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The Spectrum of a Quasiperiodic Schrδdinger Operator
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Abstract. The spectrum σ(H) of the tight binding Fibonacci Hamiltonian
(Hmn = <5m,n + ! + δm+Un + δmtΛμv(n)9 υ(n) = χ{-ω3,ωi{((n - l)ω), 1/ω is the golden

number) is shown to coincide with the dynamical spectrum, the set on which
an infinite subsequence of traces of transfer matrices is bounded. The point
spectrum is absent for any μ, and σ(H) is a Cantor set for |μ| ^ 4. Combining this
with Casdagli's earlier result, one finds that the spectrum is singular continuous
for |μ| ^ 16.

Consider the discrete Schrδdinger operator H acting on doubly infinite sequences
(..., φ( - 1), φ(0\ φ(l),...), and defined by (Hφ)(n) = φ(n +l) + φ(n-l) + μv(n)φ(n)
with the potential

Φ ) = X[-ω\ωH((n ~ I)™)- ί1)

Here ω = (̂ /5 — l)/2, and χf is the characteristic function of the interval /. H is a
bounded self-adjoint operator on /2(Z); we are interested in its spectrum. This
problem was originally proposed by Kohmoto et al., [1] and Ostlund et al., [2].
Mathematical properties of the sequence (1) were discussed earlier [3], and v(n)
appeared also in some models of dissipative systems [4,5]. The interest in this
particular, nongeneric example of a quasiperiodic Schrόdinger operator is explained
by its connection with a simple dynamical system whose evolution can be studied
with relative ease, so that one may hope for detailed numerical and rigorous results.
Moreover, the spectrum of H has long been suspected to be singular continuous,
irrespectively of the value of μ.

Let Fo = F1 = 1, Fn + ί = Fn + Fn^1. For any solution φ of Hφ = Eφ one can
write

ΨN=TNTN-1...T1Ψ09 ΛΓ^l,
where

(φ(N + l)\ (E-μv(N) -1

{ ) TΛ 1 0
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In particular,

M(n)=TFJFn.1...Tί, nϊtl. (3)

The trace, 2xn, of M(ή) was shown [1] to satisfy the recursion relation xn =
2xn_1xM_2 — xn-3- Due to the repeated multiplication, this sequence is likely to
diverge for almost all initial conditions, i.e., μ and E. Indeed, this was found
numerically [1] and by a renormalization group argument [6]. In a recent rigorous
study [7] Casdagli proved that

BQ0 = {EeU\{xn} is bounded}

is a Cantor set of zero Lebesgue measure for |μ| ^ 16. However, the relation between
the dynamical spectrum B^, and σ(H\ the spectrum in the usual sense, remained, so
far, unclarified. In the present note we show

Theorem 1. For any real μ, σ{H) = 2?^, and the point spectrum is absent.

Remark. Observe that the golden number is in the set of zero measure to which the
general result [10], excluding localization, does not apply.

This theorem together with Casdagli's finding implies that the spectrum is purely
singular continuous for | μ | ^ 1 6 . Concerning the Cantor property (without
λ(σ(H)) = 0), the threshold for μ can be improved:

Theorem 2. σ(H) is a Cantor set for \μ\ ^ 4.

These results are proved below through the use of a series of Propositions. At
first, we recollect several properties of the potential (1); most of them were exploited
in refs 1-7.

Proposition 1.
(i) We have

υ(n) = l(n + l)ω-]-lnωl (4)

where [x] = max{meZ\m^ x}, and hence

t;(_π) = φ-l), n^2. (5)

Moreover,
Ό(F2 + 1) = Ό(1),

v(Fn + l) = v(l% n^3, l£l£Fn (6)
and

v(-F2n + l) = v(l)9 n^l l£l£F2n + 1. (7)

(ii) Let M(n) he the matrices defined by (l)-(3), xn = ^TrM(n), n ^ 1. Then

M(n + 2) = M(n)M(n + 1), n ^ l , (8)
and

xn + 2 = 2xn + 1xn-xn-ί9 n ^ O , (9)

ifx0 = | T r T2 and x_ x = 1. Moreover,

I = x^+ί+x^ + x ^ ί - 2xn + 1xnxn_ί - 1 (10)

is independent ofn, and hence I = (x1— x0)
2 = μ2/4.
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(iii) i F _ N _ 2 = 7V 1...TΓ 1¥ /_ 2 for JV^l. In particular, let L(ή) =
(T1T2...TFχ

1 and yn = ±ΊrL(n\ then Ψ-Fn-2 = L(n)Ψ_2, yn = xn for n^ 1.

Proof. To see (4) use ω2 = 1 — ω and — ω3 = 1 — 2ω:

X[-ωW[((n~" l)ω) = Io3me/:m — 2ω g(n — l)ω <m — ω

olm'.nω < m ^ (π + l)ω<=>[(n + l)ω] — [nω] = 1.

The equalities (6) and (7) hold because FM_ ^F,, is a best approximation to ω (see, e.g.,
[8]), i.e.,

I Fnω - Fn_ i I = dist (FBω, Z) < dist (lω, Z) = dist ( - lω, Z), 1 g / < Fn.

The borders of the intervals for / are checked directly by applying Fnω = Fn^x +
(— l)nωn+1. Equation (8) is a consequence of (6), (9) follows from (8) and
det M(ή) = 1, and (10) can be verified by using (9). To prove (iii), apply the reflection
symmetry (5) and the property (6). These yield L(n + 2) = L(ή)L(n +1); since
detL(rc) = 1, one gets yn + 3 = 2yn + 2yn + 1 — yn for n ̂  1. yn = xn can be checked for
n = 1,2,3, and it follows from the recursion for n ̂  4. Π

The properties (5) and (6) make v(ή) similar to a Gordon potential [9]. This
suggests the use of the following lemma.

Lemma 1. Let B be a 2 x 2 matrix, det 5 = 1. Then

max{\ττB\ \\Bxl\\B2x\\}^Uxl

for any xeC2.

Proof. Apply the characteristic equation B2 - Tr BB + 1 = 0 to the vector x, and
take the norm. This yields

which proves the assertion. •

Proposition 2. For any value of μ, B^ a σ(H) and there is no eigenvalue in B^.

Proof. Let ̂ 0 be a solution of (H — E)φ = 0. Proposition 1 implies that
ψ2Fn = M2(ή)Ψo a n d Ψ-2Fn-2 = L2(ή) Ψ_2 for n ̂  3. L e t EGB^; t h e n \xn\^c for

all n, with some c < oo. Apply Lemma 1, at first, with B — M(n) and x = Ψo, and at
second, with B = L(ή) and x = Ψ-2. This yields for n ̂  3,

m α v /"}/> II Û " II II W | Π > i | | l I / II
m a x \ΔC II x p n ||, ii i 2Fn II / = 2 II ̂ o II?
m o v / o ^ ii ψ II II ιi/ l l l > i | I V / II (λ λ\
m a x ( z c II Ύ - p n - 2 II? II * -2Fn-2 II / = 2 II •* - 2 ll I 1 1 /

Therefore, £ is not an eigenvalue but it is in the spectrum. Indeed, suppose that
Eφσ(H). Then there is a unique φel2(Z) which solves the equations ((if — E)φ)(k)
= (5fc>0. For k φ 0 these are homogeneous, hence ̂  satisfies (11). At least one of φ( — 1),
ι/f(0) and ̂ (1) is nonzero, therefore one of ^o and Ψ-2 is nonzero, and (11)
contradicts φel2. •

In order to show B^ = σ(H), we need to study B^^U — B^.
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Lemma 2. Consider the sequence x _ x = l , x 0 , xl9...9 generated by the iteration
xn + 2 = 2xw + ί x π — Xn-i A sufficient and necessary condition that {xn} be unbounded
is that

\xN-i\SU \xN\>l and | x N + 1 | > l (12)

for some N ̂  0. This N is unique, \xn + 2\ > \xn+iχ

n\ > 1 for n = N, and there exists
c>\ such that \xn\ > cFn~N. If {xn} is bounded then \xn\ <1 + \xί— x o | , any n.

Remark. The lemma implies that | x j > |xn_11, n ̂  N + 2.

Proof. Suppose that (12) holds true with some N^O. Then | x̂ y + 21 = I*JV + IXJVI +
(|xJV + 1 x N | - | x N _ 1 | ) > | x N + 1 x i V | > l 5 and by induction we get |xn + 2 | > \xn + 1xn\
for any n^N. log\xn + 2\>log|xn +i1 -flog|xn | shows that log|x n | increases faster
than the Fibonacci sequence, whence | x j > cF"~N, n^N. We found that

IXa-il ^ 1 < |XJ, |XΛ+il < |XM + 2I < \Xn + *\ < '"

iϊn = N; clearly these inequalities cannot hold for other values of n. Suppose now
that (12) is not valid for any JV, and let | x j > 1. Then \xn-ι \ S 1 and |xn+11 S 1 (and,
in fact, |xM~iXM + il < 1), otherwise we would get (12) with N^n. From (10),

and the maximum of the rhs, with the condition that |x n _ 1 | ^ 1, |xπ + 1 | ^ 1, is at

|xM_ 11 = |xM +!I = 1. This yields \xn\ < 1 + ~/ΐ, as claimed. Π

For fixed μ, define

pll = { £ 6 R | | x J > l } , σn = {EsU\\xn\^l}. (13)

Here xn{E) are polynomials of order Fn, as it can be seen from Eqs. (2), (3) and (9). In
particular, x0 = E/2 and x1=(E — μ)/2. Obviously pn are open sets. We have

Proposition 3. Bc^ is an open set, and

00

&*= U (Pn^pn+i), anyN^O. (14)
n = N

Moreover,
00

Pn^Pn+i= Π Pk, anyn^O. (15)
k = n

Proof. B^ is closed, due to the uniform bound |xn(£)| < 1 + |μ|/2 for EeB^ and the
continuity of xn(E). From Lemma 2,

is a disjoint decomposition of B^. Clearly,

U (σk-i^Pk^Pk + i) )
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hence we find

Pn^Pn+ί^Pn+l^Pn + l ( 1 6 )

oo

and Eq. (14). pnnpn + 1 c f] pk is a consequence of Lemma 2, and the inclusion in
k = n

the other sense is trivial. •

In what follows, we construct periodic approximations to H. The notation p(A)
is used for the intersection of the resolvent set of the operator A with the real axis.

Proposition 4. Let {Hm}™= γbe a sequence of Schrδdinger operators on /2(Z) given by

(Hmφ)(ή) = φ(n + 1) + φ(n - 1) + μυm(n)ψ(n),
where

vm(n) = [(n + l)ωm] - [ n ω j , ωm = Fm_JFm.

Then H = s-lim#m, and p{Hm) = pm.

Proof. Exploiting the fact that ωm is a best approximation to co, one easily verifies
that

+ l, m^leυen

(v(n)-υm(n))2\φ(n)\2^μ2 Σ \Ψ(n)\2^0,
2 N^^m-2

which proves that H is the strong limit of {Hm}. Now t;M is periodic with period Fm.
According to (17), for m ̂  2 even vm repeats periodically the segment (v(l),..., v(Fm)\
therefore the transfer matrix over a period is M(m). For m ̂  3 odd, vm repeats
periodically the segment (v( — F m _ 1 + 1),..., v(Fm- 2)) Due to (7), this coincides with
(v(l\...,v(Fm)\ therefore M(m) can be chosen to be the transfer matrix over a
period. Since |Tr M(m)\ ̂  2 is sufficient and necessary that Esσ(Hm\ the spectrum of
Hm, we find σ(HJ = σm and p(Hm) = pm. Π

In the following lemma U° denotes the interior of the set U.

Lemma 3. Let A, {Am} be bounded self adjoint operators on a Hubert space, A =
. Then

(f]p(Am))°czp(A).

Remark. The lemma remains valid if p is replaced by the whole resolvent set.

Proof. Let Ee(f)p(Am))° Φ 0. Then there exists K < oo such that || {Am - E)~x ||
^ K . Therefore, for any vector φ we have | |(Am — E)φ\\^\\φ\\/K, and, taking the
limit m-^ oo, \\(A- E)φ \\^\\φ \\/K. By WeyΓs criterion, this means Eeρ(A). Π

Proof of Theorem 1. After Proposition 2, it remained to show that B^ c p(H). Take
; by Propositions 3 and 4 there exists some n ^ O such that
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/ 00 \O

Eeρ(Hn)np(Hn + 1) = ί f] p(Hk) I . Since H = s-limHfc, Lemma 3 applies, whence
\k = n )

Eep(H). Π

Combining Theorem 1 with Proposition 3 one immediately obtains

Propositions. σnuσn + 1 is monotonically decreasing, and tends to σ(H)9 i.e., σπu
00

σn + ί^σn + 1vσn + 2,andσ(H)= f] (σnκjσn + 1\ any JV^O.
n = N

The spectrum is nonempty, closed, and from Theorem 1 we know that it does not
contain isolated points. We can complete the

Proof of Theorem 2. From Eqs. (9), (10) and (13) it follows that for any n^O,
σnnσn + 1nσn + 2 = 0 iϊI > 4, and σnnσn + 1nσn+2nσ(H) = 0 ϋI = 4. Fix |μ |^4;
then 7^4. Now σ(H) is a Cantor set if σ(H)° = 0. Suppose the opposite; then there
exists an open interval A c σ(H). A c pn cannot occur for an infinite number of

/ 00 \O

indices : o therwise A c Π p n \ c ρ(H) w o u l d b e c o n t r a d i c t o r y . H e n c e , t h e r e
\fc=l /

exists N(Λ) such that σnnA Φ0 if n^N(A). Fix n> N(Λ); A <=σnnσM + 1nσM + 2

cannot hold, so that for some me{n,n + ί,n + 2}σm has a boundary point Eo in A.
Since Ac:σm^1uσm and A a σm u σm + x, Eo is the accumulation point of both σm _ x

and σm+1. All the σt are closed, hence £ o eσ m _ 1 nσ m nσ m + 1 ; but this is impossible
ϊoτ\μ\^4. •

Remark. An alternate proof can be obtained by observing that / > 4 and Eoeσ(H)
00

imply Eoe f) (σnk-1npnknσnk + 1\ where nk+ΐ-nk = 2 or 3, and l

^ |xn k(£0)| <^/7 + l(cf. (10)). Suppose that EoeΛ cσ(if) for some open interval A.
By the continuity of xnjβ\ the sequence {nk} must be the same for all EeΛ, therefore

( 00 \° / 00 \°

Π K - i n ^ n ( 7 « k + i ) c P| p \ cp(fl), which is a contradiction.
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