbone density vanish. The
letter v is used for the exponent with which the correlation length diverges. Other
exponents will be introduced as necessary.

We will make no attempt to interpret for the reader the sense in which the
exponent inequalities hold; we will assume that those with the inclination to do so
can, e.g. take logs and inferior or superior limits.

We will often be interested in the statistical behavior of configurations in (large)
finite rectangles. We will thus denote by ΛL the set of sites

(5)

1 The notation PΓJΰ(p) and Qx(p) are often reserved for the probability that a given site (e.g. the
origin) is a part of the infinite cluster or the backbone. It is clear that (when positive) the ratio of the
associated bond or site probabilities are bounded above and below by uniform constants
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or, perhaps, the set of bonds with both endpoints satisfying the above restriction.
Embarrassingly enough, many results connected with the critical behavior in finite
regions - which ought to hold in cubes - have only been rigorously demonstrated
in more hospitable rectangles. We therefore introduce the notation

^ I I i L = { x 6 Z d | 0 ^ x 1 , . . . , x d _ 1 ^ n L , 0 ^ x d ^ L } , (6)

where n>\ is an integer, more often than not equal to three. The size of these
rectangles, as defined by the number of bonds, will be indicated with vertical bars,
e.g.

\AL\ = (number of bonds with both endpoints in ΛL). (7)

For future reference, the boundary of these objects will be denoted by e.g. dAnL:

dΛntL = {xeAnJx has a neighbor in Zd\ΛrhL\. (8)

Many results which are believed to be true whenever p>pc have only been
established under technically stronger hypotheses (or in two dimensions). The
"usual" assumption is as follows: Consider the lattice ( Z + ) 2 x K ( d ~ 2 ) , where
Z+ = {xeZ\x^0} and K = {xeZ\0^x^k}. Denote by p{

c

k} the percolation
threshold in these (quadrant) layers, and let

ρ f = l i m / f > . (9)

(The p(

c

k) form a monotone sequence, so the limit always exists.) Clearly ρc^pn

although one believes that Qc = pc in all dimensions. Unfortunately, most of the
important quantities that we will consider above threshold (the flow capacitance,
the correlation length and the surface tension) have actually been established to be
non-trivial only for p > ρc. Establishing the equality of ρc and pc is, in our minds, one
of the more important open problems in this subject.

2. Flow Capacitance

The flow capacitance problem has been described in a variety of contexts [K 2, K 3,
CC1, CC2]. Despite its somewhat unphysical character, it is a pleasant,
analyzable model which describes bulk transport in a random media. Roughly
speaking, the occupied bonds of the Bernoulli problem are considered to be open
channels, while the vacant ones are blocked. Fluid is allowed to flow down the
open channels at maximum flux of unity, subject to the constraint of current
conservation at the sites.

The problem is generally studied in large finite squares or rectangles, e.g. ΛL as
defined in Sect. 1. If ω is a configuration of occupied bonds in ΛL in which the top
face ({xeΛL\xd = L}) is disconnected from the bottom, then there is no flow
through the cube. On the other hand, if there is an open channel connecting top
and bottom, the removal of a few key bonds could disconnect these faces. How
much fluid can flow through the cube is determined by how few bonds must be
removed in order to disconnect a chosen pair of opposing faces. We thus define
ΦL(co) to be the minimum number of bonds in ω whose removal would disconnect
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the top face of ΛL from the bottom. Alternatively:

ΦL(ω) = ( # of disjoint crossings from top to the bottom of ΛL in ω). (10)

When we count the number of disjoint channels which connect the two near faces
of AnjL, we will use the notation Φn L.

The flow capacitance of the medium is determined by the large L behavior of
φ

—JZΓJ. Here we must proceed with a little caution: There are several senses in which

L~{d'1)ΦL could converge to a limit - the nicest of which would be almost surely.
The general problem, in d 7z 3, of the large L behavior of ΦL is, at present, open. For
p<pc, it is easy to show that ΦL-+0. For p>ρc it has been shown [CC1,CC2] that

Φ
with probability tending to one, -j=γ is bounded below uniformly for L large

/ i

enough. Under the condition (\—p)<ζ\, Kesten [K2, K3] has established
essentially optimal results including the a.s. existence of the L|oo limit of
Φn,L/[nLY~ι independent of n.2

We will not address the issue of the existence of limits in this note, instead, we
first define the median flow

ΦL = ma.x{n\ΦL>n with Prob>\) (11)

and

φL = L-«-»$L. (12)

We will work with the infinite-volume flow capacitance

(13)

When the need arises, we will use similar notation amended by subscripted n's to
denote flow capacitances in boxes of other shapes.

The φjj)) are monotone increasing and vanish for p<pc. Presumably, they are
zero at pc and positive for p>pc, but this has not yet been rigorously established.
Under the optimistic assumption that φjj)) vanishes at pc with a power law, we will
denote the power by /

Before we get to the principal business of this section, we need the following
straightforward result:

Lemma 1. Let Qn(p) = n~dEp( # of bonds in Λn which are connected to dΛn by two
disjoint paths). Then, if p>pc,

Proof If a bond, b e An, is in the backbone, it is connected by two disjoint paths of
occupied bonds to the boundary dΛn. This implies the bound

Jp). (14)

2 In fact, one can even consider the flow in drastically elongated shapes. Provided that the cross-
sectional area is a (small) constant times the log of the length in the flow direction, the results of
[K2, K3] and [CC1, CC2J apply
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Other mechanisms by which b may be connected to the boundary include b
being in a finite cluster or in a "dangling end." (These are the only possibilities;
there are no "spineless clusters, "since we have assumed that p > pc. For a detailed
discussion of this and other points in this paragraph, see [CC 3, CC4].) If b is in a
dangling end, there is a unique bond which attaches b to the backbone;
furthermore, the removal of this bond would place b in a finite cluster. Thus both of
the above mechanisms, in essence, imply that b is in a finite cluster which is
attached to the boundary.

Pick k<ζn and denote by εk(p) the probability that a bond is in a finite cluster or
dangling end of size exceeding k. It is not hard to see that

QniP) ^ Q OO(P) + Φ) + (oonst)2d - . (15)

The desired equality follows by taking first n and then k to infinity. Π

We are now prepared for the principal result of this section.

Theorem 2. Let ε > 0 and define the below-threshold correlation length length ξ(ε)
ΞΞξ(pc — ε), and the (above-threshold) flow capacitance φ%{ε) = φ%(pc-\-ε) and
backbone density Qo0(ε)^QΌC{pc + ε). Then

f(ε)^ [const]—*—-.

Proof Let L^> 1 and consider the event ML that two chosen opposing faces of ΛL

are connected by a path of occupied bonds which lies inside ΛL.
Our proof, which we will first run through informally, will amount to a lower

bound on e ~ L / ξ ( ε ) ^ P r o b P c _ ε [ ^ L ] .
We begin with the observation that although the event 0lh rarely occurs at

pc — ε, it is very likely at pc + ε. Indeed, above threshold, one typically sees ΦL

disjoint occurrences of ML. Since, roughly speaking, the only bonds which could
contribute to the flow are those in the infinite backbone, one can expect to find a

short path of length tό < — crossing the box.
ΦL

Now to get from pc-\-ε to pc — ε, we take occupied bonds in the density pc + ε
2ε

configuration and remove them with (independent) probability λ(ε) = — — . The

probability that the short path will survive this removal is

(1 - λ(ε)Y< ^ exp - (const) ί ε
ΦL

Thus, as L->cc, one obtains

ξ(ε) ̂  [const] —-—-. (16)

Let us now attend to details. For the lower bound on ProbP c_ ε[^?L], divide ΛL

and its immediate vicinity into N cubes, Λ{*\ / = !, ...5ΛΓ, of scale n with n fixed and
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N

N = (L/n)d{\ + 0{LΓι)) chosen so that ΛL= [j A^ contains ΛL. Let ΩL denote the
i = 1

set of configurations of the slightly larger cube. If ω e ΩL, define Qn\ω) by

Q$\ω) = (Φ of bonds in Λf connected to dA® by two disjoint paths). (17)

It is evident that the Q,(,ι)(ω) are i.i.d. random variables with mean Qn(ε) = Qn(pc +
 ε)

Next, define ΩφL = {ωeΩL\ΦL(ω)^ΦL(ε)} [so that, by definition,
μPc + ε ( ί 2 φ J ^ ^ ] . It is clear that, for each ωeΩ0L, one can find an occupied path
crossing AL of length /^(ω), where

Uω)^l-ndi Q<£\ω). (18)

Note that the fact that we are above threshold is enough to ensure that we are
not dividing by zero in the right-hand side of (18). Indeed, iϊp>pc, the surface of a
cube of scale X is, by the ergodic theorem, connected to infinity with probability
tending to one as K]co. Thus, in cubes of scale LpKpί, there are, with high
probability, paths between opposing faces of AL which go to the surface of a
smaller cube, of scale X, located in the center. Using the recent result of uniqueness
of the infinite cluster above threshold [AKN], one can therefore find an
intermediate scale, X*, inside of which it is very likely that these paths will connect.
Thus, one has

l i P b + ε ( Φ L ^ l ) = l . (19)

Using the law of large numbers we have that, for any positive ό,

(20)

tends to zero. Thus, for N large enough, XQW(O<(1 +δ)NQn with probability
i

exceeding f, and hence, for all sufficiently large L,

As L|oo, we may therefore write
Γ n (FM

(21)

where c = 0(\) is any constant for which (1 — λ(ε))^.e εc uniformly in ε.

Next, we rewrite ΦL(ε) = ώΛε)IΪ~ι and ndN = Ld( 1 + θf — I ), and take the
/j \th V \LJ)
— root of both sides of (21). Using the known result that [ P r o b P t _ ε [ ^ L ] ] 1 / L

-+e1/ξ [see, e.g., Eq. (46)] and letting L tend to infinity along any sequence which
produces ψΛε\ we obtain

1 rΠ (P)

(22)

We now let n\oo and, if desired, discard δ. The final result, as promised, is

%^-. D (23)
(β)
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Corollary. //, as p]po the correlation length diverges with exponent v, while as p[pa

the backbone density vanishes with exponent βQ and the flow capacitance vanishes
with exponent /, then

/+v^l+j3Q. (2)

Remark. As noted earlier, the inequality in Theorem 2 relates quantities defined
above and below the percolation threshold, in particular at equal distances, ε,
above and below pc. However, a quick glance at the proof shows that one need not
evaluate the relevant quantities at equal distances above and below pa although
this usually yields the most efficient bound. Indeed, suppose that the distance
below the critical point is ε while the distance above is ε'. Setting ε = (ε')h with b^ί,
the result is f+bv^l + βQ, which is not particularly enlightening. On the other
hand, if we set ε! = εa with a > 1 we get

f^βQ (24)

This rather simple minded bound on / (noted in [CC 2]) actually turns out to be
more efficient than (2) in d = 2.

3, Surface Tension

The subject of surface tension for Bernoulli systems in dimension three and higher
was addressed some time ago in [ACCFR]. Details and definitions can be found in
[ACCFR] and/or [CC 1]. For our purposes, the (d = 3) problem is formulated as
follows:

Consider the three-dimensional Bernoulli bond system at occupation density
p. The plaquettes dual to vacant bonds may be regarded as occupied (with
independent probability 1— p). Now denote by yL a square loop of side L
composed of dual lattice edges. The event of interest is:

WyL = [ω\3 a collection of occupied plaquettes whose boundary is yL}, (25)

in terms of which the surface (or string) tension may be defined as the limit:

σ{p)=\im-~logEp[ir7J. (26)

The results of [ACCFR] are as follows: First (using the coincidence of critical
points established in [AB, MMS]), it was shown that below pc, σ(p) vanishes.
Furthermore, when p exceeds the critical point ρc (which we remind the reader
morally coincides with pc), σ(p) is positive.

The expected behavior of σ(p) is that it vanishes at threshold according to a
power law; the purported critical index will be denoted by μ.

[ACCFR] also studied a generalization of the problem of plaquettes spanning
loops in three dimensions to r-cells spanning (r— l)-cell loops in d>r dimensions.
In particular, for the case r = (d — 1), i.e. the problem dual to bonds, the principal
results cited above hold mutatis mutandis. Since this is the case that concerns us
here, we will write σ(p) and μ in reference to the (d — l)-cell surface tension (not the
two-cell surface tension).
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The idea of surfaces spanning loops arises in the context of field theoretic
problems. From the view-point of statistical mechanics, one is interested in
interfaces across large hypercubes (e.g. our standard ΛL), that is, interfaces which
are not pinned to any loop, but which must remain within a hypercube. Such
surfaces have been investigated by Kesten [K2, K3] . Let us introduce some
notation to study such interfaces:

Let BLk denote the box

and

Jί

Ltk={ω\3 an interface in BLk which separates xd = 0 from xd = k]. (28)

Note that the event JLt k implies (or is defined by) the condition that no point on the
xd = 0 face is connected to the face at xd = k by occupied bonds inside BLk. We
further define

:Λ Δ ( 2 9 )
The event J LΛ is depicted in Fig. 1 below

Fig. 1. The event JLΛ

These interfaces suggest the following notion of surface tension:

Proposition 3. The limits

1

exist for each k. Furthermore, IL k obeys the a priori lower bound

while if (say) L> 3k, one can find a constant c (which will depend on dimension)
such that

Finally, the limit of the sequence {σk} exists and is, in fact, equal to the full-space
surface tension defined in Eq. (26).
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Fig. 2. Block cell event

Proof. It is not hard to see that for any (integer) n,

(30)

which, together with the typical subadditive arguments, both establishes existence
of the limits

l / k , (31)

and proves the a priori bound. It goes without saying that for finite k, σk > 0.
Next, observe that if L is on the scale of k (e.g. L = 3/c), block cells can be

constructed out of the event J>Lk and pieces of translations thereof (see Fig. 2
above). Block events of this sort were used in various stages of [ACCFR]; the
details can be found in Sect. 3ίi) These 3 d " 1 x 1 block events can be shown to

occur with probability larger than [/3ksk] "-1 + ~ΐ\ Moreover, the block events have
desirable connectivity properties, and can therefore be used to construct yet larger
interfaces. Indeed, the event J>NkΛ can be produced with probability exceeding

1 + T ~ r \ This, together with the existence of σk, implies that log[/ 3 k j k]

Finally, let us attend to the large k behavior of the σk. First observe that the {σk}
form a monotone sequence:

σk + iSσk, (32)

implying the existence of a limit which we will temporarily denote by σ^. It is clear
that σ^^σ. Indeed, for any fc, we have

since plating of the walls oϊBLk, together with the event Juki produces the event
Ψ*yL. This means that Vk, σk ̂  σ.

Next, recalling that the limit of — ,_1 logEp[i^yL] actually exists, it is clear

that for fixed ε, we can find L large enough so that

Consider the event i^γL\H, H>L, that in the hypercube of side H with yL at its

center, we can find a surface spanning yL. Since itryL\H2 3 n^r

y^\Hι when Hγ > H2, and

since i^γL= f] ^ΊL\^ we have that for H large enough

£ p [ ^ d ί / ] ^ ~ [ σ + ε ] L d ~\ (35)
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By plating together Nd~ * translates of yL, and insisting that the event ΨγL\H occur
for each of these loops, we have (modulo relatively insignificant boundary events)
created an interface in BNL + {1I2)H H. Explicitly

where, to obtain the last factor, we have (wastefully) insisted all the cubes along the
perimeter are devoid of bonds. Equation (36) implies the bound σ^rgσ + ε, which
establishes σ^ = σ. •

Although of no immediate use, this finite scaling approach to surface tension
yields some amusing corollaries.

Corollaries. (A) Let yL denote the standard loop of scale L, and consider the
following three events:

i) i^yL;\\ '-"/L is spanned by a surface in the region \x{\, ...,\xd_ι\^L.
ii) # ^ ; _ : γL is spanned by a surface in the half-space.

iii) 1^yL;o'.yL is spanned by an oriented surface.
Then all of these events have associated surface tensions, which we denote by σ^

σ_, and σ 0, respectively. However, (σ||, σ_,σ o ) = σ for all p.
(B) The surface tensionn σ(p) is a right continuous function of p i.e.

lim σ(p + ε) = σ(p).
ε j O

Proof (A) Existence of these surface tensions follows from the usual subadditive
arguments. Furthermore, since all the above listed events are more restrictive than
# ^ , these surface tensions are at least as large as σ. However, for any value of fc,
(σj|, σ_, σ0) must be smaller than σk, since the event JL k (together with some lower
order plating) produces an oriented surface in the column swept out by yL in the
half-space above yL. Equality of (σ||, σ_, σ0) and σ is squeezed from the /c|oo limit.

(B) Continuity of finite-volume probabilities can be easily exploited to
establish continuity of σk(p). This shows that σ(p) is a decreasing limit of
continuous increasing functions. It is therefore right continuous. •

ξIn the previous section, we derived an inequality which involved φ^, Q^, and ξ
In a different context, [CCl, CC2], the flow capacitance was shown to be
controlled by the surface tension. However, this was accomplished by considering
the flow through "thin" slabs (of the form aLxLd~ι with a<ζ\). Another
consequence of Proposition 3 is a strengthening of this result:

Proposition 4. Let p = pc-\-2ε and denote by Φ5 Lthe (easy-way) flow through Λ3>L.
Then

Φ3L^ [const] Ld~ι\\og&\σ{pc + ή

with probability exceeding

I - exp [ - (const) Ld~ίσ(pc + ε)] .

Proof The proof is essentially the same as that of [CCl, CC2], although here we
use the finite-size scaling estimates of Proposition 3. First, we observe that at pc + ε

l - ί 3 t , ι ^ e - e " L ' '- 1 . (37)
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Hence, using [ACCFR, Lemma 4.2], we have that at pc + 2ε

L > A Π ^ l - ε ~ ^ - c σ ' ( ε ) L d ~ \ (38)

By choosing

and assuming that L is largw enough so that

σLrg2σ, (40)

the desired result follows. •

Corollary. If ε is chosen so that σ(ε) > 0, then

llo
ξ(ε)^ [const] —

Thus, if the various critical exponents exist, we have

μ + v ^ l + β Q . (3)

Proof. Recalling the proof of Theorem 2, it is clear that we could have used a
[3L]d~1 x L box, rather than the hypercube ΛL. In particular, we would then have
derived an estimate of ίϋ{ω) involving Φ3,L(ω). At this point, instead of using a
median flow, one simply uses the surface tension estimate of the above
proposition. •

Remarks. 1) As in the Remark following Theorem 2 of Sect. 2, we may scale
differently above and below threshold to obtain the result

μ^βQ, (41)

which was also derived in [CC1, CC2].
2) The reader may wonder whether Eq. (3) could have been derived directly

from Eq. (2) by bounding / in terms of μ. It turns out that, at present, there are
some technical difficulties in establishing an upper bound of the form
φ^ ^ [const] φ%fn', thus one cannot make a definite statement relating / (as defined
by φ^) to μ. It is worth noting, however, that the φ^m and the φ^n are bounded
above and below by multiples of each other whenever m,n>l. Thus any possible
"/n's" are all equal for n>\\ their mutual "value" is smaller than μ.

4. Correlation Lengths Above Threshold

Below pa "correlations" in percolation problems are determined by whether or not
two sites are in the same cluster. Thus, we define

τ0 x(p) = Fvobp(0 and x are in the same cluster). (42)
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Denoting by n the point (n,0, ...,0), subadditivity (from the FKG inequality)
ensures that the limit

^-J l m

x -^o>) (43)

exists; this defines the correlation length ξ(p).
Above po τ0 n would tend, asymptotically, to a constant. Thus, in order to

extract meaningful information, one must either reword the definition of
"correlation" or subtract the asymptotic constant. To this end, we define

τΌ,jc(p) = PΓO')p(0 and x are in the same finite cluster), (44)

and

τo,x(p) = τo,x-Pl(p). (45)

One of the difficulties to be faced when p exceeds threshold is the lack, at
present, of the proof of a bona fide limit for n~γ logτ'0 n o r π " 1 logτ'ό,«• Indeed, this
problem has two facets: (a) Does the limit actually exist, and, if so, (b) What
relationship does the limit bear to the finite-n correlations? Notice that an
unexpected answer to (a) or (b) implies the existence of more than one important
length scale. We will discuss this issue at greater length below; however, it is worth
remarking that the limits of n~1 logτ'0>H and n~~1 logτ'o n have recently been shown
to agree along any subsequence [CCGKS]. Since τ'QJφ) is the only correlation
relevant for this work, we will omit any future reference to the double-primed
quantity.

Below threshold, one not only has the existence of ξ, as defined in (43), but also
the bound

τ o . Λ ^ ~ π / ξ , (46)

which holds uniformly in n. Thus the correlation length serves two roles. To
underscore explicitly the problem above pc, note that one can always define

— = lim inf logτΌ «> (47)

so that, eventually,

τ ' o . ^ e - ^ - , (48)

(where the choice of 2 is of no particular significance). However, a relevant question
which must be addressed is how large does n have to be before (48) is valid? We
must therefore consider the length

ξf

b=min{τ'Otn^e-*nl&Vn>k}. (49)
k

Now if it happens that ξ'b exceeds ξ'a in a meaningful fashion, e.g. their ratio
diverges like a power law along some subsequence as plpc, then there really are two
correlation lengths - with different exponents. Although the authors consider this
to be implausible, there is, at present, no mathematical argument which rules this
out. For the purposes of this paper, we will therefore define ξ' to be the largest
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number such that, uniformly in |x|,

e-Wξ>^-eτ'oΛA. (50)

Thus (in the scaling sense) ξ would be the maximum of ξ'a or ξ'h.
It is worth remarking that, at present, there is no general proof that ξ is finite

for p>pc or that ξ' diverges as p[pc. A sufficient condition for ξ' < oo is that p>Qc

[CCN] 3 .
For p < pc, a physical definition of a correlation length based on probabilities of

finite scale crossing events was introduced [CCF] and exploited in [CCFS]. The
finite-size scaling events, which we will denote by ^ 3 , L , were easy-way crossings of
the rectangles A3 L. It was shown (see e.g. [CC1] or [ C C F ] ) t h a t i f μ p [ ^ 3 ? L ] is too
small, there is exponential decay of connectivities. This implies the existence of
(universal) constants, U(d), such that if p>pc, μ p [^ 3 ,L] = ^(d) Furthermore, if
p<pa then for any λ^ U(d), we can define a finite-size scaling correlation length

which enjoys the bounds

a(λ)LF, λ(p) £ ξ(p) £ — ^ Ά ή — (52)

for some nontrivial a{λ\ b(λ), and c(λ). Note that as far as critical scaling is
concerned, we can identify any LF λ(p) with the correlation length provided that
λ^ U(d). Furthermore, the ratio of two such LF ;(/?)'s will diverge (or tend to zero)
more slowly than any power of the correlation length.

Above pc, a natural object to consider is the maximum scale where one observes
crossings by finite clusters:

L'F κ(p) = suρ{L|Probp(Ξi an easy-way crossing of Λ9L by a finite cluster

of bonds)^K}. (53)

Since less is known about the correlation length above threshold, a few
remarks are in order.

Remarks, (a) It is clear that if K is chosen foolishly large, L'F κ(p) will be zero (or ill-
defined). However, by choosing K sufficiently small, we can always ensure that, in a
region above pc, L'Fκ(p) exceeds one.

(b) The use of "9" in (53) is for a purely technical reason - stemming from our
choice of " 3 " in (51). Our motivation will become clear in the proof of Lemma 6,
below; in practice, any number exceeding three would suffice.

(c) A severe disadvantage of these L'F is that they are not defined in terms of
events which occur in controlled volumes. Thus the results of [CCFS] do not
apply directly. On the other hand, a benefit of the L'F is that, assuming P^iPc) = 0, as
p[pc L'F κ(p) cannot remain bounded for small enough K. Nonetheless, there still
remains the danger that the LF are infinite in some intermediate phase above the

3 In fact, for d > 3, it was shown in [CCN] that ς' < co holds under a technically weaker hypothesis
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percolation threshold. However, under the usual scaling picture, LF would actually

diverge, and do so in a fashion which depends, relatively weakly, on K. E.g. for K in

some range, the ratio of L'F κ(p) to ξ'(p) could approach some function C(κ).

What we have available at present is, of course, a less robust statement.

Proposition 5. // K is chosen small enough to ensure that LFκ(p) makes sense, then

Proof. lΐL'F and/or ξ' is infinite, the bound is seen to be correct. Otherwise, we have,
for any L,

Probp(/1L is crossed the easy way by a finite cluster of bonds) S (<?) (9L)2(d ~i]e~ L/ξ'.
(54)

Substituting in L'F κ(p) for L, and using the lower bound of K to replace the left-
hand side of (54), the result follows after a bit of algebra. •

Our principal result will be stated in terms of the LF κ(p). We start with the
following estimate:

Lemma 6. Let p>pcbe large enough to ensure that L'Fκ(p) is finite if κ<\pcU(d).
Now, consider the event

(3L = {o)\Λ9ίL is crossed the easy way by a path of bonds belonging

to the infinite backbone.).

Then, if L>L'FtK,

Proof We will examine the event ^ 3 ί 3 L . Start by dividing Λ3 3 L into top, bottom
and middle thirds which are Λ9 L and translates. Denote by ^ m i d ) the translation of
the event C§L to the middle copy of Λ9L. Obviously,

Again, underscoring the obvious, it is noted that if the event ^ £ m d ) fails, in order for
the event -^ 3 ) 3 L to occur, one of two things must happen:

i) Notwithstanding the event (^ m i d ) ) c , the backbone is essential in ensuring
that Λ 3 ; 3 L is crossed.

ii) ./1 3 . 3 L is crossed without any help from the backbone.
In the latter case, either a finite cluster or a dangling end has achieved the

crossing. As noted previously, in any dangling end there is a particular bond whose
removal renders the dangling end a finite cluster. Thus, for all practical purposes,
(ii) implies that A3t 3 L is crossed by a finite cluster. An easy calculation shows that

possibility (ii) has probability smaller than κ-\ K^ —.
P Pc

Let us focus on possibility (i). We claim that if the backbone is still essential for
-̂ 3,3L ~ but does not cross the middle third - then either the bottom or top
translate oϊΛ9 L is traversed by a dangling end. Indeed, let us make the observation
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that any two participating backbone bonds are connected to each other by a path
inside A 3 3 L which consists of participating backbone bonds. Thus, the participat-
ing backbone bonds form a cluster which is connected inside Λ3 3 L. By hypothesis,
this cluster cannot have members in both the top and bottom third of the rectangle,
so at least one of these must be crossed by a dangling end in order to deliver M3 3 L .

We thus have the upper bound of 2 K ̂  2 — on the probability of observing (i).
P Pc

Evidently,

/ ^ 3 , 3 L l ( ^ m i d ) m - ύ(ί/2)U(d), (56)

so that

μp(<0L)^{ί/2)U(d). • (57)

The main result will now follow easily.

Theorem 7. Let K be any fixed number which is sufficiently small as described in
Lemma 6. Let ε be chosen so that pc + ε lies in a region where L'FiK(pc + ε) is finite.
Then there are constants k1 and k2 such that

liPcεyJί9,2L'F) = K \ e •>

where, in the above, L'F = L'F(pc + ε).

Proof Consider the rectangle Λ9L with L any length exceeding LFκ(pc + ε). By the
above Lemma, the event r3h occurs with probability exceeding (1/2)(7(d). It is easy
to see that when ^ L does occur, the (conditional) average number of these

9(d-D
crossing bonds does not exceed ——-—— QJ^U. Putting this together with the

(l/2)C/(d)types of estimates which have been done previously (e.g. the estimates of
Theorem 2, with the shortest crossing length, /d, here replaced by the conditional
shortest crossing length, which may be integrated using Jensen's inequality), and
setting L = 2L/

F, one obtains the desired result. •

Remark. It is obvious that the choices of the increment above and below threshold
need not coincide. Thus the previous theorem may be read

All the evidence suggests that the most efficient estimates are obtained when ε = ε'
(cf. remarks following previous theorems). However, this device saves us the slight
embarrassment that, even if we could be assured that ξ diverged with exponent v',
how do we know that v' = v?

Corollary. // the critical exponents v, βQ, and V exist, then

Proof We will start with the weaker assumption that for the appropriate (fixed)
choice of K, L'F κ(pc + ε') = L'F κ(ε') and ξ'(ε') diverge along some sequence tending to
zero. Using the known result [G, CC5] that below threshold the correlation
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length diverges continuously, we can choose an ε(ε') in such a way that the left-
hand side of (58) tends to zero. This implies that

00= lim lε' + εiε'ftQJε'WjίJε'). (59)

Now, assuming the existence of critical exponents, we have

ί+βQ^dv' (60)

if v'^ v, or

V-+βQ^dv' (61)

if v'^v. Equations (60) and (61) imply the statement of this corollary. •

Remark. As has been discussed previously, we may scale ε' at a much faster rate
than ε to obtain a sub-inequality relating only the quantities defined above
threshold. The result, as expressed in critical exponents, is:

(d-l)v'^βQ. (62)

Equation (62) alone pushes the percolation upper critical dimension beyond five.

5. Chemical Distance

The chemical distance is defined (usually above pc) as the length of the shortest path
which connects two regions. For a number of historical and practical reasons, this
distance is measured in units of the correlation length. Thus, inherent in any of the
usual descriptions of a chemical distance exponent, ζ, is the correlation length
itself.

In addition to the polymer physics arena in which ζ first appeared, the notion of
chemical distance plays an important role in a certain class of first passage and
random media problems,4 as discussed in [RC].

Below, we shall list three plausible (albeit informal) definitions of a ζ, all of
which may be identified if one accepts the usual scaling picture of the percolation
critical point.

Definition I. At pc, in rectangles of scale L, the shortest crossing between opposing
faces, £JJL\ will scale with L via

4 In an earlier era, the exponent ζ was believed to be related to the random resistor problem via the
relationship t = (d — 2)v + C, where t is the conductivity exponent (and, presumably, d^dt). This
was based on a picture of "strands" connecting "blobs", and the assumption that the resistance
between neighboring blobs is given by their (chemical) separation, while the blobs themselves are
relatively perfect conductors.

It is now widely believed that in d = 2, t/v is strictly less than one [Z, HDV, HHHS, RAB, LF],
while, as we will show here, ζ^ v in any dimension. This necessarily implies a complication of the
above "nodes-links" picture - at least in d = 2. One must now accept the possibility that the
intrinsic resistance of the strands has been lowered by internal loops appearing on all scales
shorter than the correlation length
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Definition II. At pc + ε, in rectangles of scale ξ'(ε), the shortest crossing between
opposing faces, £χξ\ε)\ scales with ε via

Definition III. At pc + ε, in rectangles of scale L> ξ;(ε), the shortest crossings,
between opposing faces will have the scaling

with

Of course, in the above definitions, we have been a little obscure about the sense
in which the shortest crossings exhibit this purported scaling, i.e. in I—III do we
mean typical or average? According to the usual folklore, this should be
inconsequential; as a matter of fact, our results do not distinguish I-III, nor the
sense in which they are defined.

Theorem 8. Let 7ό(L,p) denote the median and ί ό(h,p) the average shortest-length,
easy-way crossing of Λ3L at density p, given that one exists. Then

(a) μPι-Bl^Δ^Ke'c^L^\

or, in general,

(c) μPc_eim3t

(d) μPe-cidί3.

where c and K are uniform constants of order unity which may vary from equation to
equation.

Proof These are straightforward applications of the previous techniques used in
the proofs of Theorems 2 and 7 and Proposition 4. •

Corollary. Provided that critical exponents for the correlation lengths exist, if
critical exponents for any of the chemical distances exist, they satisfy

and

Remark. We do not consider it a particularly deep result that d^v'. However, it
should be noted that the lower bound of V is a better result than ζ ̂  1 in d = 2, but is
likely to be poorer in higher dimensions.

Proof We will not exhaust all twelve cases since they all involve only slight
modifications of previous techniques. Instead, we will work through a few
examples.
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First, observe from (a) or (b) that when L(ε)>ς(ε) is chosen to drive

Mpc-ε[^3,L(ε)] t o z e r o ? w e obtain

liminfε^(L(ε),pJ=x (63)

and

lim inf εlϋ{L{ε\ pc) = oo, (64)

which implies Ci^v/v'.
As for the exponent(s) ζιu, from (c) and (d), we obtain the inequality

ξ(ε)
c(ε + ε) ~ ~ ό(ε) ^ 1, (65)

where o(ε') is the quantity described in Definition III, as obtained via an inferior
limit of the median or average L~ι ξ\&')ίXL.p^ &'). This gives ζ m > 1 if v'^v or
Cm ^ v'/v if v' S v. The derivation for ζn follows the same line of reasoning. It should
be noted that the above results are, in essence, independent of the definition of ξ\
since ξ enters only as a convenient distance scale.

As in the remarks following previous theorems, we may consider the case ε = ε'a

with α > l . By driving a to infinity in the resulting exponent inequalities, one
obtains that (π, ζm^V. •

Concluding Remarks

It is seen that the bound ζ ^ 1 (modulo the provisos) is the second half of any of the
earlier inequalities (1), (2), or (3). The first halves amount to upper bounds on the
various versions of ς, some of which were implicit in [CC1, CC2]. Thus, from
Theorem 2 one can show that:

tmύf-βQ + v\ (66)

and from Proposition 4:

ς m s μ — [)Q + v . (o/j

Furthermore, examining the considerations of Sect. 4, one has

-βo (68)

If one accepts the standard scaling picture, all of these results are equivalent
below dc. Above dc [with d replaced by dc in (68)] these constitute mean-field
bounds. It is worth noting that, according to the numerical work of [PS], these
upper bounds on ζ are reasonably good in low dimension.
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Note added in proof. Since the submission of this paper, issues (a) and (b) discussed in the
paragraphs below Eq. (45) have been settled. In particular, the limits of n~1logτ'0n and
n~1logτ'όin exist (and agree), and an above threshold bound of the form (46), with power law
modifications, has been established. The latter implies that ζ'a = ξ'b, as defined in Eqs. (47) and
(49). However, the question of nontriviality for all p>pc remains open. See [CCGKS] for details.




