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Abstract. We consider the random operator: — d/mω(dx)d+/dx + qω{x\ where
mω(dx) and qjx) are a stationary ergodic random measure and a random
function respectively. To this general case, we extend Kotani's theorem which
asserts that the absolutely continuous spectrum is completely determined by the
Ljapounov indices. Our framework includes the case of stochastic Jacobi
matrices treated by Simon.

1. Introduction

In [9] Kotani treated the one-dimensional Schrodinger operator with a stationary,
ergodic, bounded potential:

and proved that with probability one its absolutely continuous spectrum coincides,
up to a set of Lebesgue measure zero, with the totality of real numbers for which
Ljapounov indices vanish. Simon [13] proved that this theorem holds also for
stochastic Jacobi matrices of the following type:

Hωu(ή) = - u{n + 1) - u{n - 1) + Vω(ή)u{n).

Our aim here is to extend Kotani's theory, which includes the abovementioned
theorem, to the random generalized Sturm-Liouville operator:

Lωu{x) =
mω(dx) dx

where mω(dx) is a stationary ergodic random Radon measure on Uι; d+u/dx = u+(x)
is the right-derivative, d/mω(dx) is the Radon-Nikodym derivative, and qω(x) is a
bounded random function defined for χeSupp(mJ. Here Supp(mω) is the totality of
x such that mω((x — ε, x + ε)) > 0 for any ε > 0. It will be shown that most of the
results in [9], including the methods of proofs, hold also for this random operator.

This class of operators contains Schrodinger operators with random potentials
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and the Hamiltonian of a vibrating string (when mω is continuous) or a harmonic
chain (when mω consists of discrete point masses) with random mass distributions. In
particular, if we take as mω the measure which consists of unit point masses
distributed with equal spacings, Lω becomes the stochastic Jacobi matrix treated by
Simon [13]. Thus we can treat both continuum- and discrete models
simultaneously.

We give below the outline of this paper. We formulate the problem and state the
results in Sect. 2. In Sect. 3, we summarize some facts about the eigenfunction
expansion in order to prepare for what follows. In Sect. 4, we introduce, just as in
Johnson and Moser [6] and Kotani [9], the function w which is defined as the
expectation value of the reciprocal of the Green function of Lω. Using this function,
we prove our main theorem in Sect. 5. In Sect. 6, we show how the case of stochastic
Jacobi matrices is included in the framework of Sturm-Liouville operators. In the
last section, Sect. 7, we state some simple facts concerning inverse spectral problems.

2. Formulation of the Problem and Statement of Results

Let (Ω, #", P) be a complete probability space and let {Tx: xeU1} be a one parameter
group of measure preserving transformations on this probability space which is
ergodic. Let X be defined by

X = {(m,q)\m is a non-negative Radon measure on IR1 and

q is a measurable function from Supp(m) into

[0,1]}.

Two elements (m, q) and (m\ q') will be identified if m = rri and q(x) = q'(x), m-a.e.
on Supp(m). We say that the sequence {(ra^gj: n ^ 1} in X converges to (n%q)eX if
two sequences of Radon measures {m^dx)} and {qtt(x)mn(dx)} converge vaguely to
πidx) and q(x)nidx) respectively. It is easy to check that X becomes a complete
separable metrizable space. Let & be the topological σ-field on X.

Now let (mω, qω) be a random variable on (ί2, J^, P) with values in X We assume
that it is stationary in the following sense:

(mTχω(Ίqτxω(')) = (mω( + x), qω(' + x))9

and that

(A) 0 < £ [ m ω ( [ 0 , l ] ) ] < o o .

From these conditions and the individual ergodic theorem, we see that with
probability one

Wω((0,x])~μx and m ω ( [ - x , 0 ] ) ~ μ x , as x->oo, (2.1)

where μ = E[mω{[0,1])].
Now for each ωeί2, let Lω be the generalized Sturm-Liouville operator defined

by (1.1). More precisely, we consider the operator Lω to act on a function feL2

^ which has a representation

f(x) = a + bx + ]dξ\ g{z)mω{dz\ (2.2)
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with some ge[}(Rlm

9mω) and some constants a, beC, where

f= j if£>0: f = - J ifί^O.
0 «U] ° (ί,0]

We denote by D(Lω) the totality of such functions and for/e/)(LJ we define L ω / =
— g + qωf. Note that a function from D(Lω) has a constant slope in each interval of
mω-measure zero. From (2.1) and the assumption qω ^ 0, we see that with probability
one Lω belongs to WeyΓs limit point type at ± oo, and consequently (Lω,D(Lω)) is
self-adjoint in L ^ m J (See e.g. [5].)

Let Σac be the essential support of the resolution of the identity of Lω with
respect to the Lebesgue measure (essential a.c. spectrum). It can be shown that there
exists a non-random set Σac such that for P-a.a. ω, Σ™ = ΣΛC up to a set of Lebesgue
measure zero (see [4,1]). Let Σ be the spectrum of Lω, which is also independent of ω
as is easily seen from the argument of [12].

Next let us introduce the notion of the Ljapounov indices. Let φγ = φfaλ ω)
and φ2 = φ2(x,λ;ω) be unique solutions of the integral equation

u(x) = a + bx + ]dξS (qω(z) - λ)u{z)mω{dz\ (2.3)
0 0

corresponding to the initial values (a,b) = (1,0) and (0,1) respectively. The integral
Eq. (2.3) is written in short

Lωu = λu, u(0) = α, u+(0) = b.

For each ΛeC, the Ljapounov index γ(λ) is by definition the following non-
negative limit:

y(λ)= lim — log||MΛ(x;ω)||, (2.4)

where

The almost sure existence and the non-randomness of this limit are guaranteed by
Kingman's subadditive ergodic theorem and the assumption of ergodicity ([8]).

Now our results are the following.

Theorem 1. Σac = {ξeU1 :γ(ξ) = 0} up to a set of Lebesgue measure zero.

Theorem 2.// y(ξ) = O a.e. on an interval IczU1, then with probability one the
spectrum ofLω is purely absolutely continuous on I.

Theorem 3. Assume that qω = 0. If the Lebesgue measure of the set {ξeU1: y(ξ) = 0} is
positive, then the random Radon measure {mω} is deterministic in the following sense,
up to sets ofP-measure zero, 38-^ = Ά=<9^ where & = σ[(mω,φ):

t t

Remark. Theorems 1 and 2 above are extensions of Kotani's Theorems 4.1 and 4.2
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[9] respectively, and include Simon's Theorems 1 and 2 [13] as corollaries.

Theorem 3 is an analogue of Kotani's Theorem 4.3 and Simon's Theorem 3, in
which they treat the case where mω is fixed but qω is random. In the present case, qω is
constant and mω is random. The author could not see what can be said about the
determinicity when both mω and qω are random.

3. Eigenfunction Expansion of the Green Function

As we noted in Sect. 2, Lω belongs to WeyΓs limit point type at + oo for F-almost all
ω, and for such ω, it is well known that the limits

h±(λ;ω)=+ lim φ1(χ,λ;ω)/φ2{x,λ;ω\
x-y + oo

exist for 2eC\[0, oo) and define holomorphic functions there. Moreover Im/ί
lmh±(λ;ω)>0 for ImΛ, ^=0 and h±(λ;ω)<0 for λ<0. For details about such a
class of functions, see Kac and Krein [7].

For each ΛeC\[0, oo),

f±(x) =/ ± (x ,4ω) = φ,{x) ± h±(λ)φ2(x\ (3.1)

are solutions of Lωu = λu, which belong to L2(R±;mω) respectively, where R+ =
(0, oo) and (R_ = ( — oo,0]. For Λ,<0, f+{x) [/-(*)] is positive and decreasing
[increasing] in x. For Im λ ^=0, we have

J I/+(x,λ;ω)\2mω(dx) = Imh+(λ;ω)/Imλ. (3.2)

Now for each ΛeC\[0, OO),

y\ *ύy, (3.3)

is an integral kernel of the resolvent (Lω — λ)~1 and will be called the Green function.
As an integral kernel of an operator, the value of gλ(x, y\ ω) is meaningless if either x
or y does not belong to Supp(mω). But we take (3.3) as the definition of the Green
function, and consider gλ to be defined not only for mω-a.a. x and y but also for all x,
yelR1. As is well known [11], there exists a symmetric and non-negative definite
measure matrix {(Tij(dξ;ω)}fj=1 such that

oo 1 2

gλ(χ,y;ω)= j - — - £ φi(χ9λ;ω)φJ{y,λ;ω)σiβξ;ω) (3.4)
0- ζ~ Ai,j= 1

for all x,j;eSupp(mω). For general x, yeM1, this equality fails. But if we denote by
gλ(x,y;ω) the right-hand side of (3.4) (which is well defined for all x, yetR1), then we
can prove

gλ(χ,y; ω) = gλ(x,y;ώ) + Φω(χ,y\ all x, yeU\ (3.5)

where Φω(x, y) is non-negative and symmetric in χ9 y, and takes non-zero values if
and only if x and y belong to the same interval of mω-measure zero (compare Dym
and McKean [5], Sect. 5.5 Exercise 2). Noting this property of Φω and the fact that
any solution of Lωu = λu has a constant slope on each interval of mω-measure zero,
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we see that the resolvent equation

00

y>ω) - gμ(x> y> ω)-(λ-μ) j gλ(χ, z; ω)gμ(z, y; ω)mω(dz) = 0, (3.6)

holds for all x^
Under these remarks, it is easy to check that almost all formulas in Sect. 1 of [9]

hold also in our case. In particular we have the following:
z±(x) = h+{λ; Txω) satisfy the Riccati equations:

dz±(x) = ± l(qω(x) - λ)mω(dx) ~ z±(x)2dx], (3.7)

gλ(x,x;ω) = gλ(OATxω\ (3.8)

A+μ; 7 » - h-(λ; Txω) = ̂ - l o g ^ x , x ; ω), (3.9)
dx

gλ(x> x; ω)mω(dx) + ( — — )dx=- d(H(Txω)% (3.10)
\aλzgλ{χ,χ;ω))

where

Hλ(ω) = ±gλ(0Λω){ j f+(x,λ;ω)2rnω(dx)- J /_(x,l;ω) 2mω(ώ)}.
R+ R-

In order to deduce (3.10), we have used the resolvent equation (3.6) with x = y,
where x does not necessarily belong to Supp(mJ.

4. The ^-Function and its Properties

In this section, we will show that the function

^ 1 J (4.1)
is well defined for any /leC\[0, oo), and derive some of its properties. Such a function
was first introduced by Johnson and Moser [6] in the case of almost periodic
potentials and was extensively used by Kotani [9] in the case of general stationary
ergodic potentials.

Lemma 4.1. For any compact K a C\[0, oo), {h±(λ;ω): λeK] is uniformly ίntegrable
with respect to P, and consequently w is holomorphic in C\[0, oo), satisfies
Imw(λ)Imλ>Ofor Im/l ^ 0 and w(λ)<Ofor λ<0.

Proof. As is done in Kotani [9] (Lemma 1.2), it suffices to estimate h±(λ; ω) for λ =
— 1. Moreover the assumption of uniform boundedness of qω(x) and a simple

comparison argument reduce the problem to the case of gω(x) = 1, or what is the
same, qω{x) = 0. Now if qω = 0 and λ < 0, then we see from the inequality of I.S. Kac,

/x,x>0. (4.2)

(See [10], Corollary of Theorem 2.2 with h(λ) there being replaced by -h^-λ)'1.)
This inequality combined with the assumption (A) immediately implies the first half
of the Lemma.
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From the Cauchy integral representation of (d/dλ) h+(λ\ it is clear
that {{d/dλ)h±(λ:ω): λεK} is also uniformly integrable for each compact
K a C\[0, oo). This proves the second half of the lemma.

Lemma4.2. w(λ) = E[h±(λ:ω)]Jor any λeC\[0, oo).

Proof. Integrating (3.9) with respect to x on the interval / = (0,1) and noting (3.8), we
have

] + (λ; Txω)dx -]h.(λ; Txω)dx = log0A(O,O; 7 » - log #A(0,0; ω). (4.3)

Now set X(ω) = log0A(O,O;ω) and Y(ω) = XiT^ω) - X(ω). Lemma 4.1 implies that
the left-hand side of (4.3) belongs to L\Ω,P) and hence Y(ω)eL\ We will prove
£[Y]=0.

To this end set Jίπ = min {n,ma.x(X9(-n))}9 Yn(ω) = Xn(Tίω)--Xn(ω) and
i4Λ = {ω:max(|X(ω)|, \X(Tίω)\)>n}. Note that Y = Yn on Ac

n and \Yn\^\Y\.
From these together with the stationarity of P, it follows that

Letting n-»oo, we obtain | £ [ y ] | =0.

Lemma4.3. (dw/dλ)(λ) = E\_ j gλ(x9 x; ω)mω{dx)'] for each ΛeC\[0, oo).
(0,1]

Proof. Integrating both sides of (3.10) with respect to x on the interval (0,1], and
using (3.8), we have

J ^x ωK^+a \ )dx= -Hλ(Tiω) + Hλ(co). (4.4)
(o,i] oaλ\2gλ{Ό,Ό; lxω)J

Note that Hλ(Txω) is right-continuous. For each Λ,eC\[0, oo), Hλ(ω) is integrable
with respect to P. Indeed if Im λ =̂ 0, then we have from (3.2), (3.3) and the definition
oϊHλ(ω),

//3(ω)<τAl }-2lm(h++h-)(λ;ω) Imλ

If AG(-OO,0), then noting that f±(x,λ\ω) are positive monotone solutions of
lωu = λu and/±(0, λ ω) = 1, it is easily shown that

f /+(x, λ; ω)2dmω(x) ^ h+(λ; ω)/λ,

and hence //Λ(ω)^(2μ|)"1.
Now the lemma will be proved if we take expectation of (4.4) and use the

stationarity of P. Note that from Lemma 4.1, it follows that {gλ(0,0; Txω)~ι\λeK} is
uniformly integrable with respect to P x l(0,i]W^x f°r e v e i 7 compact K a C\[0, oo)
and that the order of integration and differentiation can be exchanged.

From this lemma and the eigenfunction expansion (3.4), we see that dw/dλ has
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the following expression:

£-kb*<a (4 5)

where we set

«(£) = £ [ J mω(dx)σ11(lO,ξy9Txω)l (4.6)
(0,1]

This n(ξ) can be identified with the integrated density of states. That is, if we
restrict Lω to a finite interval / and impose a self-adjoint boundary condition, and if
we denote by Nj(ξ; ώ) the number of eigenvalues ^ ξ of this eigenvalue problem,
then it can be shown that for any ξeU1,

almost surely. But since this fact will not be used in the following, we will not discuss
its details.

Lemma 4.4. It holds that for any λeC+ = {Im λ > 0},

] \ 1

where mc = mc

ω is the continuous part of mω, w[x] = mω({x}) and lmh+ is an
abbreviation oflmh±(λ; Txω).

Proof We quote the following simple lemma: for any real valued, right-continuous
function / on (a, b~\ which is of bounded variation, and for any function F which is
smooth on the range of /,

F(f(b))~F(f(a))= J F(/(xMc(x)+ Σ {F(f(x))-F(f(x-))l (4.8)
(a,b] xe(a,b]

where dfc is the continuous part of the signed Stieltjes measure df Now set Y±(x) =
lmh±(λ;Txω), X±(x) = Reh±(λ;Txω) and fix an arbitrary (5>0. If we take the
imaginary part of Riccati equation (3.7), divide both sides by Y+(x) + δ and integrate
on (0,1], we obtain

YM m(dx) P dYAx) /Λn^

Note that Y+(x) is right-continuous. From (3.7) we also have Y+{x) — Y+{x—) =
— Im λ m[x]. Using (4.8) with F(x) = log(x + δ) in order to evaluate the second term
on the right-hand side of (4.9), we arrive at

(4.10)



394 N. Minami

Similar argument shows

^ , Y-(x) + δ

Jlθg

Note that in this case Y-(x) — Im λm[x~\ = 7_(x —) ̂  0. We can take the expectation
of each term of (4.10) and (4.11). Each of the first terms on the right-hand side of (4.10)
and (4.11) vanish because of the stationarity. Finally letting <5 ĴO and using
monotone convergence theorem and Lemmas 4.1 and 4.2, we obtain (4.7).

From these lemmas and remarks, we see that all the arguments in Sects. 2 and 3
in [9] concerning the representation and boundary values of w(λ) remain valid also
in our case. As for the relation between w(λ) and the Ljapounov index y(λ), we have
even the following:

-Rew(ξ + ίO) = γ(ξ) for all ξeU1 (not only for a.e. {). (4.12)

This follows from the subharmonicity of functions — Rew(Λ) and y(λ) (see [3]).
Equation (4.12) was communicated to the author by Kotani.

Moreover a part of the argument in Lemma 4.1 of [9] remains valid and we have
the following: for any compact X c i 1 on which γ(ξ) = 0, a.e., it holds that

- lim J (Re w(ξ + iε)/ε)dξ = f nΛG(ξ)dξ9 (4.13)
40 K K

where nac(ξ) is the density of the absolutely continuous part of dn(ξ).
Thus we have prepared everything which is necessary to prove Theorem 1.

The following inequality will be shown in the proof of Lemma 5.2:

^ > 0 for^eC + . (4.14)
dλ ~

This combined with the argument in Lemma 4.1 of [9] shows

lim J I π A ξ + iε)dξ = J njξ)dξ, (4.15)
εjO K dλ K

where K and na c are as in (4.13). This will be used in the proofs of Theorems 2 and 3.

5. Proof of Theorems

Proof of Theorem 1.

1) Proof of A = {ξe^'.yiξ) = 0} c Σ*c up to Lebesgue measure zero.
For each δ > 0, choose N > 0 so large that we have

P(ω:mω({-N9N])>0)>l-δ.

Using the elementary inequality log(l + x) ^ x/(l + x) (x ̂  0), Lemma 4.4 and the
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stationarity of P, we get for λeC +

Setting λ = ξ + iε, integrating (5.1) with respect to ξ on a compact set K a A and
letting ε JO, we have from (4.13) and Fatou's lemma

j μ\\ ^ \ \ i . (5.2)

Since K <^A and (5 > 0 are arbitrary, we arrive at the following assertion: for
P-a.a ωeΩ and mω-a.a xeίR1,

Imh±(ξ + iO; Txω) > 0, a.e. ξeA. (5.3)

The rest of the proof is the same as in [9], and we obtain the inclusion of A in the
essential a.c. spectrum of LTχ(O for mω-a.a. x. Since LTχC0 and Lω are unitarily
equivalent, we get the same conclusion for Lω.
2) Proof of Ac = {ξeU1: y(ξ) > 0} c (Xac)c up to Lebesgue measure zero.

This follows from the argument of Pastur [12] and the following Lemma, which
should be applied to such ω's for which (2.1) holds.

Lemma 5.1 Define the spectral measure by p = σ 1 1H-σ 2 2 //m( [ — x, x]) = O(x) as
x-KX), then for p-a.e. ξeM1, there exists a solution of Lu — ξu such that u(x) and
u+(x) are polynomially bounded.

Proof Let τi3{ξ) be the density of σi3(ξ) with respect to p. Then the eigenfunction
expansion of gλ is rewritten as

gλ(x,y) = Φ(x,y)+ ] y ^ \ Σ rij{ξ)φi(x,ξ)φJ(y,ξ))p(dξl
o - ζ — Λ ^ y = i j

where Φ is defined in (3.5). On the other hand, it is easy to show from the
monotonicity and positivity of f±(x,λ) that for λ < 0

Therefore from the assumption on m(dx), we have for fixed λ < 0 and α > 2

Jp(^)-i- f — ί — {Στϋ(^1(x,^J(x,ξ)}m(dx)<oO.
o - ς — /t -oo 1 + | x |

Now set w(x) = w(x; y, ω) = Σ τij(ζ)Φi(y> ζ)Φj(χi ζ)- For each ξ and 3;, w(x) is a solution
of Lw = ŵ. Since {τi<7 } is non-negative definite, we see from Schwarz's inequality

In particular, for p-a.e. ξ we can find a y such that

] --^--\u(x)\m(dx)<^. (5.4)
- 00 J- ~r X
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From (5.4) and the equation du+ =(q-ξ)udm, we have |w+(x)| = O(|x|α) for large |x|,
and hence |u(x)| = 0 ( | x | a + 1 ) for large |x|.

The proofs of Theorem 2 and 3 are based on the following lemma.

Lemma5.2. Assume that A = {ξeU1: y(ξ) = 0} has positive Lebesgue measure. Then
for P a.e. ωeΩ and mω-a.e. xeIR1 it holds

h_(ξ + *0; 7 » = - h+(ξ + ΪΌ; 7 » , a.e. ξeA.

Proof. Set λ = ξ + iε, b = b±(ξ9ε9x) = lmh±(ξ + iε; Txω) and a = a(ξ,ε,x) =
Re(/z + + hJ)(ξ + iε; Txω). Then we have from Lemmas 4.3 and 4.4,

(5.5)
J

where K cz A is compact and we have set

for s > 0, t > δ > 0, and w ̂  0. Note that from Lemma 4.4 (the integrability of the
right-hand side of (4.7)), b-(ξ, ε, x) - εmω[x] > 0 almost surely. It holds that Γ ^ 0
for such s, ί, u and δ. Indeed we can set u = 0, and in this case the assertion follows
from Γ(5, ί, 0,0 + ) ^ 0 and d/d(5[4(5Γ(5, ί, 0, (5)] ̂  0. Therefore the integrand of the
right-hand side of (5.5) is non-negative, so that we obtain (4.14) and (4.15) as was
already remarked. This together with (4.13) implies that the left-hand side of (5.5)
tends to zero as ε |0 . On the other hand from (5.3), b±(ξ,0 + ,x) > 0 a.e. ξeK and for
such ξ,

ε i 0

Now let ε J,0 in (5.5) and use Fatou's lemma. The proof will be complete if we use the
stationarity of P and let K]A.

Proof of Theorem 2. Fix ω and x for which the relation in Lemma 5.2 holds. We see
that for a.e. ξel9

Re{ - {h+ + h.)-\ξ + iO; Txω)} = 0

and

fc_/(fc+ + h_)(ξ + iO; T,ω)} = 0.

These imply that - (h + + Λ _ ) " x and Λ + Λ_/(ft++fc_) have analytic continuations to
C_ through the interval /. Hence σίl(dξ;Txω) and σ22{dξ\Txώ) are absolutely
continuous on / with analytic densities.
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Proof of Theorem 3. Let Ω' be the totality of ω for which the relation in Lemma 5.2

holds. For teU1 and Λ G J , put A't = {mω\{_^tyω a AnΩ'}. Then the set Bt =

{ωe/2:mω|(_ooί]G^;} belongs to Λt = σ[(mω9φy: </>eCo((-oo,ί])] Let ωe

BtnΩf. Then there exists ώεAnΩ' such that the restriction of mω to (—oo,ί]

coincides with that of mώ. Since we can assume that Supp(mω) and Supp(mώ) are

unbounded from below, x = sup[(— o o ^ J n S u p p ί m J n S u p p ^ ) ] is well defined

and it holds that m ω | ( _ o o x ] = mώ | (_o o x ]. Hence /i_(Λ; Txω) = h_{λ\Txώ\ so that we

have from Lemma 5.2 h+(λ; Txω) = h+(λ; Txώ) on C + , because a function which is

holomorphic on C + and which has positive imaginary part is uniquely determined

by its boundary values on a subset c U1 of positive Lebesgue measure. From the

uniqueness of Krein's correspondence (see e.g. [5]), we get mω | ( x > 0 0 ) = m T χ J ( O i O O ) =
mr,ώl(o,oo) = mώl(χ,oo)> i e mω = mώi hence ωeA. Since we trivially have BtnΩ' =>

Ar\Ω\ and since P{Ω') = 1, we conclude P(AΔBt) = 0: hence <%t = 3S a.s. and J*_ ^ =

J 1 a.s. Similarly J*+ o o = St a.s.

6. An Application to Stochastic Jacobi Matrices

Let (Ω\3F\P) be a probability space and θ be an invertible measure preserving

ergodic transformation on it. From random variables M > 0, K > 0,0 ^ Q ^ 1 on Ω\

we obtain a stationary ergodic sequence of random variables: {(M(0wω')5 K(θnω'),

Q(θnω'))}. To each ωΈΩ', we associate a self-adjoint operator (Jacobi matrix) on

\\J}\ {M{θnω')}) defined by

(Lω >u)w= - *
M ( t 7 CO j

As before, the spectrum and essential a.c. spectrum are constants for P'-a.a. ω\
and we denote them by σ and σa c > respectively. We assume

(A') c- jX(ω / )" 1 F(dω / )<oo, fK(ω')P\dω')< oo, 0<$M(ω')P'(dωr)< oo.

The Ljapounov index y\λ) is defined for each λeC by the following limit which exists
almost surely:

y\λ)= lim —log || M'λ(n;ω) ||, (6.2)

where

M'λ(n:ώ) = \ 1 2 , ,

|_ u^ri) u2(ή) J
and uί9 u2 are the solutions of Lω.u = λu with 1 (̂0) = u2(l) = 0 and u^l) = u2(0) = 1.

Then we obtain the following results:

Theorem Γ. σa c> = {(^GR1: y'(ξ) = 0} up to a set of Lebesgue measure zero.

Theorem 2'. // γ'(ξ) = 0 a.e. on the interval I c [R1, ί/zeπ wiί/z probability one the
spectrum of Lω. is purely absolutely continuous on I.
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Theorem3'. Assume that Q = 0. If the Lebesgue measure of the set A'ΞΞ
y'(ξ) = 0} is positive, then the sequence {(M(θnω'\ K(θnω'))\ neZ1} is deterministic in

the following sense: up to sets of F-measure zero, f)σ[Xj(ω'): ji^ri],
n

= σ[XJ{ω'):jeZ1~] = f] σ[Xj(ω'): j ^ ri], where X3{ω') = (M{θjω'\ K{θjω')).
n

In particular, if we take M = K = 1 in Theorems Γ and 2', we get Theorems 1 and
2 of Simon [13].

We will prove Theorems Γ and 2' as corollaries of Theorems 1 and 2 of the
previous section. Theorem 3' will be proved using Lemma 5.2 and the argument
parallel to that of Theorem 3.

To this end, let us define a new probability space,

Ω = {ω = (ω',s): ω'efl', 0 S s < ^(ωO" 1},

a new σ-algebra on Ω,

and a new probability measure on (Ω, <F\

P(E) = -

We define a random Radon measure mω on U1 and a random function qω by the
following formulas:

mω= f M(θ"ω')δ(xn(ω)\
n = — oo

qω= Σ Q(θnω')Hxn(ω)),
n = — oo

w h e r e

x Λ (ω) = Σ K{θJωfy '-s (if n ̂  0)
j = o

= - X K(θJω')-ί-s (if n<0),
j = n

δ{x) is the unit mass at x and l(x) is the indicator function of {x}. Then condition (A)
follows from condition (A') and Lω. defined by (6.1) coincides with

d d +

mjdx) dx

mω and qω being defined as above.

Now let us define a flow {Γ. xetR1} on (Ω,^,P). For x ^ 0 set

T,ω=T j e(ω',s) = (θ"ω l,x-x l l(ω)) if

and for x < 0

Txω = Γx(ω',5) = (β"ω;,x - xπ(ω)) if xn(ω) ^
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In the context of ergodic theory, such a flow is called the special flow under the
ceiling function 1/K and the basic automorphism θ. Each Tx preserves the measure P
(see [2]) and if θ is ergodic then {Tx} is also ergodic. The last assertion follows from
the observation that any {Tx}-invariant set Ae^ is, up to a P-null set, of the
following form: A = {{ω\ s): ω'eA', 0 ^ s < K(ω')~*}, where A'etF' is a 0-invariant
set. Moreover, it is easy to see that mTχω( ) = mω( 4- x) and qTχ(O(') = qω( + x). Thus
we have constructed the framework of Sect. 2.

To finish the proof of Theorems Γ and 2', all we have to do is to check that the
Ljapounov index y'(λ) defined by (6.2) is a positive constant multiple of the
Ljapounov index γ(λ) defined in Sect. 2. Let Mλ(x\ ώ) be the matrix defined by (2.4).
Then some elementary calculations show

From this we have

γ(λ) = lim -log || Mλ(x;ω) || = lim -J—log || Mλ(xn(ω);ω) ||
x-»ooX n-* ooXf^p))

= lim - f - - l o g || M'λ(n; ω) \\ = -y'{λ).
n->oo Xn\p)) fl C

Now let us turn to the proof of Theorem 3'. From the Lemma 5.2 and the
construction of random measure mω, we see that for P-a.e. ωeΩ,

h_(ξ + iθ; TXn{ω)ω) = - h+(ξ + iO; TXn(ω)ω) a.e. ξeA\ neZ1.

It is clear that if this relation holds for ω = (ω\ s) then it holds also for ω 0 = (ω', 0).
Therefore an argument parallel to that of Theorem 3 shows that P'-almost surely
{(M(0V), K(θjω')):j ^ n) is determined by {(M(0V), K(θjωf)):j < n) for each n. This
proves Theorem 3'.

7. A Characterization of Lω = Laplacian

It would be interesting to study the inverse correspondence between {Lω} and w-
functions. In this section we point out some simple facts related to this problem. The
Corollary of Proposition 7.1 is an analogue of Kotani's Theorem 5.1. However, the
proof is entirely different.

Proposition 7.1

Γi
(i) lim (—l/y/ — λ)w(λ) = E\ J v/nίω(x)dx , where m'ω(x) is the density of the

Ai-oo L° J

absolutely continuous part of mjdx).
(ii) If qω(x) = 09 then

Ί

J
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Proof, (i) The result of S. Watanabe asserts, in our notations, that

lim (— !/>/— λ) J/i_(A; Txω)dx = J yjm'jx) dx. (7.1)
ΛJ-00 0 0

(See [10], Appendix II, Proposition. Watanabe treats the case of q = 0, but it is easy
to extend his argument to the case where q ψ 0 and g is bounded.) On the other
hand, making use of the Riccati equation, we have

2 1

\h_{λ Txω)dx

(7.2)

Taking the expectation in (7.1) and changing the order of the limit and the
integration, which is justified by (7.2) and (4.2), we obtain the desired conclusion,

(ii) First note that (2.1) and Y. Kasahara's result ([10] Corollary to Theorem 2.1
with h(λ) there being replaced by — h+iλ)'1) imply

a([0,l])]

with probability one. From Fatou's lemma, we have

;-i/7^I)w(4 (7.3)

On the other hand, by using the equality in (7.2), Schwarz's inequality and the
stationarity of P,

Txω)2dx

(7.4)

The desired conclusion follows immediately from (7.3) and (7.4).

Corollary. Assume qω = 0. Then in order that there exists a non-random constant a>0
such that

Lω = - ad2/dx2 P-a.e. ω,

it is necessary and sufficient that w(λ) = — c -J — λ with some positive constant c.

Proof. The necessity of the condition is obvious. Suppose w(λ) = —c^J — X with
some c > 0 . Then Proposition 7.1 shows that

(7.5)

But by Schwarz's inequality, we have in general

0,1])].

So (7.5) implies firstly that mω(dx) is absolutely continuous on (0,1) with probability
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one and secondly that m'ω(x) is constant almost everywhere on Ω x (0,1). By the
stationarity this must hold almost everywhere o n Ω x IR1. Consequently mjdx) is
proportional to Lebesgue measure with a coefficient independent of ω.

Remark. From (2.1) and the assumption qω = 0, it follows that inf Σ = 0 (see [10]

Appendix I). Hence by Lemma 5.1 of [9], w(λ) = — c-J—λ with some c> 0 if and

only if γ(ξ) = 0, a.e. <i;e[0, oo). For related topics, see Deift and Simon [4].
It is natural to look for the characterization for — Lω to be equivalent to the

Laplacian of difference type — Lo: ( — Lou)n = un + 1+un_1—2un. Although the
author could not solve this problem, the following is easily seen. Here we return to
the general case where qω is not necessarily zero.

Proposition 7.2. Assume that n(ξ) defined by (4.6) is bounded. Then with probability
one, Supp(mω) consists of isolated points only.

Proof. From the assumption and (4.5),

//w oo ) oo
l i m " u W = l i m ί y-Ύdn^ = ί d ή ® < °°

On the other hand, it is not difficult to see that if xeSupp(mω), then

00 1
-λgλ{x,x\ω)] j σli(dξ:Txω) = — — , asλj-oo,

0 - mωlXA

where both sides become infinite simultaneously if mω[x] = 0 (compare [5],
Sect. 5.7(3)). Applying the monotone convergence theorem to Lemma 4.3, we get

_(O,l]WίωLXJ

This implies firstly that mω(dx) consists of point masses only, and secondly that
£[#{xε(0,l]:mω[x]>0}]<αo.
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