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Abstract. We discuss, in an abstract setting, the objects which appear in the
process of separating out constants of motion of "quasimomentum type" in
quantum mechanics of a finite number of degrees of freedom.

1. Introduction

In the study of quantum-mechanical systems one almost always starts by
separating out certain "trivial" constants of motion which arise because the
classical Hamiltonian is invariant under a group of translations in phase space.
Here are some well-known examples:

(a) JV isolated particles: The invariance of the energy with respect to a global
shift in position is described by the equation

satisfied by the classical Hamiltonian. Here αx e R3, etc., for example. Similar
equations hold for "cluster Hamiltonians" used in the more detailed analysis of
JV-particle systems.

(b) One particle in a periodic potential: Here the invariance condition is of the
form H(x + a,p)=H(x,p)9 where a is in a discrete group, generated by three or
fewer independent vectors. This leads to separation of quasimomentum ("Bloch
momentum"), [3].

(c) A physically relevant example in which the Hamiltonian is invariant with
respect to shifts in momentum direction is the "electronic Hamiltonian" in the
theory of diatomic molecules. This is the Hamiltonian of JV + 2 interacting
particles, in which the kinetic energy terms corresponding to two "heavy" particles
have been suppressed.

(d) A Landau Hamiltonian, corresponding to a particle moving in a constant
magnetic field, is invariant with respect to a suitable linear combination of x-shifts
and of p-shifts.
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(e) This invariance is further reduced in the case of a particle subject both to a
constant magnetic field and to a periodic potential. This example is discussed
below, in Sect. 5.

The aim of this paper is to discuss, at a suitable level of generality, the algebras
of constants of motion that arise in such situations.

The mathematical framework that is appropriate here consists of
(i) A locally compact abelian group E, which plays the role of the additive

group of phase space.
(ii) A multiplier b, and the associated bicharacter β, which brings in quantum

mechanics through Weyl operator W{g\ geE.
We study the von Neumann algebras generated by restrictions of the Weyl

system to arbitrary closed subgroups of E.

2. Notation and Terminology

G denotes an abelian, locally compact, separable group, written additively. G* is
the dual of G. If γ e G* and g e G, then <y, g) is the value of the character γ on g.

By b we shall denote a continuous multiplier on G, i.e. a continuous function of
G x G to complex numbers of modulus one, satisfying the identities

% i +02, 9I)KQD GI)=b(gl9g2+g3)b(g2,9s), (2.1)

ί>(0,</) = %,0) = l . (2.2)

A b-representation of G is a weakly continuous map g*-+W(g) of G into unitary
operators on a separable Hubert space Hw, such that

W{9l)W{g2) = b(glf g2)W(gi + g2). (2.3)

If b is any continuous multiplier of G, define β(gl5 g2) =b(gl9 g2)/b(g2, gt). Using
(2.1), (2.2), one proves that β is a character in any one of its arguments, if the other
argument is kept fixed. Consequently, β defines a map from G to G*, denoted again
by β, (β(g), h}=β(g, h). One calls β the associated antisymmetric bicharacter of b.
It enters the following mostly through the identity

W(gy1W(h)W(g) = β(Kg)W(h) for any g9heG. (2.4)

3. Yon Neumann Algebras Generated by ^-Representations

We first introduce a somewhat technical condition which will be satisfied in all
cases of interest, as will be seen in Sect. 4.

We shall say that a b-representation W of G satisfies condition (C) if there exists
a weakly measurable map t-*U(y) from G* to unitary operators on Hw, such that

for any ginG. (3.1)

We shall now see that under the condition (C) there is exactly one 6-representation
"up to multiplicity."

Define the regular b-representation R as follows: R acts on L2(G) - the Hubert
space of square-integrable functions with respect to a Haar measure of G. The
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operator R(g) is defined by (R(g)f)Qι) = b(h, g)f(h + g). We have (cf. [4] for a more
detailed proof)

3.1. Proposition. Any b-representation W satisfying the condition (C) is quasi-
equivalent to the regular representation R. That is, for every such W there exist
Hilbert spaces Kf and K" such that the b-representations g\-+W(g)®lκ, and
g\-+R(g)®lκ», acting in HW®K' and L2(G)®K", respectively, are unitarily
equivalent.

Proof, a) If Wis any ^-representation of G and if gt-+X(g) is the (ordinary, abelian)
regular representation of G in L2(G), then the ̂ -representation

acting in HW®L2(G) is quasi-equivalent to R; this is a version of a result of Fell [5]
(see [4]).

b) By a), it is sufficient to show that, under condition (C), the representation
g\-^W(g)®X(g) is quasi-equivalent to W.

Let us identify L2(G) with L2(G*) through Fourier transform, and realize the
Hilbert space Hw® L2(G*) as the space L2(G* Hw) of square integrable functions
f:G*-+Hw. The representation g*-^W(g)®X(g) takes then the form

(W(g)®X(g)f)(y) = <y, g>W(g)f(y). (3.2)

Let V be the unitary operator in L2(G*, Hw) defined by

(Vf)(y) = U(y)f(y), (3.3)

where U(y) is as in condition (C), and let us calculate V~ \W®ί)V9 where 1 is the
identity operator in L2(G*):

(V- \W{g)®\)Vf)(y) = U~\y)W(g)U(y)f(y) = <y, g>W(g)f(y),

which is the same as (W(g)®X(g)f)(y). This proves that W is quasi-equivalent
to R.

We introduce now M(W), the von Neumann algebra of operators in Hw

generated by the operators W(g\ geG.

3.2. Proposition. // W is any b-representation of G satisfying condition (C), then W
is semi-finite, i.e. there exists a normal faithful semi-finite trace on M(W).

Proof. Since semi-fϊniteness is preserved under quasi-equivalence and since we
have just shown that W is quasi-equivalent to the 6-regular representation R, it is
enough to show that M(R) is semi-finite.

Semi-finiteness of M(R) is obtained from the corresponding result for locally
compact unimodular groups [5, Sect. 13.10]. Let K(G) be the linear space of
complex-valued continuous functions of compact support on G. One makes K(G)
into a Hilbert algebra by defining

(/* g)(χ)=ί Kχ-y, y)f(*-y)g(y)dy,

f*(χ)=b(x, - χ ) / ( - χ ) , (f\g) = ϊf(χ)g(χ)dχ,
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where dx is a Haar measure on G. These definitions are dictated by the requirement
that for any W one should have

(f)(g) {fg) and

W{f) = if(x)W(x)dx (fe K(G)).

The operation * is the "twisted convolution" of [6]. As in [5, Sect. 13.10] one shows
that the von Neumann algebra generated by the regular representation coincides
with V(K(G)) of [5] and is thus semi-finite.

We ask next when the ^-representation W is not only semi-finite but finite, i.e.
when M(W) admits an everywhere finite normal trace. Recall that β is a map from
G to G*.

3.3. Theorem. If the set β(G) is precompact in G*, then every b-representation of G
satisfying condition (C) is finite. Conversely, if there exists a finite b-representation
of G, then β(G) is precompact.

Proof. Assume that β(G) is precompact, i.e. that the closure H ofβ(G) is a compact
subgroup of G*, and let W be a b-representation of G satisfying condition (C). Let ρ
be a positive operator of trace 1 in Hw with all eigenvalues different from zero.
Define

where U(γ) is as in condition (C), dγ is the normalized Haar measure on H, and the
integral is to be understood in the weak sense. This operator is also positive and of
trace 1. Define ω(A)=tr(ρA) for any bounded operator A on Hw; we shall now
show that

) for all gug2 in G. (3.4)

This is the only nontrivial part of the proof that ω is a faithful trace. Now

j) = f tt(U(γ)ρU(y)-»W(gι)W(g2))dγ

= b(g1,g2) i tiiρUiyy'Wig, +g2)U(γ))dγ

<y, 0i + 02> triaWiύi + g2))dy

+g2)) J <y,gt +g2>dy

(the interchange of the order of taking the trace and integration over H is easily
justified); similarly

ω(W(g2)W(gi)) = % 2 , gt) tr(ρW(gι + g2)) J <y, gx + g2)dγ.

Let

tfx = {0eG:<r,0>=O, all γeH*};

if now gx+g2 does not belong to H1 then ί dy(γ,g1+g2)=O and therefore

j). If on the other hand g1+g2eH±; then
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= l f°r aU 9eG- Setting here in particular g = gγ and taking into
account the antisymmetry of β, we see that β(g1,g2)=zl> which is equivalent to
%i>02) = %2>0i) This proves (3.4).

The converse follows from the lemma below, where the condition (C) is not
needed.

3.4. Lemma. // the algebra M(W) has a finite (normal) trace, then H is compact.

Proof. Let ω be a finite trace on M(W). Consider the continuous function
φ:g-+ω(W(g)) from G to C. We note first that s u p p l e / / 1 . Indeed, let g not
belong to H\ Then there exists gx e G such that /?(0,#i)Φ 1. We get

= ω(W(g)) = ω{W{gιY* W(g)W(gι))=β(g, gi)ω(W(g)) = β(g9 gi)φ(g),

which implies that φ(g) = O.
Assume now that H is not compact. Then G/Hλ^H* is not discrete, and

therefore there exists a net of elements ga in G, none of them belonging to H\
converging to the identity in G. The continuous function φ is zero on every ga9 but 1
on e e G. This is a contradiction.

We now sketch a proof of the fact that M(W) is approximately finite-
dimensional (AFD) for any W, i.e. that M(W) is generated by an increasing
sequence of its finite-dimensional von Neumann subalgebras. For a discussion of
the AFD and related properties we refer to [7].

By Corollary 6.7a) of [7], any representation of an amenable discrete group
generates an AFD von Neumann algebra. Let now H be the Heisenberg group of
(G,b):H = GxS1 with the group operation (x,λ)(y,μ) = (x+y,b(x,y)λμ).

As is well known, representations UofH with the property C7(0, X) = λί are in
one-to-one correspondence with ^-representations of G. On the other hand, the
group H equipped with the discrete topology is amenable since it admits the
composition series 0->S1-+H-+G-*0 in which S1 and G are amenable since they
are abelian, [8]. The AFD property of M(W) follows.

4. Restrictions of Perfect Systems

Let £ be a locally compact separable abelian group, and b a continuous multiplier
of E. We shall say that the system (£, b) is perfect if the map β defined in Sect. 2 is a
topological isomorphism of E onto £*. We note that by the open mapping
theorem [9], it is enough to require here that β yield an algebraic isomorphism
from E to £*.

Let (£, b) be a perfect system, let g\-+W{g) be a ̂ -representation of £ and let G
be a closed subgroup of E. Consider the restriction of W to G, and the
corresponding von Neumann algebra

M(G) = W(G)". (4.1)

4.1. Proposition. The restriction ofWtoG satisfies condition (C). Consequently all
results of Sect. 3 apply to the algebra M(G).

Proof. For every g e G, the character β(g) e E* restricts to a character of G.
Conversely, by the duality theory of locally compact abelian groups, given γ e G*,
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there exists a g e E such that β{g)\G = γ. We have thus a continuous homomorphism
from E onto G*. As is not hard to see, by [10, Chap. IX, Sect. 6, No. 8, Theorem 4],
such a map has a measurable section (here we use the separability assumption on
E), i.e. there exists a measurable map p from G* into E such that βp(y)\G = y. Define
now U(γ) by

(4.2)

This shows then that (C) is satisfied.
We now summarize the conclusions:

4.2. Let (G, bG) be the restriction of the perfect system (£, b) to a closed subgroup G
of E; here and in the following bG stands for the restriction of b to G x G. Let
XH»WXX), x G £, be any ^-representation of £. Then the restriction of W to G is
quasi-equivalent to the regular b ̂ representation of G.

Remark. This does not prove that every ^-representation of G is quasi-equivalent
to the regular ^-representation; it is only a statement about the representations
obtained through restrictions of perfect systems. For, by the standard argument
recalled below, there exists always an irreducible ^-representation. Thus, if the
regular ^-representation is not of type /, as in some situations of Sect. 5.2, there
exist ^-representations which are not quasi-equivalent to the regular one.

In the particular case G = £, we obtain a generalization of von Neumann's
uniqueness theorem [4]:

A perfect system has, up to quasi-equivalence, exactly one representation. This
representation generates a factor of type I.

(The last statement is obtained in a standard way, [5], by an application of the
Krein-Milman theorem to the set of states of the involutive algebra Lι(G) in
which the multiplication and the involution are defined as in R(G) of Sect. 3.2 (see
[4]): By the Krein-Milman theorem there exist extremal points in this set. These
extremal points define irreducible representations of L}(G) and thus irreducible
^-representations of E. Since all representations are quasi-equivalent each
representation generates a factor of type /. We add that in the Mackey set-up
described in Sect. 5.1, of which the usual quantum-mechanical problem is a special
case, one can define the "Schrodinger representation" acting in L2(H), and hence
obtain an irreducible representation without going through LX(G). We also
mention that in [4] the theorem is proved without the separability assumption
on£.)

We now ask whether the restriction WG generates a factor, i.e. whether M(G) is
a factor.

As earlier, we denote by GL C E the set of all g e E such that β(g, h) = l for every
heG. Furthermore, denote by βG the restriction of β to G x G. Let

KerO8G) = {0eG: β(g,h) = ί, for all heG}

we say that βG is nondegenerate if Ker(/?G) = {0}. One can prove by elementary
considerations the following.
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4.3. Lemma. The following conditions are equivalent:
) {},

ii) G+G1 is dense in E,
iii) βG is nondegenerate,
iv) βG± is nondegenerate,
v) βG(G) is dense in G*,

vi) βG±(Gλ) is dense in (G1)*.

Note that the definition of G1 involves β.

4.4. Theorem. The von Neumann algebra M(G) is a factor if and only if G satisfies
any one of the conditions of the preceding lemma.

Proof Since W(Ker(βG)) is contained in the center of M{G), if βG is degenerate,
then obviously M(G) is not a factor. On the other hand, elements of the center of
M(G) commute with WζG + G1) which in the nondegenerate case generates the
same von Neumann algebra as W(E) (preceding lemma).

4.5. Theorem. Suppose M(G) is a factor, i.e. Ker(0G) = {0}. Then M(G) is of type I
if and only if βG(G) = G*, i.e. if (G, βG) is perfect.

Proof. We have already seen that a perfect system yields a factor of type /. It
remains to show that if M(G) is a factor of type I then (G, βG) is perfect.

Let M o be the linear span of {FΓ(x): xeG}; because of the commutation
relations, M o is a dense *-subalgebra of M = M(G) (M equipped with, say, the
weak topology). The proof will be in three steps; the last one contains the heart of
the matter.

Assume M to be a type / factor.
a) For any ξeG* there is a unitary U(ξ) e M, unique up to a numerical factor,

such that

for all xeG.

Let ξ e G* and let yξ eE be such that

β(x,yξ) = <ξ,x>, all xeG;

such a yξ exists since β is perfect and E*->G* is surjective. Then

, all xeG,

and by density of M o in M, W{y^)~1AW{y^eM for all AeM. Thus
A\-+W(yξ) ~ xAW(yξ) is an automorphism of M, and since M is a factor of type / the
existence and required properties of U(ξ) follow.

b) By going to a quasi-equivalent representation of M we can assume that M is
the algebra L(K) of all bounded operators on a separable Hubert space K; we
retain the notation W(x) and U(ξ) for the corresponding operators in the new
representation. Let L2(K) be the (separable) Hubert space of the Hilbert-Schmidt
operators on K with the scalar product (A\B) = tr(A*B), A,BeL2(K). For ξe G*,
let Vξ be the unitary operator on L2(K) defined by Vξ{A)^U{ξy1AU(ξ). Clearly
ξy-^Vξ is a unitary representation of G* on L2(K) which we will now show to be
(weakly) continuous.
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By the well-known result of Segal and von Neumann [5,13.11.8] it is enough to
show that for any A, Be L2(K) the function ζt->(A\ VξB) is measurable with respect
to the Haar measure of G*. Now, for Φ,ΨeK and AeM0, the function
ξ\-+(Φ\U(ξ)~ 1AU(ξ)Ψ) is obviously continuous. Since any element of M is a weak
limit of a sequence of elements of M o (by separability of K and the Kaplansky
density theorem), ξ\-^(Φ\U(ξ)~1AU(ξ)Ψ) is a measurable function for any
AeL(K). If now B is the rank 1 operator Θt->(Ψ\Θ)Φ and AeL2(K\ then

and thus the function ξ\-*(B\VξA) is measurable. Since linear combinations of rank
1 operators are dense in the (separable) Hubert space L2(K\ by taking limits one
obtains measurability of ξ\-*(B\ VξA) for any B, A e L2(K). Thus weak continuity of
ξ\-*Vξ has been demonstrated.

c) If ξ=βG(x), xe G, then by uniqueness of U(ξ),

ξ = W(x)~1AW(x).

Suppose now that ξeG*\lm(βG). Since Im(/?G) is dense in G*, there exists a
sequence (xn) C G such that ξn = βG(xn) -» ξ as n -• oo. We claim that xn -• oo as n -• oo,
i.e. that for any compact C C G there is a natural number nc such that xn is not in C
for n>nc. For otherwise there would exist a subsequence, say (xΛm), of (xn)
convergent in G to, say, x. By the strong continuity of x\-+W(x) and ξ\-^Vξ it would
follow that VξA = W(x)~1AW(x). Hence since £->Fξ is one-to-one, ξelm(βG), in
contradiction to the assumption. Thus xπ->oo.

However, W(xw) tends weakly to 0 as xπ-*oo. This is obvious in the regular
^-representation of G since in this representation W{x) shifts by x and multiplies
by a function of modulus 1, and in our representation it follows from its quasi-
equivalence to the regular one and from the invariance of the weak topology on
bounded sets under isomorphisms of von Neumann algebras. Thus if
A: Θv->(Ψ\Θ)Φ and B: θt->(Ψ'\θ)Φ' are rank 1 operators then

as n-> oo. By density of linear combinations of rank 1 operators in L2(K) we obtain
that Vξn-+0 (weakly) as n-»oo, which contradicts the continuity of ζ\-*Vξ9 the
unitaritity of Vξ and the fact that ζn-+ξ.

Summarizing, we have

4.6. Theorem. The von Neumann algebra M(G) obtained by restricting a perfect
system (£, b) to a closed subgroup G is a factor if and only if G satisfies any one of
the conditions of Lemma 4.3. The factor is of type I if and only if βG(G) = G* or,
equivalently, if G + GL = E. It is of type II if βG(G)ή=G and βG(G) has compact
closure in G. It is of type II^ in all other cases.

Remark. Not only are the algebras semi-finite but each of them carries a natural
(normal) trace: by the proof of Proposition 3.1, the map W(x)t-*R(x) extends to an
isomorphism from M(G) to M(R). However, M(R) carries the natural trace of the
standard von Neumann algebra of the Hubert algebra K(G). In particular, it is not
hard to deduce that if φ = φ1 * φ2, φ1 e K(G), φ2 e K(G), then W(φ)= J W(x)φ(x)dx
is of finite trace and ω(W(φ))=^φ(0). This generalizes well known facts about
M(E).
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5. Examples

5.1. Perfect Systems

If (£, b) is a perfect system, then E must be isomorphic to its dual. This is certainly
the case if G is of the form G = H+H*, where H is locally compact abelian and H*
is the dual of H. A natural nontrivial multiplier is then

b(h,ξ;h',ξ') = (ξ,h') (h,h'εH; ζ9ξ'eH*)9 (5.1)

with the associated antisymmetric bicharacter

h}. (5.2)

This case has been analyzed by Mackey [2] we do not know whether each
perfect system is equivalent to one of the above form. The irreducible represen-
tation of a perfect system is unique up to unitary equivalence. Its Hubert space can
be considered as the space of pure states for the corresponding quantum-
mechanical system.

5.2. Non-Perfect Systems

Particle in periodic potential and magnetic field. We consider a quantum-
mechanical particle in three dimensions, subject to a periodic local potential V and
a constant magnetic field B of arbitrary strength and direction. The phase space is
E = R 3 + R 3 and β is expiσ, where the symplectic form σ is given by σ(x, p\x', p')
= xp'—px'. Hence we have a perfect system of the Mackey type.

The Hamiltonian of our system is in suitable units

H = (p-XΛB)2 + F(x)5 (5.3)

with V(x + a) = V(x) for all a eh, where L is a lattice in x-space. Denote by Γ the
corresponding reciprocal lattice Γ = {K: K ais integer for all aeL}.

The classical function H(x,p), given by (5.3) is invariant with respect to a
discrete group of phase-space translations: indeed, for every aeL, we have

)=H(x,p). (5.4)

The Weyl operators corresponding to these translations W(a, aΛB),aeL(~Z3),
all commute with H but do not, in general, commute with each other.

For V satisfying suitable regularity assumptions, by general arguments which
are omitted, H is associated to the von Neumann algebra M(G) where G is the
subgroup of phase space defined as

3, keΓ}

The restriction of the symplectic form σ to G is

Applying the results of Sect. 4, we obtain the following generalization of the
"irrational flux" conditions:

Theorem. Consider, in momentum space, the lattice BΛL obtained from the lattice L
in x-space by outer multiplication with B. If B/\L has trivial intersection with the
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reciprocal lattice Γ (i.e. if ( B Λ L ) Π Γ = {0}Λ then M(G) is of type 11^. If
(B ΛL)nΓ φ{0}, then M(G) is of type II.
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