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Abstract. We study the quotient of the regularized determinants of two elliptic
operators having the same principal symbol. We prove that, under general
conditions, a method recently proposed by Tamura coincides with the
ζ-function approach.

1. Introduction

In the computation of quadratic path-integrals one is led to the evaluation of
determinants of elliptic operators. Nevertheless, these determinants diverge.
Hence, it is necessary to adopt some regularization procedure.

Often, it is the quotient of the determinants of two operators Do and Dx that is
searched. In this case, one can attempt to connect them by means of a differentiable
one-parameter family Dt of operators, and if the determinant regularized
according to some prescription results in a differentiable function of the parameter
t, the quotient can be computed as the exponential of an integral, i.e.

One regularizing prescription that can be used in this approach is the well-
known (-function method [1], since it has the required differentiability [2, 3].

Recently, Tamura [4] proposed an alternative method to regularize the
determinant of the radio of two Dirac operators Do and Dί based on Fujikawa's
results [5]. In this approach, it is not the value of the determinant of each operator
that is given, indeed it is the change of the logarithm of the determinant that is
regularized. In order to do it, he defines the M depending function

(1.2)
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where M is an arbitrary positive constant. In particular, when the Fredholm
determinant of D^Q1 exists this function has a limit for M->oo and it coincides
with detfT^D^1). This limit can exist even in more general cases, and then its value
can be taken as the regularized determinant of D^DQ \

We shall consider Tamura's function (1.2), for any couple of invertible elliptic
pseudodifferential operators Do and Dί sharing the same principal symbol such
that the spectrum of its square lies in the right semiplane. We shall establish the
relationship between it and the ratio Det(D1)/Det(D0), where Det is the
determinant defined through the C-function. More precisely, we are going to show
that the ratio of the (-function determinants can be written as a simple expression
involving only two coefficients of the asymptotic expansion of (1.2), and we shall
see that it coincides with lim DM(Dί;D0) when this limit exists.

M-» oo

In the proof of this relation the Mellin transform plays a central role. In order
to use it we introduce a complex parameter a to avoid the possibility of having
eigenvalues in the left semiplane.

In Sect. 2, we give the definitions and settle the notations we shall use. In
Sect. 3, we introduce a generalized Tamura's function depending on the complex
parameter a and we analyze its asymptotic expansion for large M. In Sect. 4, we
compute the ratio of the determinants regularized by means of the (-function
method, and finally we establish its relation with Tamura's approach.

2. Definitions and Notations

Given an elliptic invertible pseudodifferential operator D, of order m > 0 with a
cone of Agmon directions for its principal symbol, defined on a compact manifold
M without boundary of dimension n, following Seeley [6], we define

Ds=~\λ\D-λyιdλ, (2.1)
2π r

where Γ is a curve beginning at oo, passing along a ray that is an Agmon direction,
which eludes the eigenvalues of D, to a small circle about the origin, then clockwise
about the circle, and back to oo along the ray.

We shall denote by K(B;x,y) the kernel of an operator B.
The kernel K(DS; x, y) is a continuous function, even at Λ; = y, for Res < — n/m.

The function K(DS; x, x) admits a meromorphic extension to the whole s-complex
plane, and in particular it is regular at the origin [6].

The generalized (-function associated to D is then defined as

Γ(β-<Λ— f trK(D~s x γ)/ίγ Π 1\
M

and the corresponding regularized determinant is [1]

(2.3)
s=0
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We shall denote by |[B|| 1 the trace norm of a trace class operator B, by M| | r ^, the
norm of an operator A acting from the Sobolev space Hr(M) to H*(M), by ^(H) the
space of bounded linear operators from H into itself, and by &Ί(H) its subspace of
trace class operators.

We shall consider the class Q)σγn of all the invertible pseudodifferential
operators on M having σm(x, ξ) as the principal symbol. Along the work we shall
restrict ourselves to elliptic σm(x,ξ) having no eigenvalues in the cone π/4 —ε
< |arg/l| <3π/4 + ε (i.e. each ray of the cone is an Agmon direction of σm).

3. A Generalized Tamura's Function

We shall define a generalization of Tamura's function DM(D1;D0) [4] in order to
establish its relation with the ζ-function procedure.

For D0,D1eSσm, u>0 and αe(C, we take

Γ ι Ί
Du(Dt;a) = exp\ Tr $D'ΛiDf + aΓ1 exp[-u(Df + a)-] dt , (3.1)

L o J
where Dt is a continuous and piecewise differentiable map from [0,1] to 3)σγn which

connects Do and D l 5 such that (Df -f a) is invertible for every ί, and DJ = — D?. Note
αί

that for u = ί/M2 and α = 0 (3.1) becomes Tamura's original function, DM(Dι;D0),
which is independent of the choice of Dt.

The function defined in (3.1) has the following properties:

Proposition 3.1. For every u > 0, \Du{Dt\ α)] 2 does not depend on the choice of Dt and
it is an analytic function of the variable a in the region Ώ = (C— {sp( — D2,)
usp(-Df)}.

Proof. Let us write

Lu{Dt; a) = } D'tDt(Df + a)"J exp [ - M φ t

2 + α)] Λ. (3.2)
0

For any other continuous and piecewise differentiable map Dt connecting Do and
Dγ we have

ΎrLu(Dt; a) = ΎrLu(Dt; a) + kπi, keZ, (3.3)

so, \_Du(Dt; α)]2 does not depend on the choice of the map Dv Since the proof of the
assertion (3.3) follows with slight modifications the scheme of that of Theorem 1 in
[4] we postpone it to the appendix.

Now, given a0 e Ω, we can take a neighborhood °U of a0 in Ω and Dt such that

U p
fe[O,l]

In fact, arguing again as in [4], we can show that there exists Dt such that

aoφ U sp(-A2)
te[O,l]
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Let us call d(t) the distance from a0 to Sp( —D2). We can take C>0 such that

I K - ^ o - λ Π o ^ C , for μ - α o | < ^ ) [6], and δto>0 such that

||-D?o-(-D f

2)ll2m.o<^ for \t-to\<δto.

Now, since

λφsp(-Df) for \t — to\<δtQ. Then, d(t) is greater than a positive constant for t
belonging to the compact set [0,1] and can choose a neighborhood % in Ω
satisfying the required property.

Because of the differentiability of Dt, for every a in °U, the trace norm of
D'tDt(Df + a)"ι exp [ - w(Df

2 + α)] is uniformly bounded for t e [0,1]. So, (3.1) can be
written as

f + α)~ ί exp [ - u(D2 + α)]] Λ J .Du(Dt α) = exp | j Tr lD'tDt(Df + α)~ ί exp [ - u(D2 + α)]] Λ J . (3.4)

On the other hand, as a function of the variable a,ae%, the map (Df + α)~x is
uniformly analytic in the norm || | | 0 0 for ί G [0,1] (i.e., the remainder of its Taylor
expansion tends uniformly to zero for ίe[0,1]).

Now, since

'fiφt + a)"x exp [ - w(D2 + α)]]

it follows that, for each u>0, TrLyίZ)^ α) is analytic for α e Φ , and then Du(Dt; a) is
analytic in °U. Hence, so is [pu{Dt\άj]2 in Ω.

Definition. From Proposition 3.1, we can define the analytic function
D2

u(Di;D0;a) as D2

u(Di;D0;a) = lDu(Dt;a)T.
In order to analyze the asymptotic behavior of D2(D1;D0;a), we need the

following expansion:

Proposition 3.2. For Dt as above, and a in a compact subset of <L— [j Sp( — D2),

we have ί e [ 0 ' 1 ]

a)

-κ+2

+ C2(α, ί) u~^~ + ... + Cn(α, ί) + C(α, ί) log u + r(a, ί, M) , (3.5)

with \r(a, t, u)\ ̂  Cuε, ε > 0, /or M smaller than a positive constant u0.
b) // sp(D2 + α)c{Re/l>ε0}, ίfen for 0<ε<εo,

^ + )])!^
(3.6)

/or every u ̂  1, 0 <; ί ^ 1.
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Proof, a) Since

we only need to prove part a) for Tr [D'tDt(Df + a) ~* exp (— uDfJ]. Now this trace is
given by

j ltτlKUx,y)HJμ;y9x)]dydx; (3.7)
M M

with

The principal symbol of Dt does not depend on ί, so the order of the operator
D'tDt(Df + a)~ι is not greater than — 1; hence its kernel admits the following
expansion for x,y in a coordinate neighborhood of M [7],

1

Kt,a(x,y)= Σ {hj{x,x-y;a,t)-\-Pj(x,x-y;a,t)log\x-y\}
j=—n+l

+ r(x,x~y;a,t), (3.8)

where hj(x, z;a,t) is homogeneous in z of the degree j , Ppc, z; α, ί) is a homogeneous
polynomial in z of degree j , and, for x in a compact set, 0 ^ ί ^ l , α i n a compact
subset of Ω,

j(x,z;a,t)\^C, for |z| =

/x,z;α,ί)|^C, for |z| =

^ C α ^ 9 for I

These inequalities are a consequence of the piecewise continuity of the symbols of
Df + α, Dί? Dj with respect to both parameters t and α.

On the other hand, the kernel e~uD* admits, for x in a coordinate neighborhood
V of M, the expansion

H Σ ^Hk(y,^;t)xp(y) + R(u',y9x;t)9 (3.9)

where the functions Hk(y9z;t) are rapidly decreasing in z, suppipCF, and
|^(w;y?x;ί)I^Cwε, ε>0, forw^l a n d O ^ ί g l , [8].

By means of a suitable choice of a partition of the unity, the integral (3.7)
becomes a finite sum of integrals such that in some of them the variable x belongs
to the same coordinate neighborhood as the variable y and, in the others, \x — y\ is
greater than a positive constant. If \x — y\>C0, we have \Ht(u;y,x)\^Cu for
O^ί^ l , M ^ I and \KUa(x,y)\^C for O ^ ί ^ l and a in a compact set. Then the
corresponding integral is not greater than Cu.
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In the other case, for any coordinate neighborhood V, by using expansions (3.8)
and (3.9) we can write the restriction of the integral (3.7) to F x F a s the tr of

j + k

Σ u 2m f hpc, z;a,t)Hk{x + u1/2mz, x; t) ψ(x + u1/2mz) dz dx
j= - « + i , . . . , i

fc = O,...,n

1 1 j±k_

+ Σ Σ u2m $Pj{x,z;a,t)\og\u1/2mz\Hk{x + u1/2mz,x;t)
j=0 k=-n+ί

xψ{x + u1/2mz)dzdx
1

+ Σ ί (hj{χ> x-y>a>t) + Pj{x, x-y;a9t) log |x - y\) R(u; y,x;t) dy dx
j = - n + 1

ίr(x, -uί/2mz;aft)Ht{u;u1/2mz,x) ψ(x + ull2mz)dzdx,

[we have set z = (y — x)/ulj2m in some terms].
Expanding the functions Hk and ψ in powers of u1/2mz and rearranging them

according to the powers of u, we get a).
b) We have

x | | exp[-( t ι- l )(D t

2

The first two factors are independent of w, while the last one satisfies

for 0 < ε ' < ε 0 , O ^ ί ^ 1, and a in a compact set. This can be shown by writing the
exponential of the operator as an integral over a path in the A-plane, and using the
estimate \\(D* + a-λyι\\Qt0^C(\ + M Γ 1 , for |argλ|<π/2-β [6].

Corollary 3.3. For an open settf/cΩ and Dt such that °lίr\ [j sp( - Df) = 0,

Lu defined in (3.2), ί e [ 0 ' 1 ]

2 m (3.10)

wiί/z \R(a, u)\ ^ Cwε, ε > 0, for a in a compact subset of °U and u smaller than a positive
constant u0.

Proof. It follows immediately integrating both terms of (3.5) with respect to t from
Oto 1.

Corollary 3.4. Under the same conditions of Corollary 3.3 the coefficients C^α),
7 = 1, ...,n, (fc(a) are analytic in %.

Proof. It is a direct consequence of Corollary 3.3 and of the analyticity of
ΎτLu(Dt\a) shown in the proof of Proposition 3.1.

In fact, since TrLu(Dt; a) —R(a,u) is bounded in a for each u<u0 and a in a
compact subset of tf/, and the functions u{~n + 1)/2m, . . . ,1 , \nu are linearly indepen-
dent, we can express each coefficient (Cy(α) and <E(α) as a linear combination of the
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functions ΎrLUk(Dt;a) — R(a, uk), with uk n + 2 different points, so the coefficients
are bounded for a in a compact subset of <JU.

Now, multiplying both sides of (3.10) by suitable positive powers of u [(lnw)~1

in the last step] and taking u-+0, we see that each coefficient is the limit of analytic
functions, uniformly on compact subsets.

Note that this corollary could also be obtained by means of a detailed analysis
of the asymptotic expansion in the proof of Proposition 3.1.

Remark. From the above results it follows that we can define, for each positive u,
and a in Ω,

for some Dt such that aφ (J sp( — Df% and it is an analytic function from Ω to
t e [ 0 , l ]

<C/πiZ. Analogously, the multivalued function (CΠ(α) gives rise to an analytic
function from Ω to (D/πiZ. Note that the other coefficients of the expansion (3.10)
are analytic from Ω to (C.

Now, from the definition oϊLu(Dt; a), (3.2) and the expansion (3.10) we can write

| | i j (3.11)

Note that D^(D1;D0;a) is mono valued in spite of the multivaluation of (Cn(α).
Taking into account that D1/M2(Dt; 0) = DM(D1;Do) we see that if Tamura's

function has a limit when M goes to infinite, and it is non-trivial, all coefficients but
(Cn vanish at a = 0. In this case, one has

lim DM{D^D0) = exv{<£n{G)}. (3.12)

4. The Relation with the ζ-Function Regularization Method

In this section, we shall establish the relation between Tamura's prescription and
the (-function regularization method [1].

We recall that given an elliptic invertible operator D of order m > 0 on a
compact manifold M without boundary of dimension n, we can take as its
regularized determinant

I ds J s = o

where ζ(D; s) is the analytic extension of the trace of the complex power D~s [6].
This approach can be also extended to non-invertible operators [9].

Let us consider two operators D0,Dίe 3)σm. For a e Ω = C
— {sp( — Do)usp( —/)?)}, w e c a n construct the determinants Det(Do + α) and
Det(Df + α). We have the following property:

Lemma 4.1. The ratio

(4.2)

is an analytic function of a in the region Ω.
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Proof. It is a direct consequence of the analyticity of Det() established in [3].
Note that, as a changes, one could need different curves Γ's in order to define

the powers {D2 + df according to (2.1). This could give rise to an ambiguity in the
definition of the associated ζ-functions, since the determination of the argument of
a finite number of eigenvalues could change. In spite of this fact, the determinant is
unambiguously defined since the derivates at s = 0 of the corresponding
ζ-functions differ in a multiple of 2πί.

In order to compute the ratio (4.2) we shall take a map Dt connecting Do and Dγ

as in Sect. 3. One of us, M.A.M., has proved that if the map Dt is analytic, so is
Det(D2 + α) [3]. Similar arguments allow us to show that Det(D2 + α) is
continuous and piecewise differentiable when Dt is. Thus, we can move in a
continuous and piecewise differentiable way from Det(Do + α) to Det(D2 + α) by
means of Det(D2 -f a).

Now, we are going to give a suitable expression of the ratio (4.2) in order to
establish its relation with Tamura's prescription.

Proposition 4.2. For Do, D1e@σm, aeΩ with Reα large enough,

}, (4.3,

where (CM(α) and <fc(a) are the coefficients appearing in (3.10).

Proof Let Dt be a map connecting Do and D x as in Sect. 3, and a such that
Re(A2 + α ) > ε 0 > 0 for every eigenvalue of Dt, O ^ ί ^ l . Firstly, we shall prove

Det(D2

x exp [ - u(Df + α)]] us"1 du \ dt. (4.4)

We have

Det(D2 + α ) _ *

" }=\ Det(D2 _ 1 + a)

- Σ f τtζ\DΪ + a;0)dt), (4.5)
j i d t J

for 0 = ί o < ί 1 < . . . < ί p = l such that the restriction of Dt to (tj_ι,t3) is
differentiable.

But, according to [2] we have

By using Mellin's transformation,
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We can write (4.6) as

. (4.7)
s=O

Now, since T{t, a) = (D? + a) ~γ (DtD't + D'tDt) is bounded in H~N(M) and

for N= ^ +1, Re(s)>0, we have

KΠ e-
u{D2^a)T(Uά)us-γ du;x,y

= $ K(e-u{Dt+a)T(t,a)us-ι;x,y)du.
o

So, we can commute Tr and the integration in (4.7) getting (4.4).
Now, defining

from Proposition 3.2a) we have

C ( ),tι,α)Ms"1dM= Σ CJt9a)
j 1

} g ( , ) Σ J 9 ) ( , ) 2
o j -1 n —J s

with φ(t,a,s) analytic at s = 0. Analogously, from Proposition 3.2 b), we have that
00

j g(ί, u, a)us~x du is an entire function of s.
1

Then,
S ]g(t,u,a)us-1du=-C(t,a)—±— +Cn(t,a)- S

Γ{s) i> b V ' ' ' v ' T(s + 1) ' " v ' ; Γ(s +1)
c2

with φ(ί, α, s) analytic in a neighborhood of s = 0.
Hence,

00 ~J

Sg(ί? w ' α ) u°~' du\ = c ^ a

o J s = o
Finally, carrying out the integration with respect to t from 0 to 1, we get the
proposition.

We are now in condition to establish the relation between Tamura's method
and the (-function one.
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Theorem 4.3. // there exists a non-trivial limit for Tamura's function (1.2) then

lim DM(Di;D0)
2 = Det(D?)/Det(D§). (4.8)

M->oo

Proof By Lemma 4.1 the left-hand side of (4.3) is analytic for a in the domain
Ω = (L— {sp( — Do)^sp( — D?)}, and by Corollary 3.4, so is the right-hand side.
Then, the equality (4.3) holds in the whole Ω. In particular, at a = 0 it reads

(4.9)

On the other hand, when the limit exists when M goes to oo, and it is non-
trivial, considering that (E(0) must vanish, from (4.9) and (3.12) we get (4.8).

5. Concluding Remarks

We have discussed the relation between the (-function and Tamura's methods. We
have seen that for elliptic invertible pseudodifferential operators defined on
compact manifolds both approaches coincide provided Tamura's function limit
exists. Since the former is always meaningful for this class of operators, it has a
wider range of application. Another difference is that the (-function prescription
provides a value not only to the quotient of determinants as Tamura's does, but
also to the determinant of each operator itself.

On the other hand, the (-function method is so far restricted to pseudodif-
ferential operators, while Tamura's could be used in other cases. In fact, it can, in
principle, be applied to the sum of a pseudodifferential operator and a bounded
one, even acting on non-compact manifolds.

It is worthwhile mentioning that when facing explicit computations by using
the (-function method from (1.1) and [2] one has

Γ s~1J>ί):UoA.

If D't is a multiplicative operator, it becomes

ό Mas -

where Ks(D;x,x) = K(Ds;x,x). Thus, one is, a priori, led to the evaluation of the
kernel K_ί9 which cannot, in general, be written as a function of Seeley's
coefficients exclusively [6]. Nevertheless, sometimes [2, 10], owing to the parti-
cular D't involved, one can write the trace in (5.1) in terms of the kernel K0(Dt; x, x)
which is always obtained from only one Seeley's coefficient. In this case the
coefficient (C(α) in the expansion (3.11) of Tamura's function should vanish, as it
occurs in the example of [4].

On the other hand, when the Green function of Dt is available the kernel
K-iip^XtX) can be explicitly written in terms of it and some Seeley's coefficient
[11].
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Appendix

In this appendix, we present the proof of the assertion (3.3). We assume throughout
it the same hypothesis of Sect. 3.

Lemma A.I. Let Et = {_I + A(t)]E with A(t) continuous from [0,1] to &{H°\ A'(t)
piecewise continuous from [0,1] to ̂ (H) and E'1 belonging to J£(H°).

1

Then, for λφ (J sp(Eί), JE't(λ — Ey1 dt is a trace class operator, its trace is
ίe[0,1] 0

continuous in λ and can differ only by 2kπi, with keΈ, for different A(t) with fixed
A(Q) and A(l).

Proof. In order to compute the trace we can write

E'lλ -Ey1^ A'(t) E[λ - (I + A(t))E] ~1 = Kf

λ{t) [/ + Kλ{t)] ~1

Then, arguing as in [4] the lemma follows from the equality,

) ) ))-" dt

that is obtained from the properties of Fredholm's determinants.

Lemma A.2. Let Dt and Dt be as in Proposition 3.ί, and aφ (J {sp( — Df)

usp( - Df)}. If Df + a=U + ,4(0] D2

0 and Df + a = U + A{t)~\ D2 with λ\t) and A\t)
trace class operators, thus, for u>0,

Tr(Lu(Dt a)) — Tr(Lu(Dt; a)) is independent of u.

Proof Let Γ be a contour enclosing (J (sp (Df -f a) u sp (Df + a)). Note that such
f ε [ O , l ]

a contour exists because of the properties assumed for Dt and Dt [6].
Now, using Cauchy's formula, we can write

e-uλλ'ίjt(Df + a)lλ-(Df + a)y1dλdt],

where the integrals in the right-hand side are norm convergent in
Moreover,

—- (Df + a) [λ — (Df + α)]"
dt

So, we have
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Then, by Lemma A.I

Tr(Lu(D ί ; a)) - Tv(Lu(Dt; a)) = - ^ f e ~uλλ ~12πtf{λ) dλ,

4πz r

with ί(λ) locally constant, for it is continuous and takes integer values.

Lemma A.3. For Dt as in Lemma A.2,

lim

Proof. By Grύmm's lemma (see for instance [4]),

and, since
d

, is uniformly bounded for t e [0,1], by

Lebesgue's dominated convergence theorem, we get (A.I) after interchanging Tr
and the integration.

Theorem A.4. Under the same hypothesis of Proposition 3.1,

ΊrLu(Dt;a) = ΊΐLu(Dt;a) + kπi, with keZ. (A.2)

Proof First, let us suppose Dt and Dt as in Lemma A.2. By Lemma A.3,

lim
M->0 +

Then, we get (A.2) from Lemmas A.I and A.2.
In the general case, if we write

A'(x) and A\x) are pseudodifferential operators (of negative order). Then we can
choose a pseudodifferential elliptic operator D of a large enough positive order
such that, for fce(0,feo], J + fcD is invertible and A'tyll + kDy1 and
Ά'(t) [/ -f fcD] ~x are trace class operators.

Let us take
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Since Ek(t)-+Df + a and Ek(t)-+Df + a in the || | | 2 m 0 norm, uniformly in t when
fc-*0+, there exists ki>0 such that Ek(t) and Ek(t) are invertible for 0k^k
and ί e [ 0 , 1 ] . Arguing as in the first case, we see that, for

Tr }E'k(t)Eϊ1(t)e-uEMdt - T r )E'k{t)Ek\t)e-u~Ek{t) dt = 2πtf,

w i t h / e Z .
Now, the proof will be accomplished if we can show that

lim =Tr[2LM(D t;α)] (A.3)

and analogously for Ek(t) and Dt.
Let us take r e N such that (Df + a)~r and (Df Jrd)~r are trace class operators

and Γ a contour enclosing (J sp(£fe(ί)) Then, we can write
t e [ 0 , l ]

Tr \E'k(i)Ek-\t)e-"E^dt = \ — \λr^e~uλE'k
|_0 J O LTίl Γ

and a similar expression for Ύr[2Lu(Dt;aJ]. Hence,

1 dλdt,

Trl f F'(t\ F~ί(ήp~uEk^ dt — TrΓ?Γ (D * πY\

JtyU'

In order to complete the proof of the equality (A.3), we are going to show that

lim

uniformly in t and λ.
In fact, we have

,-i rf,n2 l - i = 0,

(A.4)

d 2

Since \\(Df + a)~r\\1 is bounded, uniformly in ί, and the other factor in the right-
hand side tends to zero in ̂ (H°) when /c->0+, uniformly in λ and t, we get (A.4).
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