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A Block Spin Construction of Ondelettes1.
Part I: Lemarie Functions

Guy Battle2

Mathematics Department, Cornell University, Ithaca, New York 14853, USA

Abstract. Using block spin assignments, we construct an L2-orthonormal basis
consisting of dyadic scalings and translates of just a finite number of functions.
These functions have exponential localization, and for even values of a
construction parameter M one can make them class CM~ι with vanishing
moments up to order M inclusive. Such a basis has an important application to
phase cell cluster expansions in quantum field theory.

1. Introduction

Quite recently Y. Meyer et al. [1,2,3] have constructed very useful bases of
ondelettes (wavelets) to solve certain problems in functional analysis. These new
functions are now expected to have applications to several areas of physics. They
have already had an impact on constructive quantum field theory [4, 5, 6].

A basis of ondelettes is defined to be an orthonormal basis—say for L2(Ud)—
whose functions are dyadic scalings (from 2~°° to 200) and translates of just a finite
number of them. The most familiar example is the standard basis of Haar functions
on Ud. Indeed, Battle and Federbush [4,5] used a polynomial generalization of the
Haar basis to develop a phase cell cluster expansion a few years ago. This basis has
the following useful properties:

(a) The basis consists of all dyadic scalings and translates of a finite collection
φί9...,\l/nof functions.

(b) φι is a piecewise polynomial supported on the cube associated with it. Thus
we have sharp localization but poor regularity.

(c) For all multi-indices α for which |α| is less than or equal to a certain
construction parameter,

$ψi{x)xadx = 0. (1.1)

Equivalently, xj/^p) vanishes to some finite order at p = 0.
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Remark. The construction parameter is the maximum degree of the polynomials
used, and it determines the size of the collection φί,...9φn. For the standard Haar
basis the construction parameter is zero and n = 2d — 1.

Although these functions were instrumental in introducing important new ideas
in constructive quantum field theory, their lack of regularity created serious
technical inconvenience. Battle and Federbush developed a very natural expansion
for the hierarchical version [5] of the celebrated φ^ model, but it took the more
complicated expansion of Williamson [7] to control the real model with these
ondelettes.

This past summer Meyer and his co-workers announced the existence of a basis
of ondelettes with the following remarkable properties:

(a) The basis consists of all dyadic scalings and translates of functions

ψl9...,{l/2*-l'
(b) φι is a Schwartz function. (In fact, φt is a compactly supported C00 function!)
(c) (1.1) holds for all multi-indices α. Equivalently, φi(p) vanishes to infinite order

at p = 0.

In addition, a co-worker of Meyer, P. Lemarie, found a basis [3] of ondelettes
whose properties complement the preceding properties in the following interesting
way:

(a) The basis consists of all dyadic scalings and translates of functions

(b) φι is class CN (where N can be made arbitrarily large) and φ{ has exponential
localization. (Although the preceding ondelettes fall off faster than any negative
power of distance, they cannot have exponential decay, because the vanishing oΐall
moments implies that their Fourier transforms cannot be analytic at p = 0.)

(c) (1.1) holds for |α |^ iV + l.

The functions of Lemarie are better suited for constructive field theory because
exponential localization is a more useful property than smoothness. In the Battle-
Federbush expansion one needs no more regularity for the ondelettes than class C1.
This will be discussed in greater detail in Part II.

In this paper we introduce a machine that actually finds the ondelettes of
Lemarie. It is a "block spin" construction consisting of two natural stages. The first
stage orthogonalizes levels and is carried out in Sects. 2 & 3; the second stage is an
orthogonalization (on each scale) preserving translation properties and is carried
out in Sect. 4. In Sect. 5 we verify the properties of the functions, and in Sect. 6 we
verify completeness.

The orthogonalization of levels is based on a very familiar idea. Let/ l 9 . . . ,/„ be
arbitrary L 2 functions that are not necessarily orthogonal and minimize || φ | |2 with
respect to the constraints

(φ,/*) = (), i = l , . . . , H . (1.2)

Then the solution φ0 is orthogonal to any / for which some (/,/f) has a non-zero
value. This is why our "block spin assignment" rules schematically look like

oooo H—oooooo
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The solution to this constraint is guaranteed to be orthogonal to the solution of any
non-zero block spin assignment we could possibly make at any larger scale, because
this assignment determines zero block spin values for all larger scales. The essence of
this idea goes back to Kupiainen and Gawedzki [8], but we have to introduce a
clever modification to obtain class CN solutions.

The translation invariant orthogonalization is classical. There is a very natural
candidate for an orthonormal basis for each subspace, and our task is to show that it
makes sense and has all of the desired properties in our case.

The Lemarie functions themselves are given in Sect. 4 by Eq. (4.7). They are quite
explicit, and the fact that our construction reproduces them is an indication of how
natural they are. The construction guarantees orthogonality of levels, but since the
functions are explicitly given, one may wish to see a direct verification, so we give
here such a calculation. We concentrate on the case d = 1, where at the unit scale
level the functions are even translates of the function φ given by

Ύ(Ό)
φ{p) = cw(Py^(l - eip)M+1 — ^ , (1.2)

Σ 2πn)\2

where the function w is given by (4.6) in Sect. 4, χ is the characteristic function of
[0,1], and M is an even integer. If we let φm denote the 2m-translate of φ, then

p-ar+1m'p

Γ (l__ e Φ)M + i ( 1 _ e -;2" P yvf + i

-dp (1.3)
[ΣIZ(P + 2πn) | 2 M + 2 ] [ Σ |χ(2'p + 2π«)| 2 M + 2 ]

for a given positive integer r. Using the identities

χ(?p) = (1 + e β r " l p ). . .( l + βi2^)(l + β^)χ(p), (1.4)

(1 + e i 2 P~ l p) (l + ̂ ί 2 p ) ( l + eip){\ - eip) = e~i{2r-1)p{l - ei2"p), (1.5)

we get

AIL

Σ f

n o \2M + 2
dp (1.6)

because ]£ \χ(p + 2πn)\2M + 2 cancels out. On the other hand, w(p) has period π. So
n

does everything else remaining in the integrand, except

e-i(2r-l)(M+l)Pt n η\

Since M is even, the integral is zero.
We close the Introduction with the claim that we have a basis of exponentially

localized ondelettes that are orthogonal with respect to the massless Sobelev norm
||Vφ||2. This result is non-trivial, because the IVΓ1 potential of the L2 ondelettes
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constructed here cannot have exponential decay. We describe the new basis in
Part II.

2. Block-Spin Constraints

Consider the set 0ls of mutually disjoint integer-valued translates Γ of the
rectangular solid

Rs = {xeUd\0 ^ xμ S 2 for 1 ̂  μ ^ s - 1 and 0 ^ xμ ^ 1 for 5 ̂  μ ^ d).

obviously this involves even-integer translates in each μ-direction for which 1 ^
μ ^ 5 — 1. Let i ^ be the unit translate of Rs in the positive s-direction and define the
block spin assignment σs as follows:

σs(Rs) = l σs(R's)=-l σβ(Γ) = 0,

The first step in our construction is to find the function φs that minimizes \\φ\\l with
respect to constraints that are easiest to understand if we initially write them in an
ill-posed form:

Π (ί%)f Π P;ί)Mφ(P)ΪΛP) = °s(n (2.1)
μ=l \μ=l J

where χ Γ i s the characteristic function of Γ. First, it is clear that if sr > s, then (2.1)
implies

d / d \M

Π (J*>μ) Π P."1 Φ(P)XAP) = O, Γe^s, (2.2)
μ=l \μ=l /

Second, it is equally obvious that ifr>0, then (2.1) implies

M

Π P."1 ) Φ(P)ΪΛP) = O, Γe2'<X8.9 l^s'^d. (2.3)
l /

Third, it is easy to see that (2.1) is (2m1,...,2m s,m s + 1,...,md)-translation-
covariant—i.e., (2.1) is equivalent to

d / d \M

Π (ϊdpμ)( π p ; 1

where φm is the (2m 1,...,2m s,m s + 1,...,m ί ί)-translate of φ and σ s m is the same
translate of the block spin assignment σs. Finally, note that the scaling of the block
spin assignment can be chosen such that (2.1) is scale-covariant. If

Λr)(τn\ _ >yr(M+ll2)d (Ί~rp\ Γ(=?rΦ Π 5Ϊ

then (2.1) is equivalent to

d / d \M

lff (2.6)

where

x). (2.7)
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Now the functions χΓ generate a hierarchy of L2-subspaces that is ordered by
containment. In particular, the block-spin constraints at a given level determine the
block-spin constraints at all higher levels. It is obvious from (2.2) and (2.3) that the
ill-posed constraint (2.1) yields zero constraints for all higher levels. This is a familiar
kind of set-up, which has been used by Federbush [9] in the gauge field setting. The
idea goes back to Gawedzki and Kupiainen [8], and the point is that the
minimization of the Hubert space norm with respect to such constraints creates a
complete set of functions where any two that live on different levels are orthogonal
with respect to that norm.

This constrained minimization of the L 2 norm is in ill-posed form because the
linear functionals defining the constraints are unbounded with respect to the L2 norm.
Our motivation for introducing negative powers of the pμ is to create orthogonal
levels of smooth functions for our scale hierarchy, but for our scaling property we
also need the homogeneity in the pμ, so we have an infrared difficulty to cure. The
orthogonality of scalings cannot be guaranteed by our constrained minimization
unless the constraints can be expressed in terms of bounded linear functionals.

However, we can actually form bounded linear functionals from finite linear
combinations of the unbounded ones. Since multiplication by eιPμ in momentum
space corresponds to translation by a unit in the μ-direction, (2.1) implies

d

m
=( Π '

( d

V=i "
j Φip)

(PM(->

s-1n ( i -

-PM

e'2">

( i -

ΛM

-m.

d

Π (l-e'^Γχ^p)

J), (2.8)

where J"1 is the (2mx,..., 2ms_ 1 ; m s,..., mistranslate of Rs and

p±(n) = 0, otherwise.

The point is that

(l-e ^ ) M = ΣPM(n)eim\ (2.9)
n

and that our linear functionals are now bounded because 1 — eιvPμ cancels the
infrared singularity of p " 1 .

Now (2.8) alone implies that all such integrals are zero for higher levels. The
algebra is no longer a triviality, but it is interesting to check. The relevant identities
are

I - e i 2 p » = (I + e i p ή ( l - eιp»%

2 ( 1 - e ι 2 p ή M χ ( 2 p μ ) = ( 1 + e i M 1 M

where χ denotes the characteristic function of [0,1].
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Since

1 - eιp»
X(pμ) = i , (2.10)

Pμ

we will make the replacement

pμ

M(l - e^)Mχ{pμ) = rMχ(pμ)
M+1 (2.11)

from this point on.
It is clear from our scaling properties that we may restrict our attention to the sth

sub-level of the unit scale level for the remainder of our discussion.

3. Construction of the sth Sub-Level

The next phase in our construction is to derive the formula for φs—i.e., to solve the
constrained minimization problem posed in the last section. We first minimize

m [_μ=l μ=]

d

•exp - i2 X mμpμ - ί Σ mμPμ ~ ( Π PM(~ mμ)){PM{-ms) - PM(\ - ms)) ,
\ μ=ι μ=s / μfs J

(3.1)

and then take the limit of our α-dependent solution as α -> oo. Since (3.1) is quadratic
in φ, we need only to collect terms and complete the square for the inner product to
see that (3.1) has the form

IKl + α^FJ^φ-α^^l + ̂ Σ^J-^lli (3.2)
m I m

plus constant terms, where f\ is given by

/UP) = ΓI XVPμ)M+1 Π χ(Pμ)M+1^p(ί2SΣ iμPμ + l Σ '
μ=l μ=s \ μ=l μ=s

Fs

m is the un-normalized orthogonal projection {'Js

m)fs

m, and

- Is) ~ PM(1 ~ ϋ ) . (3.4)

The operator calculus makes sense because ^ F^ ^ 0, but of course the Fs

m are not
m

mutually orthogonal. Thus our problem reduces to solving the linear equation

φ + cc 2Σn,φ = α2Σ/??/?. (3.5)
m I

Now for small a we have the Neumann series solution
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which can be transformed in much the same manner that the corresponding
Neumann series was transformed in [9]. The point is that (with λo = I)

= Σ
λι,...,λn

Ί
T\ (ft fi\\fi

l l U li-r>J V V K

n Ί

1 1 u A £ _ , - A £ » ^ o ; μ Λ n '

; = i J

= Π Cϊ dh)e~iι'k9(krΣeίm'kfm> ( 3 7 )
μ=l \ 0 /

where

Remark. ]Γ eιm'kfs

m is a finite sum on any compact set and #(fc) is just a trigonometric
m

polynomial, so there are no convergence problems here. Also, g(k) does not depend
on s as we see below.

(3.6) becomes

fSm, (3.9)
o Σ

α g(κ) m

and by analytic continuation in α, this formula holds for large real α as well. (g(k) ̂  0
because (/L/o) is °f positive type.) Thus our solution φs of the constrained
minimization problem is given by the limit of this expression as α-> oo. Now the
Poisson summation formula enables us to write g(k) in a more useful form:

βik)=fl( Σ \χ(kμ + 2πn)\2M+Λ (3.10)
1 — oo /

Thus g(k) does not vanish anywhere, and so our solution

<Ps = Σβι Π ()Kdkμ)e-u*g{k)-1Σeim-kf'm (3.11)
I μ=l \ 0 / m

is well-defined and well-behaved. Indeed, φ s is an L2 function because gik)'1 is
bounded.

The expression for φs is quite explicit. If we set

"m= Π fT
μ=l \ 0

then g(k)~1 = Yjameimk and

Σ Σ ««-»/»• (3-13)
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Hence
/ s-1 d

Σ mμPμ + l Σ mμ
μ=l μ-s

.Πχ(2pμ)
M + 1ήϊ(PjM+1

μ=l μ=s

/ 5-1 d \

= Σ ^ e X P l l Σ lμPμ + l Σ lμPμ W(~ ^P 1>
I \ μ=l μ=s /

f M+1 Π *- 2/>5_ l 5 - p s , . . . , - pd)-' fl χ(2Pμ)
l

Π , X W Π .o ^ (3-14)
μ=1 Σ \χ(2Pfl + 2πn

n— — oo

Combining this with (3.4), we obtain

,-1 (i

<?»(?)= 1 1 — 5

"=1 Σ
n= — oo « = — oo

. fj d- g - i p ") M ^) M + 1

 (315)
" = S + 1 Σ \x(pμ + 2πn)\™ + *

n= — oo

Remark. The manipulation above is justified by the fact that #(fc) ~x is smooth—i.e.,
that {am} has rapid fall-off.

4. Translation-Invariant Orthogonalization

Having decomposed L2(Ud) into subspaces corresponding to sublevels of scales, we
now seek a function in each subspace with the property that all translates associated
with the subspace yield an orthonormal basis for the subspace. This is the final step
in our construction. As before, we consider the sth sublevel for the unit scale without
loss. Let Jfs be the subspace that we have constructed for this sublevel. Jfs is
spanned by the set of functions φ s > m given by

ί2 Σ mμPμ + * Σ m A ) Φs(P) (4 1)
μ=l μ=s+l /

We should first point out that there is a canonical solution of such a problem—
under the right conditions. The natural candidate φs is given by

Φs(P) = K(p)-V2φM (4-2)

πld)\2 (4.3)
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and the translates φsm are given by

/ d

Φs,m(P) = e X P i2 Σ mβPβ + * Σ mμPμ
\ l +l

= K{pΓll2Φs,m(p). (4.4)

There are a number of things to be verified, however.
First we insert (3.15) in (4.3) to obtain a more explicit expression for hs. We have

s - l M ^ ' 2 P / z | 2 M

K(P)= Π
1

2, Iχ(2p •
n= — oo

j i + i co l ! ~ e φ * r

 2M+2> < 4 5 >

« = — oo

M . g i ί l M + 2

—+ ~ . (4.6)

Thus (since we are assuming M to be even)

T~» V1 Σ lx(2p, + 2 π K ) | 2 M + 2

\«=-00 /

(1 — e ι j ? s) + χ(Ps) -Λ (~1) 1 / 2 ) A V Pμχ(pμ)
A

1 1 . / oo \ l / 2

n = - c o \ v n = - c o ^

(4.7)

Now the denominators in (4.6) are periodic functions that do not vanish anywhere,
so w(ί) is a periodic C00 function. Furthermore w(ί) is a positive function that cannot
vanish anywhere, so all of the denominators in (4.7) are well-defined and do not
vanish anywhere. Indeed, by continuity and periodicity they are bounded below by
positive constants, and so we have established:

Theorem 4.1. φs is an L2 function.

Now consider the inner product (φStm9 φStm') with m! φ m. Returning to (4.4) we
see that

{Φs,m,Φs,m')=f\(H
μ=l

= Π (R
μ=l

( d \

il £ (mμ - m'μ)pμ + i Σ K - <)Pμ ( 4 8)
\ μ=l μ=s+l /
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We decompose the integration as follows:

oo πn + π

V = Σ ί
n= — oo nn

oo 2πn + 2π

idpβ= Σ ί <*P,> s + l ^ μ ^ d .
n = - oo 2π«

Then for the nίA term we make the change of variable p'μ = pμ — nn or p'μ = pμ — Inn as
the case may be. Both hs and the exponential are unaffected by these changes, so by
(4.3) our inner product reduces to

s /π \ d /2π \ / s d

Π ίdPμ ) Π ί dPμ e χp ?'2 Σ K - ^ > ; + i Σ K - <
μ = l \ 0 / μ = s + l \ 0 / \ μ=l μ = s+l

which is obviously zero for nϊ Φ m. Thus we have proven:

Theorem 4.2. {φs,m} is α?? orthogonal set.

We shall not bother to normalize φs m. We observe that the normalization
constant is independent of m, so we need say no more about it.

Our next concern is to verify:

T h e o r e m 4 . 3 . φ s m s

Proof. Let φ^ be defined inductively by

Σ Γ Π ( W ) Π ( \ ± μ
m[_μ=l\0 /μ = s+ί\0 J \ μ=l

+ i Σ {mμ-m'μ)p'μ\lpTll6)M\^l) (4-9)
μ=s+l ) J

with φ ^ = φsm. The point of this definition is that we have to worry about the zeros
of hs. Let bm> - m be the coefficient defined by this negative fractional power oϊhs. Then

= exp(a t ™μPμ + i Σ
\ l

μ = 1

so we have

^ ί^(p) (4-13)

Thus (with /l0 = m)
3M

Φs,m = φ{sT= Σ Ylh^-Ww ( 4 1 4 )
X l , . J 3 M i = 1

so φSίtneJ^s provided this multiple sum converges in L2. Now, in particular,

{ψ(J!m(x)} i s uniformly summable on compact sets for N ^ 3M. On the other hand
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{bm} is square summable because /z(p)~(1/6)M is square integrable on [0, π ] s x
[0,2π] d- s . Hence

converges uniformly on compact sets in the m'-square-summable sense, and so by

translation decomposition of integrals it converges in the L2 sense. Thus φ ^ e J f s

for all m provided φ S Γ 1 ) e ^ s f° r a ^ m The induction carries us up to N = 3M, so

° r all m •

Remark. The uniform summability of {φiNm(x}} on compact sets follows from

ψψmip) = ns(p)^N^6^M(Psm(p) (4-16)

together with the observation that hs(p)~{N/6)Mφs(p) is an integrable C00 function
whose derivatives are integrable, provided N ^ 3M.

Finally, we need to establish:

Theorem 4.4. {φS}fn} spans J4?s.

Proof. Let

s / π \ d / 2 π \ / s d

J dPμ) 11 J dPβ e X P I " l2 h mμPμ ~l Σ mμ\
μ = l \ 0 / μ = s + l \ O / \ μ = l μ = s + l

(4.17)
Thus

X m μ p μ + i X mμpμ , (4.18)
μ = 1 μ—s+1 J

and since

it follows that

Φ,.»'(P) = Σ<V-,A»(P). (4.20)
m

Since {cm} is square summable and {φSfϊn(x)} is summable uniformly on compact
sets, we know that

Σcm'-mΦsJx) (4.21)
m

converges in the L2 sense. Having expressed the φ s m as linear combinations of the
φsm we have shown that the latter span Jfs. •

5. Moment Properties and Exponential Decay

In this section we examine the properties of φs. By (4.7) we have

M~l) (5.1)
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for large p, and

ΦS(P) = O(\PS\
M+1) (5.2)

for small ps. The former property implies that φs is class CM ~1 smooth, while the
latter property means that

ϊ φs(x)x?dxs = Q (5.3)
— oo

for arbitrary xs = (xί9..., xs_ l 5 xs +15..., xd) and N ^M. Equation (5.3) is a strong
condition; it implies that

$φs(x)xadx = 0 (5.4)

for all multi-indices α for which αs ^ M. There are more than enough vanishing
moments to give us the desired power law for the long-distance fall-off of a massless
potential of φs—provided that φs itself has enough decay. The fact that φs is an
integrable C00 function with integrable derivatives gives us as much as we want for
that purpose.

Indeed, our final task is to show that φs has exponential fall-off. This property is a
consequence of the following theorem.

Theorem 5.1. φs extends to an analytic function bounded by c f j ( l + \RQ z μ\)~ M ~1 on

the product of strips | I m z μ | <δ for some δ > 0 (pμ = Rez μ ) .

Proof Returning to (4.7), we first note that the numerators extend to entire
functions. Moreover, they are bounded on arbitrary strips centered about the real
axis because

\χ(ξ)\ = l

To control the denominators we must appeal to:

00

Lemma 5.2. ]£ \χ(t + 2πn)\2M + 2 extends to an entire function whose real part is
n= — oo

positive and bounded away from zero on the strip | Im ξ | < δ forborne δ>0.

Proof The entire function is

00 o

ΛM+I y _
( if

and it is periodic. Hence, its derivative is periodic and therefore bounded on any strip
centered about the real axis. On the other hand, the function is strictly positive on
the real axis, so the periodicity also tells us that it is greater than some positive
constant on the whole real axis. The boundedness of the derivative certainly implies
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boundedness of the partial derivative of the real part of (5.5) with respect to Im ξ, so
we have the desired conclusion. •

Proof of Theorem 5.1. (continued) An immediate consequence of the lemma is that

f \χ(t + 2πn)\2M+2) , α > 0

extends to a function that is both bounded and analytic on the strip |Im ξ\ < δ. Our
argument is complete if we can show that w(t)~a can also be extended in this way.
Now Lemma 5.2 applies to the function

as well, so w(ί) itself extends to a bounded analytic function on some strip centered
about the real axis. But w(ί) is also periodic and strictly positive on the real axis, so
we may use the same reasoning as before. •

6. Completeness

It is easy to convince oneself that our construction guarantees completeness of the
orthogonal set of Lemarie functions, provided that our original set of block-spin
constraints is complete. Now recall that φsm was constructed with the set of
constraints

Π (Sdpμ)Φ(p) f ί x(2jv)M+1 Π z(p,)M + 1eχp ( - a Σ hpμ - i Σ
μ=l μ=l μ=s \ μ=l μ=s

= ( Π PM(mμ- lμ))(PM(ms- Q - P ^ ( l + ms- I,)) (6.1)
μfs

with / running over all ^-tuples of integers. These constraints follow from (2.8), (2.10),
and (4.1), and the first observation to make is that the functions on Zd given by

M Π P M K - K))(PM(ms - ls) - PM(1 + ms - Q) (6.2)
μφs

span the Hubert space P(Zd). This is an obvious consequence of the fact that the
functions

(1 - eikήM+1 Π (1 ~ eikήMγ\ eim^ (6.3)
μφs μ

span L2(Td). (Linear combinations form an algebra that separates points.)
On the other hand, we know that φSftn is a square-summable combination of the

functions

#(P) = Ή x(2pμ)
M+ * Π χ(pμ)

M+i exp (i2'% lμPμ + i f lμPμ) (6.4)
μ-1 μ = s \ μ=l μ = s /

because φSttn minimizes || φ | |2 with respect to (6.1). The implication of our remark
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above is that the φSttn span the same subspace of L2(Ud) as the/; . Our proof of
completeness therefore reduces to establishing the following theorem:

Theorem 6.1. Let ζeL2(Ud) such that

$ζ(p)fϊ(2rp)dp = 0 (6.5)

for all integers r, all leZd, and lr^s^d. Then ζ = 0.

Proof. Pick an arbitrary negative value for r. We know that

V + ' + 1 >(ί+ea '")(!+ ea pήχ(T+rpμ), v = O,l, (6.6)

so by taking appropriate linear combinations of (6.5) we can infer that

ίξ(P) ΓI i(2r+1Pμ)
M Π χ(2r

Pμ)
Mexp(i2r+1 °Σ lμVlι + \Ύ t lμPμ)dp = 0

μ=l μ = s \ μ=l μ = s J

(6.7)

for all /eZd, where ξeL2{Ud) is given by
s - l d

μ=l μ=s

Since ζeL2(Ud\ we see that ξeL1^), and so ξ is continuous. Now

lim χ(T+ι-pμ)=\, (6.9)
r-> - oo

so if we consider lμ = 2 r + 1Γμ, r'>r and then take the limit of (6.7) for fixed ΐμ as
r-^ — oo, it follows from dominated convergence that

r'+' Ϊ l'μPβ + iγ> Σ ' ^ ) = °> ( 6 1 0 )

i.e,
ξ(2r' + 1/ /

1,. . .,2 r ' + 1 /;_ 1 > 2 r 'ζ, . . . ? 2
r '^) = 0. (6.11)

Since this equation holds for arbitrarily negative r', ξ vanishes at all dyadic points,
and so by continuity ξ vanishes everywhere. Hence ζ = 0. •
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