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Long Time Behaviour of an Infinite Particle System
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Abstract. The long time behaviour of the semi-infinite Toda lattice is deduced
from a set of identities for the squared eigenfunctions of the Toda flow.

1. Introduction

Let tι be the real Hubert space of sequences u = (uί9u2, •••)> utelR. such that ||w||2

00
= Σ uf < °°> a n d ̂ e t & = iu e ^2 : ui + 0 for finitely many i}. Recently, the study of

i=ί

the semi-infinite Toda lattice [3] has led us to consider isospectral flows on
bounded symmetric operators L in t^ More precisely, if L o is a bounded
self-adjoint operator on Z^, then, by extending the well-known QR decomposition
for matrices to the present case, one has

etLQ = Q(t)R(t), t e R ,

where Q{t) is orthogonal (QT(t)Q(t) = Q(t)QT(t) = I) and R{ή is upper triangular
[Λy(ί) = 0 for i>β with Ru(t)>0. Clearly, the map L0-+φ(t,L0) = L(t)
ΞΞ Qτ(t) LQQ(t) defines an isospectral flow on bounded symmetric operators on /^,
and we shall refer to it as the Toda flow.

In [1], we develop new techniques to study various properties of the isospectral
flows which are related to the Toda flow. In particular, we have a dynamical
version of the min-max theorem from which we derive the following

Theorem. // L o is a Jacobί operator \ then for all ί, φ(t, Lo) is also a Jacobί operator.
Moreover, as ί->oo, φ(t,L0) converges strongly to a diagonal operator
A = diag(α 1 ? α 2 , . . . ) , where

α f = inf sup (u,Lou).

1 A Jacobi operator is a real, bounded, symmetric, tridiagonal operator in ̂  ^vith strictly positive
off-diagonal entries
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From the well-known connection between the Toda flow on Jacobi operators
and the semi-infinite Toda lattice via the Flaschka transformation [2], i.e.

[jcf(ί), y^t) are respectively the position and the momentum of the ίih particle of the
lattice at time £], we conclude that as f->oo, the particles are moving away from
each other, as in the finite particle system of Moser [4]. Moreover, the ith particle,
say, is moving with an asymptotic momentum given by ^(oo)= — 2αf.

It is the purpose of this paper to give a simple proof of the above result making
full use of the tridiagonality of the operators involved. The key of our proof is an
interesting set of identities (see Sect. 3, Proposition 1) which give the rate of change
of some combination of the ψ2(k,λ,tys under the Toda flow, where ψ(λ,t)
= (ψ(l, λ,t),ψ(2, λ,t), ...) is a generalized eigenvector of L(t), suitably normalized.
Making use of these identities, a relation between the entries of the limiting
operator A and the support of the spectral measure of Lo is derived, and the
theorem follows as an easy consequence.

2. Preliminaries

We first collect a number of facts which are extensions of well-known results in the
matrix case (see, e.g. [6]). For the proof, we refer the reader to [1].

Lemma 1 (QR decomposition). Let P be a bounded, invertible operator onί^. We

have the unique decomposition

P = QR,

where Q is orthogonal and R is a bounded invertible upper triangular operator with

R,t>0.

Proposition 1. Let Lo be a bounded self adjoint operator on t^ and let

etL° = Q(t)R(t)

be the QR decomposition of etLo. Then the map

defines a flow on the space of bounded symmetric operators and solves the initial
value problem

L=lB,L] = BL-LB,L(0) = Lo,
(*)

B = L+-L_,2

in the weak sense on D, i.e., (u, Lv)' = — (Bu, Lv) — (Lu, Bv) for all u,veD. Fur-
thermore, if Lo is a Jacobi operator, then L(t) is a Jacobi operator for all t and is the
unique weak solution to (*).

By modifying an argument of Moser [4], we also obtain

; L+ and L_ are the strict upper projection and lower projection of L respectively
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Proposition 2. Suppose L(t) is the (weak) solution of the Toda equation L— \β, L],
L(0) = Lo. Then L(t) converges strongly to a diagonal operator A = diag(α1? α 2 ?...) as
ί-κx) with o^eσlXo). Moreover, if L o is a Jacobi operator, then α 1 ^ α 2 ^ α 3 ...

Remark. Proposition 2 is a preliminary result on the long time behaviour of the
infinite particle system. However, in contrast to the matrix case considered by
Moser, this does not automatically give the precise values of the α^s. This is
because for operators, strong convergence is weaker than norm convergence, and
the spectrum shrinks in our case.

We now summarize the spectral theory of Jacobi operators which we will need.
Let L= J λ dEλ be a Jacobi operator on t2 and μ(Δ) = μ(A L) = (el9 E(Δ)eι). Then μ
is a spectral measure for L which is compactly supported in R and of mass 1.
Moreover, it is well-known that the map L->μ(Δ L) is bijective. Associated with L
is a sequence of polynomials P(λ) = (P(l,λ),P(2,λ),...) obeying (L— λ)P = 0 with
P{\,λ) = \. Using these polynomials, we define the Fourier transform

(Fu)(λ)= Σ P(k,λ)u(k), ueD,

then

\\u\\2=$(Fu)2(λ)dμ(λ)=\\Fu\\2

L: (dμ) '

and F extends to an orthogonal map from ^ t o L2(dμ). Finally, L is diagonalized
by F, i.e.

(FLu)(λ) = λ(Fu)(λ).

3. Proof of the Theorem

Throughout this section, L o is a fixed Jacobi operator with spectral measure dμ,
and L0->L(ή = Qτ(t)L0Q(t) is the Toda flow. Set

λ~ inf sup (u,Lou),
U i . . . U t - i u l { « i , . . . , M ι _ i }

I M I = i

and write ai(t) = (ei,L{t)e^, bi(t) = (eί,L(t)ei+ι). From Proposition 2, Sect. 2, s-

1 ,α 2 , . . . ) , we now show an = λn for all n.

Lemma 1. For all n, an ^ λn.

Proof. Let Pn be the projection operator onto the ^-dimensional subspace En

= span(e1 ;e2,...,en) and an(t) the smallest eigenvalue oϊPnL(t)Pn\En. By min-max,

an(t)= inf sup (u,PnL{t)Pnu)
uι,...,un- i eEn ueEn,uλ{uι,...,un~ 1}

| | κ | | = l

= inf sup (u,L(t)u)
«i, ...,un~ 1 ueEn, ul{Pnu 1,...,Pnun - 1}

^ inf sup (u,L(t)u)
Ml,. . . , « „ - ! « l { « i , . . . , I l n _ i }

| | « | | = l

=λn.

The assertion now follows from the observation that an(t)-^an as ί->oo. Π
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Lemma 2. Under the Toda flow,

+ (aί(t)-λ)P(k,λ,t), £=l,2,...,Vo(ί) = 0).

(ά} Let φ , ^ ^ ^ , then

Proof, (a) It is sufficient to show that

for all

But from the definition of L(t) = Qτ{t)L0Q(t) and the relation

we have

=

as required. Ik '^JI 2 \e2λtdμ(λ)

(b) β1(ί) = (β1,I<ί)e1) = (e(ί)e1,ioβ(ί)ei)

_ (e t £ oe1 >Loe'L oe1) _ \λe2λtdμ{λ)

\\etLoex\\2 ~~ \e2λtdμ{λ) '

(c) Standard calculation shows that

P(/c, λ,t)=-bk. t(t) P(k-1, λ, t) + bk(t) P(k + 1, λ, t) + C(λ, t) P(k, λ, t).

The function C(λ, t) is then determined from the normalization P(ί,λ, ί) = l.
(d) By direct differentiation, making use of (b) and (c), we obtain

βΛ'P(M,Q , '̂P(/c,A,t) _

Remark. The functions ip(l,A,ί), ψ(29λ,t),... are obtained by applying Gram-
Schmidt to the vectors eλ\ λeλ\ λ2eλ\ ... in L2(dμ). In particular, we have

$ψ2(kλj)dμ(λ) = l.

Proposition 1. Under the Toda flow,

Ψ

2(K λ,t) + 2 V Ψ

2(j, λ, i)) = 2(1 - ak(ή) Ψ2(K λ, t),
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Proof. By Lemma 2(d) and the recurrence relation b1(t)ψ(2,λ,ή
= (λ — α^ί))iρ(l,Λ, t\ we clearly have

For fc^2, use of Lemma 2(d) yields

fc-1

ψ2(k,λ,t) + 2 Σ Ψ2(j,lt)\ =2φ(k,λ,tH-bk-1(t)φ{k-Uλ,t)
i /

+ bk(t)ψ(k+Uλ,ή)

+4 Σ ψ

= 2ψ(k, λ, t) ( - bk _ i(

+ fcft(ί)φ(/c+l,A,ί))

+ 4i)t _ t(ί) φ(fc -1,2, t) ψ(k, λ, ί)

But bk_ j(t)ψ(k-ί,λ, t) + bk(t)ψ(k + l,λ, t) = (λ — ak(t))ψ(k,λ, t\ therefore,

fc-l

Σ φ 2 θ ; A, ί)) = 2(λ - ak(ή) ψ\K λ,t). •

Proposition 2. If (xk+1<ak, then μ((ock +15αfc)) = 0.

Proof Suppose the contrary, then we can find an open interval Δ = (r, s) sitting
inside (αk +1 5 ak) such that J dμ(λ) φ 0. Let ε = min(^(r — otk + J , ̂ (αft — 5)) and choose
T > 0 s o t h a t ^

For λsA,WQ then have

min(A

Now, invoke the identity in Proposition 1, we find

and hence

7 = 1

In particular, this implies λeΔ,t=T.

Σ $ψ2U,λ,t)dμ(λ)
j=ί A

Σ Sψ2(j,λ,T)dμ(λ)>0, t^T. (*)
j=ί A
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Meanwhile, from the recurrence relation

we obtain

$(λ-ak+ΐ(t))ψ2(k+\,λ,t)dμ{λ)
AA

as ί-»oo.

But for ί^T,

A

Therefore,

lim Ji
ί-*C30 A

In a similar way, we can show

lim Sψ2(j,λ,t)dμ{λ) = O, j = l,...,k.
ί-»-oo A

We thus arrive at a contradiction when we let f->oo in (*). Hence we must have
u((oc o ί ) ) = 0 I I

Theorem. otn = An /or α/Z n.

Proof. Using Lemma 2(b), we find that as ί-»oo,

Therefore, α1 = A1. From the min-max principle (see e.g. [5]), we have either:
(a) λι= supσess(L0) in which case λ1=λ2= ...

or
(b) λ2<λv

Consider first case (a). By Lemma 1, α2 ̂  λx. If we had α2 < A1? then according
to Proposition 2, we would have μ((α2,α1)) = 0. But this is impossible as
λ1 = supσess(L0). Therefore, α2 = λ1 and indeed all the απ's are equal to λγ in this
case. In case (b), if we had α 2 < λ 2 , then again we would obtain μ((α2,α1)) = 0 by
Proposition 2 which is contradictory to λ2 e (α2, ocx). So we must have α2 = 22. The
proof now proceeds inductively. •
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