The Spectrum of a Quasiperiodic Schrödinger Operator

András Sütỏ*
Institut de Physique Théorique, Université de Lausanne, CH-1015 Lausanne, Switzerland

Abstract

The spectrum $\sigma(H)$ of the tight binding Fibonacci Hamiltonian $\left(H_{m n}=\delta_{m, n+1}+\delta_{m+1, n}+\delta_{m, n} \mu v(n), v(n)=\chi_{\left[-\omega^{3}, \omega^{2}[(n-1) \omega), 1 / \omega \text { is the golden }\right.}\right.$ number) is shown to coincide with the dynamical spectrum, the set on which an infinite subsequence of traces of transfer matrices is bounded. The point spectrum is absent for any μ, and $\sigma(H)$ is a Cantor set for $|\mu| \geqq 4$. Combining this with Casdagli's earlier result, one finds that the spectrum is singular continuous for $|\mu| \geqq 16$.

Consider the discrete Schrödinger operator H acting on doubly infinite sequences $(\ldots, \psi(-1), \psi(0), \psi(1), \ldots)$, and defined by $(H \psi)(n)=\psi(n+1)+\psi(n-1)+\mu v(n) \psi(n)$ with the potential

$$
\begin{equation*}
v(n)=\chi_{\left[-\omega^{3}, \omega^{2} I\right.}((n-1) \omega) . \tag{1}
\end{equation*}
$$

Here $\omega=(\sqrt{5}-1) / 2$, and χ_{I} is the characteristic function of the interval I. H is a bounded self-adjoint operator on $l^{2}(\mathbb{Z})$; we are interested in its spectrum. This problem was originally proposed by Kohmoto et al., [1] and Ostlund et al., [2]. Mathematical properties of the sequence (1) were discussed earlier [3], and $v(n)$ appeared also in some models of dissipative systems $[4,5]$. The interest in this particular, nongeneric example of a quasiperiodic Schrödinger operator is explained by its connection with a simple dynamical system whose evolution can be studied with relative ease, so that one may hope for detailed numerical and rigorous results. Moreover, the spectrum of H has long been suspected to be singular continuous, irrespectively of the value of μ.

Let $F_{0}=F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. For any solution ψ of $H \psi=E \psi$ one can write

$$
\Psi_{N}=T_{N} T_{N-1} \ldots T_{1} \Psi_{0}, \quad N \geqq 1,
$$

where

$$
\Psi_{N}=\binom{\psi(N+1)}{\psi(N)}, \quad T_{N}=\left(\begin{array}{cr}
E-\mu v(N) & -1 \tag{2}\\
1 & 0
\end{array}\right) .
$$

[^0]In particular,

$$
\begin{equation*}
\Psi_{F_{n}}=M(n) \Psi_{0}, \quad M(n)=T_{F_{n}} T_{F_{n}-1} \ldots T_{1}, \quad n \geqq 1 \tag{3}
\end{equation*}
$$

The trace, $2 x_{n}$, of $M(n)$ was shown [1] to satisfy the recursion relation $x_{n}=$ $2 x_{n-1} x_{n-2}-x_{n-3}$. Due to the repeated multiplication, this sequence is likely to diverge for almost all initial conditions, i.e., μ and E. Indeed, this was found numerically [1] and by a renormalization group argument [6]. In a recent rigorous study [7] Casdagli proved that

$$
B_{\infty}=\left\{E \in \mathbb{R} \mid\left\{x_{n}\right\} \text { is bounded }\right\}
$$

is a Cantor set of zero Lebesgue measure for $|\mu| \geqq 16$. However, the relation between the dynamical spectrum B_{∞}, and $\sigma(H)$, the spectrum in the usual sense, remained, so far, unclarified. In the present note we show

Theorem 1. For any real $\mu, \sigma(H)=B_{\infty}$, and the point spectrum is absent.
Remark. Observe that the golden number is in the set of zero measure to which the general result [10], excluding localization, does not apply.

This theorem together with Casdagli's finding implies that the spectrum is purely singular continuous for $|\mu| \geqq 16$. Concerning the Cantor property (without $\lambda(\sigma(H))=0)$, the threshold for μ can be improved:
Theorem 2. $\sigma(H)$ is a Cantor set for $|\mu| \geqq 4$.
These results are proved below through the use of a series of Propositions. At first, we recollect several properties of the potential (1); most of them were exploited in refs 1-7.

Proposition 1.

(i) We have

$$
\begin{equation*}
v(n)=[(n+1) \omega]-[n \omega], \tag{4}
\end{equation*}
$$

where $[x]=\max \{m \in \mathbb{Z} \mid m \leqq x\}$, and hence

$$
\begin{equation*}
v(-n)=v(n-1), \quad n \geqq 2 . \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
v\left(F_{2}+1\right) & =v(1), \\
v\left(F_{n}+l\right) & =v(l), \quad n \geqq 3, \quad 1 \leqq l \leqq F_{n} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
v\left(-F_{2 n}+l\right)=v(l), \quad n \geqq 1, \quad 1 \leqq l \leqq F_{2 n+1} . \tag{7}
\end{equation*}
$$

(ii) Let $M(n)$ be the matrices defined by (1)-(3), $x_{n}=\frac{1}{2} \operatorname{Tr} M(n), n \geqq 1$. Then

$$
\begin{equation*}
M(n+2)=M(n) M(n+1), \quad n \geqq 1, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+2}=2 x_{n+1} x_{n}-x_{n-1}, \quad n \geqq 0 \tag{9}
\end{equation*}
$$

if $x_{0}=\frac{1}{2} \operatorname{Tr} T_{2}$ and $x_{-1}=1$. Moreover,

$$
\begin{equation*}
I=x_{n+1}^{2}+x_{n}^{2}+x_{n-1}^{2}-2 x_{n+1} x_{n} x_{n-1}-1 \tag{10}
\end{equation*}
$$

is independent of n, and hence $I=\left(x_{1}-x_{0}\right)^{2}=\mu^{2} / 4$.
(iii) $\Psi_{-N-2}=T_{N}^{-1} \ldots T_{1}^{-1} \Psi_{-2}$ for $N \geqq 1$. In particular, let $L(n)=$ $\left(T_{1} T_{2} \ldots T_{F_{n}}\right)^{-1}$ and $y_{n}=\frac{1}{2} \operatorname{Tr} L(n)$, then $\Psi_{-F_{n}-2}=L(n) \Psi_{-2}, y_{n}=x_{n}$ for $n \geqq 1$.
Proof. To see (4) use $\omega^{2}=1-\omega$ and $-\omega^{3}=1-2 \omega$:

$$
\begin{aligned}
\chi_{\left[-\omega^{3}, \omega^{2} I\right.}((n-1) \omega)=1 & \Leftrightarrow \exists m \in \mathbb{Z}: m-2 \omega \leqq(n-1) \omega<m-\omega \\
& \Leftrightarrow \exists m: n \omega<m \leqq(n+1) \omega \Leftrightarrow[(n+1) \omega]-[n \omega]=1 .
\end{aligned}
$$

The equalities (6) and (7) hold because F_{n-1} / F_{n} is a best approximation to ω (see, e.g., [8]), i.e.,

$$
\left|F_{n} \omega-F_{n-1}\right|=\operatorname{dist}\left(F_{n} \omega, \mathbb{Z}\right)<\operatorname{dist}(l \omega, \mathbb{Z})=\operatorname{dist}(-l \omega, \mathbb{Z}), \quad 1 \leqq l<F_{n}
$$

The borders of the intervals for l are checked directly by applying $F_{n} \omega=F_{n-1}+$ $(-1)^{n} \omega^{n+1}$. Equation (8) is a consequence of (6), (9) follows from (8) and $\operatorname{det} M(n)=1$, and (10) can be verified by using (9). To prove (iii), apply the reflection symmetry (5) and the property (6). These yield $L(n+2)=L(n) L(n+1)$; since $\operatorname{det} L(n)=1$, one gets $y_{n+3}=2 y_{n+2} y_{n+1}-y_{n}$ for $n \geqq 1 . y_{n}=x_{n}$ can be checked for $n=1,2,3$, and it follows from the recursion for $n \geqq 4$.

The properties (5) and (6) make $v(n)$ similar to a Gordon potential [9]. This suggests the use of the following lemma.

Lemma 1. Let B be a 2×2 matrix, $\operatorname{det} B=1$. Then

$$
\max \left\{|\operatorname{Tr} B| \cdot\|B x\|,\left\|B^{2} x\right\|\right\} \geqq \frac{1}{2}\|x\|,
$$

for any $x \in \mathbb{C}^{2}$.
Proof. Apply the characteristic equation $B^{2}-\operatorname{Tr} B \cdot B+1=0$ to the vector x, and take the norm. This yields

$$
|\operatorname{Tr} B| \cdot\|B x\|+\left\|B^{2} x\right\| \geqq\|x\|
$$

which proves the assertion.
Proposition 2. For any value of $\mu, B_{\infty} \subset \sigma(H)$ and there is no eigenvalue in B_{∞}.
Proof. Let $\psi \neq 0$ be a solution of $(H-E) \psi=0$. Proposition 1 implies that $\Psi_{2 F_{n}}=M^{2}(n) \Psi_{0}$ and $\Psi_{-2 F_{n}-2}=L^{2}(n) \Psi_{-2}$ for $n \geqq 3$. Let $E \in B_{\infty}$; then $\left|x_{n}\right| \leqq c$ for all n, with some $c<\infty$. Apply Lemma 1 , at first, with $B=M(n)$ and $x=\Psi_{0}$, and at second, with $B=L(n)$ and $x=\Psi_{-2}$. This yields for $n \geqq 3$,

$$
\begin{align*}
& \max \left\{2 c\left\|\Psi_{F_{n}}\right\|,\left\|\Psi_{2 F_{n}}\right\|\right\} \geqq \frac{1}{2}\left\|\Psi_{0}\right\|, \\
& \max \left\{2 c\left\|\Psi_{-F_{n}-2}\right\|,\left\|\Psi_{-2 F_{n}-2}\right\|\right\} \geqq \frac{1}{2}\left\|\Psi_{-2}\right\| . \tag{11}
\end{align*}
$$

Therefore, E is not an eigenvalue but it is in the spectrum. Indeed, suppose that $E \notin \sigma(H)$. Then there is a unique $\psi \in l^{2}(\mathbb{Z})$ which solves the equations $((H-E) \psi)(k)$ $=\delta_{k, 0}$. For $k \neq 0$ these are homogeneous, hence ψ satisfies (11). At least one of $\psi(-1)$, $\psi(0)$ and $\psi(1)$ is nonzero, therefore one of Ψ_{0} and Ψ_{-2} is nonzero, and (11) contradicts $\psi \in l^{2}$.

In order to show $B_{\infty}=\sigma(H)$, we need to study $B_{\infty}^{c}=\mathbb{R}-B_{\infty}$.

Lemma 2. Consider the sequence $x_{-1}=1, x_{0}, x_{1}, \ldots$, generated by the iteration $x_{n+2}=2 x_{n+1} x_{n}-x_{n-1}$. A sufficient and necessary condition that $\left\{x_{n}\right\}$ be unbounded is that

$$
\begin{equation*}
\left|x_{N-1}\right| \leqq 1, \quad\left|x_{N}\right|>1 \quad \text { and } \quad\left|x_{N+1}\right|>1 \tag{12}
\end{equation*}
$$

for some $N \geqq 0$. This N is unique, $\left|x_{n+2}\right|>\left|x_{n+1} x_{n}\right|>1$ for $n \geqq N$, and there exists $c>1$ such that $\left|x_{n}\right|>c^{F_{n-N}}$. If $\left\{x_{n}\right\}$ is bounded then $\left|x_{n}\right|<1+\left|x_{1}-x_{0}\right|$, any n.
Remark. The lemma implies that $\left|x_{n}\right|>\left|x_{n-1}\right|, n \geqq N+2$.
Proof. Suppose that (12) holds true with some $N \geqq 0$. Then $\left|x_{N+2}\right| \geqq\left|x_{N+1} x_{N}\right|+$ $\left(\left|x_{N+1} x_{N}\right|-\left|x_{N-1}\right|\right)>\left|x_{N+1} x_{N}\right|>1$, and by induction we get $\left|x_{n+2}\right|>\left|x_{n+1} x_{n}\right|$ for any $n \geqq N . \log \left|x_{n+2}\right|>\log \left|x_{n+1}\right|+\log \left|x_{n}\right|$ shows that $\log \left|x_{n}\right|$ increases faster than the Fibonacci sequence, whence $\left|x_{n}\right|>c^{F_{n-N}}, n \geqq N$. We found that

$$
\left|x_{n-1}\right| \leqq 1<\left|x_{n}\right|,\left|x_{n+1}\right|<\left|x_{n+2}\right|<\left|x_{n+3}\right|<\cdots
$$

if $n=N$; clearly these inequalities cannot hold for other values of n. Suppose now that (12) is not valid for any N, and let $\left|x_{n}\right|>1$. Then $\left|x_{n-1}\right| \leqq 1$ and $\left|x_{n+1}\right| \leqq 1$ (and, in fact, $\left|x_{n-1} x_{n+1}\right|<1$), otherwise we would get (12) with $N \leqq n$. From (10),

$$
\left|x_{n}\right| \leqq\left|x_{n-1} x_{n+1}\right|+\left(\left(1-x_{n-1}^{2}\right)\left(1-x_{n+1}^{2}\right)+I\right)^{1 / 2}
$$

and the maximum of the rhs, with the condition that $\left|x_{n-1}\right| \leqq 1,\left|x_{n+1}\right| \leqq 1$, is at $\left|x_{n-1}\right|=\left|x_{n+1}\right|=1$. This yields $\left|x_{n}\right|<1+\sqrt{I}$, as claimed.

For fixed μ, define

$$
\begin{equation*}
\rho_{n}=\left\{E \in \mathbb{R}| | x_{n} \mid>1\right\}, \quad \sigma_{n}=\left\{E \in \mathbb{R}| | x_{n} \mid \leqq 1\right\} \tag{13}
\end{equation*}
$$

Here $x_{n}(E)$ are polynomials of order F_{n}, as it can be seen from Eqs. (2), (3) and (9). In particular, $x_{0}=E / 2$ and $x_{1}=(E-\mu) / 2$. Obviously ρ_{n} are open sets. We have
Proposition 3. B_{∞}^{c} is an open set, and

$$
\begin{equation*}
B_{\infty}^{c}=\bigcup_{n=N}^{\infty}\left(\rho_{n} \cap \rho_{n+1}\right), \quad \text { any } N \geqq 0 . \tag{14}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\rho_{n} \cap \rho_{n+1}=\bigcap_{k=n}^{\infty} \rho_{k}, \quad \text { any } n \geqq 0 . \tag{15}
\end{equation*}
$$

Proof. B_{∞} is closed, due to the uniform bound $\left|x_{n}(E)\right|<1+|\mu| / 2$ for $E \in B_{\infty}$ and the continuity of $x_{n}(E)$. From Lemma 2,

$$
B_{\infty}^{c}=\left(\rho_{0} \cap \rho_{1}\right) \cup\left(\bigcup_{n=1}^{\infty}\left(\sigma_{n-1} \cap \rho_{n} \cap \rho_{n+1}\right)\right)
$$

is a disjoint decomposition of B_{∞}^{c}. Clearly,

$$
\rho_{n} \cap \rho_{n+1}=\left(\rho_{0} \cap \rho_{1}\right) \cup\left(\bigcup_{k=1}^{n}\left(\sigma_{k-1} \cap \rho_{k} \cap \rho_{k+1}\right)\right), \quad n \geqq 0,
$$

hence we find

$$
\begin{equation*}
\rho_{n} \cap \rho_{n+1} \subset \rho_{n+1} \cap \rho_{n+2} \tag{16}
\end{equation*}
$$

and Eq. (14). $\rho_{n} \cap \rho_{n+1} \subset \bigcap_{k=n}^{\infty} \rho_{k}$ is a consequence of Lemma 2, and the inclusion in the other sense is trivial.

In what follows, we construct periodic approximations to H. The notation $\rho(A)$ is used for the intersection of the resolvent set of the operator A with the real axis.
Proposition 4. Let $\left\{H_{m}\right\}_{m=1}^{\infty}$ be a sequence of Schrödinger operators on $l^{2}(\mathbb{Z})$ given by

$$
\left(H_{m} \psi\right)(n)=\psi(n+1)+\psi(n-1)+\mu v_{m}(n) \psi(n)
$$

where

$$
v_{m}(n)=\left[(n+1) \omega_{m}\right]-\left[n \omega_{m}\right], \quad \omega_{m}=F_{m-1} / F_{m}
$$

Then $H=s-\lim H_{m}$, and $\rho\left(H_{m}\right)=\rho_{m}$.
Proof. Exploiting the fact that ω_{m} is a best approximation to ω, one easily verifies that

$$
v_{m}(n)=v(n) \text { for } \begin{cases}-F_{m}+1 \leqq n \leqq F_{m}+1, & m \geqq 2 \text { even } \tag{17}\\ -F_{m-1}+1 \leqq n \leqq F_{m-2}, & m \geqq 3 \text { odd }\end{cases}
$$

Take $\psi \in l^{2}(\mathbb{Z})$; for $m \geqq 3$,

$$
\left\|\left(H-H_{m}\right) \psi\right\|^{2}=\mu^{2} \sum_{|n| \geqq F_{m-2}}\left(v(n)-v_{m}(n)\right)^{2}|\psi(n)|^{2} \leqq \mu^{2} \sum_{|n| \geqq F_{m-2}}|\psi(n)|^{2} \rightarrow 0
$$

which proves that H is the strong limit of $\left\{H_{m}\right\}$. Now v_{m} is periodic with period F_{m}. According to (17), for $m \geqq 2$ even v_{m} repeats periodically the segment $\left(v(1), \ldots, v\left(F_{m}\right)\right.$), therefore the transfer matrix over a period is $M(m)$. For $m \geqq 3$ odd, v_{m} repeats periodically the segment $\left(v\left(-F_{m-1}+1\right), \ldots, v\left(F_{m-2}\right)\right)$. Due to (7), this coincides with $\left(v(1), \ldots, v\left(F_{m}\right)\right)$, therefore $M(m)$ can be chosen to be the transfer matrix over a period. Since $|\operatorname{Tr} M(m)| \leqq 2$ is sufficient and necessary that $E \in \sigma\left(H_{m}\right)$, the spectrum of H_{m}, we find $\sigma\left(H_{m}\right)=\sigma_{m}$ and $\rho\left(H_{m}\right)=\rho_{m}$.

In the following lemma U° denotes the interior of the set U.
Lemma 3. Let $A,\left\{A_{m}\right\}$ be bounded self-adjoint operators on a Hilbert space, $A=$ $\mathrm{s}-\lim A_{m}$. Then

$$
\left(\bigcap \rho\left(A_{m}\right)\right)^{\circ} \subset \rho(A)
$$

Remark. The lemma remains valid if ρ is replaced by the whole resolvent set.
Proof. Let $E \in\left(\bigcap \rho\left(A_{m}\right)\right)^{\circ} \neq \varnothing$. Then there exists $K<\infty$ such that $\left\|\left(A_{m}-E\right)^{-1}\right\|$ $\leqq K$. Therefore, for any vector ϕ we have $\left\|\left(A_{m}-E\right) \phi\right\| \geqq\|\phi\| / K$, and, taking the limit $m \rightarrow \infty,\|(A-E) \phi\| \geqq\|\phi\| / K$. By Weyl's criterion, this means $E \in \rho(A)$.

Proof of Theorem 1. After Proposition 2, it remained to show that $B_{\infty}^{c} \subset \rho(H)$. Take $E \in B_{\infty}^{c}$; by Propositions 3 and 4 there exists some $n \geqq 0$ such that
$E \in \rho\left(H_{n}\right) \cap \rho\left(H_{n+1}\right)=\left(\bigcap_{k=n}^{\infty} \rho\left(H_{k}\right)\right)^{\circ}$. Since $H=s$-lim H_{k}, Lemma 3 applies, whence $E \in \rho(H)$.

Combining Theorem 1 with Proposition 3 one immediately obtains
Proposition 5. $\sigma_{n} \cup \sigma_{n+1}$ is monotonically decreasing, and tends to $\sigma(H)$, i.e., $\sigma_{n} \cup$ $\sigma_{n+1} \supset \sigma_{n+1} \cup \sigma_{n+2}$, and $\sigma(H)=\bigcap_{n=N}^{\infty}\left(\sigma_{n} \cup \sigma_{n+1}\right)$, any $N \geqq 0$.

The spectrum is nonempty, closed, and from Theorem 1 we know that it does not contain isolated points. We can complete the

Proof of Theorem 2. From Eqs. (9), (10) and (13) it follows that for any $n \geqq 0$, $\sigma_{n} \cap \sigma_{n+1} \cap \sigma_{n+2}=\varnothing$ if $I>4$, and $\sigma_{n} \cap \sigma_{n+1} \cap \sigma_{n+2} \cap \sigma(H)=\varnothing$ if $I=4$. Fix $|\mu| \geqq 4$; then $I \geqq 4$. Now $\sigma(H)$ is a Cantor set if $\sigma(H)^{\circ}=\varnothing$. Suppose the opposite; then there exists an open interval $\Lambda \subset \sigma(H) . \Lambda \subset \rho_{n}$ cannot occur for an infinite number of indices: otherwise $\Lambda \subset\left(\bigcap_{k=1}^{\infty} \rho_{n_{k}}\right)^{\circ} \subset \rho(H)$ would be contradictory. Hence, there exists $N(\Lambda)$ such that $\sigma_{n} \cap \Lambda \neq \varnothing$ if $n \geqq N(\Lambda)$. Fix $n>N(\Lambda) ; \Lambda \subset \sigma_{n} \cap \sigma_{n+1} \cap \sigma_{n+2}$ cannot hold, so that for some $m \in\{n, n+1, n+2\} \sigma_{m}$ has a boundary point E_{0} in Λ. Since $\Lambda \subset \sigma_{m-1} \cup \sigma_{m}$ and $\Lambda \subset \sigma_{m} \cup \sigma_{m+1}, E_{0}$ is the accumulation point of both σ_{m-1} and σ_{m+1}. All the σ_{i} are closed, hence $E_{0} \in \sigma_{m-1} \cap \sigma_{m} \cap \sigma_{m+1}$; but this is impossible for $|\mu| \geqq 4$.

Remark. An alternate proof can be obtained by observing that $I>4$ and $E_{0} \in \sigma(H)$ imply $E_{0} \in \bigcap_{k=1}^{\infty}\left(\sigma_{n_{k}-1} \cap \rho_{n_{k}} \cap \sigma_{n_{k}+1}\right)$, where $n_{k+1}-n_{k}=2$ or 3 , and $1<\sqrt{I}-1$ $\leqq\left|x_{n_{k}}\left(E_{0}\right)\right|<\sqrt{I}+1$ (cf. (10)). Suppose that $E_{0} \in \Lambda \subset \sigma(H)$ for some open interval Λ. By the continuity of $x_{n_{k}}(E)$, the sequence $\left\{n_{k}\right\}$ must be the same for all $E \in \Lambda$, therefore $\Lambda \subset\left(\bigcap_{k=1}^{\infty}\left(\sigma_{n_{k}-1} \cap \rho_{n_{k}} \cap \sigma_{n_{k}+1}\right)\right)^{\circ} \subset\left(\bigcap_{k=1}^{\infty} \rho_{n_{k}}\right)^{\circ} \subset \rho(H)$, which is a contradiction.

Acknowledgements. I am indebted to J. Bellissard, J.-J. Loeffel and Ch.-E. Pfister for many helpful discussions. This work was supported by the Fonds National Suisse through Grant No. 2.683-085.

References

1. Kohmoto, M., Kadanoff, L. P., Tang, Ch.: Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50, 1870-1876 (1983)
2. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. J., Siggia, E. D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50, 1873-1876 (1983)
3. de Bruijn, N. G.: Sequences of zeros and ones generated by special production rules. Indagationes Math. 84, 27-37 (1981)
4. Rand, D., Ostlund, S., Sethna, J., Siggia, E. D.: Universal transition from quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett. 49, 132-135 (1982)
5. Feigenbaum, M. J., Hasslacher, B.: Irrational decimations and path integrals for external noise. Phys. Rev. Lett. 49, 605-609 (1982)
6. Kohmoto, M., Oono, Y.: Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map. Phys. Lett. 102A, 145-148 (1984)
7. Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107, 295-318 (1986)
8. Lang, S.: Introduction to diophantine approximations. Reading, MA: Addison-Wesley 1966 Chap. 1
9. Simon, B.: Almost periodic Schrödinger operators: A review. Adv. Appl. Math. 3, 463-490 (1982)
10. Delyon, F., Petritis, D.: Absence of localization in a class of Schrödinger operators with quasiperiodic potential. Commun. Math. Phys. 103, 441-444 (1986)

Communicated by B. Simon
Received December 2, 1986

[^0]: * On leave from the Central Research Institute for Physics, Budapest, Hungary

