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Abstract. We develop the method of stationary phase for the normalized-
oscillatory integral on Hubert space, giving Borel summable expansions. The
developments that we obtain hold for more general situations than the ones of
previous papers on the same subject.

0. Introduction

In this paper we develop the method of stationary phase for oscillatory integrals on
Hubert spaces. Let us briefly describe the type of integrals we consider.

Let ̂ f be a real separable Hubert space with inner product ( , ). Jίffl) denotes
the set of all bounded complex measures on #? and #"( Jf) denotes the set of their
Fourier transforms: if / e i φ f ) , then/:^f ->C and

ί (0.1)

for some
In the following B and B~* are bounded symmetric operators on Jf. We study

integrals of the form

I(h)=]expS^φ(x)\g(x)dx, (0.2)

where the integral is the normalized-oscillatory integral on Jίf as defined in ref. [1],
φ(x) is the real function (1/2) (x,Bx)-V(x) and V, ge^(je).

Integrals of this form arise in the theory of Feynman path integrals; see e.g. refs.
[1-7]. In this case the elements of J f are the paths of finite kinetic energy, φ(x) is the
action along the path x, g is determined by the initial condition and h is Planck's
constant divided by 2π. The method of stationary phase for (0.2) we shall develop,
studying its asymptotic behaviour as h -> 0, is therefore connected with the heuristic
ideas on the relation between quantum and classical mechanics.

* Supported by Deutscher Akademischer Austauschdienst (DAAD)
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To the method of stationary phase in finitely many dimensions, which is a
classical object of study, new attention has been devoted in recent years in
connection with the theory of pseudodifferential and Fourier integral operators. See
e.g. refs. [8, 9, 10].

Oscillatory integrals and the stationary phase method on Hubert spaces have
been studied in connection with application to Feynman path integrals in refs.
[2,3,4].

This is the first of a series of two papers. In the present paper we develop a general
mathematical theory of stationary phase for integrals of the type (0.2) giving Borel
summable expansions in terms of powers of h, considering the case where B > 0 and
where φ has only one non-degenerate critical point. In particular the developments
we obtain hold under more general situations than the ones in refs. [2,3,4], which
also did not discuss Borel summability. In the second paper we shall study the
general situation where the phase function can have more than one stationary point.

Let us now briefly summarize the content of the different sections. In Sect. 1 we
give the basic definitions of the oscillatory integrals. In Sect. 2 we give some technical
results useful for the asymptotic expansions. In particular we establish several
combinatorial formulae, we obtain bounds of some integrals, and we characterize a
class of integrable functions. In Sect. 3 we study the case where the phase function φ
has only one non-degenerate stationary point. We shall now briefly explain the main
statements of this section.

Denote by a the stationary point. In formula (0.2) we can make the translation
x -• x + a without changing the value of I{h\ and we obtain

I(h) = I*(h)exp \ -(a, Ba) - τ V(a) },

where

»|~(α,βα)-^F(α)l,

I*(h) = J exp j ^ - (x, Bx) - £ W(x) 1 g(x + ά)dx

Σf M (0.3)

and

W(x) = V(x + a) - V{a) - (x, Ba).

Put now

where

Under some assumptions on V, g and £, one proves the following:
(a) I(h) is defined and continuous in Im h g 0, h Φ 0, and is analytic in Im h< 0.
(b) Formula (0.3) is well defined in the region lmh< 0.
(c) Rn(h) converges uniformly to zero on compacts in the half plane Im h< 0.



Oscillatory Integrals and Stationary Phase 189

(d) If(h) can be defined in Im h ̂  0, where it is C00; this function is analytic in
Im h < 0.

00

(e) £ IJ(h) converges absolutely and uniformly in Im h ̂  0.

From this we can infer that £ IfQ1) *s a continuous function in Im/i^O,
7 = 0

analytic in Im h< 0, which coincides with I*(h) in Im h g 0, /ι Φ 0. One can

define/*(0)= £ /?(0).
7 = 0

The main theorem of this paper also establishes that I*(h) satisfies in Im h ̂  0 an
estimate of the type

• Σ>»ΛW ύAσ\l-\β)\\h\ι

m = 0

(for αmeC, mef̂ J, 4̂, σ > 0 ) uniformly in leN and h. For the meaning of the
coefficients αm, see ref. [11].

From these properties we finally conclude that the formal power series Σamhm is
Borel summable.

1. The normalized-Oscillatory Integral on Hubert Space

Let us begin recalling some definitions and properties stated in ref. [1]. One can
define an algebra structure on 3F{#f\ respectively on Jί(J^). We take as operations
the sum of functions, respectively the sum of measures, the multiplication of a
function, respectively a measure, by a complex number and the product of functions,
respectively the convolution of measures.

If/ is the Fourier transform of μ we set

i.e. | |μ| |, as well as | | / | | , is the total variation of the measure μ. Under these
definitions one can prove that J^^f) and Jίffl) are Banach algebras, and it is clear
that (0.1) establishes an isomorphism between them.

Let AeR\{0} for general B and Im/z^O, h ̂ 0 , if B>0. Let/be the Fourier
transform of μeJί(J^). We define now the following normalized-oscillatory
"integral" on f̂:

= Jexp fe(x,Bx)\f(x)dx = J expI -|(α,B~*a) jdμ(α).

We remark that the integral with respect to μ is well defined as an integral on J f. The
"integral" ^ ( / ) is a continuous bounded normalized linear functional on 3F(3tf)
(I&{f)\ g || / II and ^(1) = 1). It follows from the fact that &{&) is a Banach algebra
that sums and products of "integrable" functions are again "integrable" functions,
and so are also compositions with entire functions. As a consequence one can easily
see that (0.2) is well defined.
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The formal notation involving dx has the advantage of reminding us of the
origins of the normalized-oscillatory integral and of its properties such as the
invariance under translations and the Fubini theorem about iterated integration.
For the proof and for a discussion of these and other properties of the normalized-
oscillatory integral, see ref. [1]. See also refs. [2-5].

We shall also use some definitions and results stated in refs. [6,7], which we now
briefly recall. Let φe^(Um% φ:Rm->C, and take ε > 0 and pe(R\{0}. For a
measurable map /: IRm -*• C we define

where <•,•> is the Euclidean inner product in IRd, and ζ1/2 is chosen so that

Re£ 1 / 2 ^0 for Reζ^O. If /„(/) = lim/;(/) exists for all φe^(Um) with φ(0)= 1

and has a value independent of φ, we say that feJ>p(Um\ C), and we write

o r i Λ

Jp{f) = f (2πip) ~ m/2 < — < x, x > >f(x)dx = IJf).

ι2ρ i
If/ has at most polynomial growth we can define for Im ζ < 0,

n'2 ί e χP w < x ' :

Let now Jf be the space of continuous functions γ: [0, ί] -> Ud, satisfying γ(t) = 0,
with y(τ) = (/(τ),...,/(τ)), τe[0,ί]> yl absolutely continuous, dfldτel}\§,t\ for
i— l,...,d. Jf is a real separable Hubert space with inner product defined by

If π = {0 = t0 < tx < < ίm(π)+1 = t} is a finite partition of [0, ί] we define the
piecewise linear approximation Pπ by

(Pπy)(s) = y(tj) + (s- tj)[y(tj+ x) - y(ί,.)] [tj+ x - tj\ ι

for tj^s^tj+1, j = 0, 1,... ,m(π).
Consider now the complex Gaussian density eh: J4?^>C defined by

For/: / - > C w e shall now define &\f). Put

K(f)= J (feMp^dxl f βJPβJΓΛc.
P π ^ / PπJT

Let δ(π) = max {ί, + x - tλj = 0,1,... ,m(π)}. Then if lim #"£(/) exists, we say that/
,5(π)->0

is «^Γh-integrable and write

= lim #*(/).
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One can prove [6,7] that if fe^(J^) then / is ^-integrable, and one obtains
precisely

jF*(/) = Jexp j^(x,x)j/(x)rfx. (1.1)

This is the reason why we shall use in this paper the right-hand side of (1.1) as a
notation for &\f) even if fφ&{Jf).

In the polygonal path formulation of the normalized-oscillatory integral one can
prove also a translation formula. For more details see refs. [6,7].

2. Some Technical Results

In this section we shall introduce notations and discuss some technical results, which
will be needed to control the asymptotic expansion in the following section.

A) Some Combinatorial Analysis. As before (^f,( , )) denotes a real separable
Hubert space. Let xγ,... ,x2πe Jf. We define (xι,... ,X2Λ) as the 2n-linear symmetric
real function

(X1,. . . 9X2n) = ^2 Ai Zj( X σ(l )> Xσ(2)) ''' (Xσ(2n- 1)» Xσ(2n))>

where the summation is over all permutations σ of {l,...,2n}. The following
convention will be useful:

whenever x t = = xfc = x.
CO

Consider now ζeC and f(ζ)= Σ anζ
n an even, respectively odd, analytic

Λ = 0

function convergent for |£| <p, with ρ>0; /'(£) denotes the derivative of/, i.e.

/'(£)= Σ ^nC""1; we also define / ( n + 1 )(0=/ ( n ) '(C). Let k be an even
« = o

(for / even), respectively odd (for / odd), integer and xu...,xkeJtf?,
For xG^f, |x| = (x,x)1/2 < p, we define the complex valued function

It is now easy to see that

DJ{xγ,... ,xfc; x) =/'(x1,... ,xfc, y; x),

where Dy denotes the Frechet derivative with respect to x in the direction of the
vector y.

We shall also need the following notations. Let m ̂  0; for mn g s, we define

i n

and for mn > s we assume that the right-hand side is equal to zero.



192 J. Rezende

For m = 0 we have the multinomial theorem

(xl9... ,χk,(yi + ••• + yn + zW&o) =(χw" >χk>(yι + -~ + yn +
 z ) s ) (2.1)

One can now define

00

f(x1,... ,x k ;^ ! + + ̂  + z)<j,fm) = X a A (x x , . . . ,x fc,()Ί + + )>„ + *)\,m)
λ = 0

For m ^ l w e have the following integral representation

f{x,,...,xfc;y + z)(y<m) = J ( l - t)m~ψm\xx,...,xk,y
m;ty + z)dt.

The proof of this formula is done considering first the case where/(0 = ζs, with se N,
using (2.1) and

By induction over n one can now prove

• •.XfoJΊ + + yn-

(2.2)

- m m m -

Example 1.

-(x7,...9x
i:ΛtiXi + - + tnxn + y)s-'nn)dtί...dtn. (2.3)

Example 2. For x e J f consider the Gaussian exp { — x2}. We define

DXi...DXnexp{ - x 2 } = ( - ifHJix,,...,xH\x)exp{ - x 2 } . (2.4)

In this paper we shall use the convention Hn(yί,...,yk, x l 5 . . . ,x λ | x) =
Hn(y\xu...,xλ\x)= ~ = Hn(xu...,xλ,y

k\x) whenever yx = ••• =yk = y. If ^f is
one-dimensional Hn(xί,... ,xn | x) = x x . . . xnHn(x), where ϋ/π(x) is the usual Hermite
polynomial of degree n, which is defined by

k k\{n-2k)\ •

Note that in general Hn(xl9... ,xπ| x) Φ HJ^x,,... ,xw; x). For n — 0, 1, 2, 3 we have:

# 0 (x) = 1> ̂ 1(^11 x) = 2(x, x j , H2(xί, x21 x) = 4(x, Xi)(x, x2) - 2(xi, x2),

= 8(x,x1)(x,x2)(x,x3)-12(x,x1,x2,X3).

For ζl9...9ζnsC9 x l 5 . . . ,x π G^f we shall use the notation ( C I ^ I 5 > C Λ ) =
d . . . ζn(xl9... ,x j . With this convention and from formulae (2.2) and (2.4), one can
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easily establish the important relation

(x,m)

v l / 2

•#„

'exp<--(t1x1 + - + tnxn + y)2\dt1...dtn,ζeC. (2.5)

B) Bounds. We shall first compute some useful bounds for the "Hermite functions"

with *!,...,xΛ, yeJf, as defined in the previous section and Im/ι^0. Set lmh =
— \h\δ. From the definitions it follows immediately that

Let T Ϊ O and fc>0; then >;*exp{ - η } ^k k exp{ — fc}. Let <5>0 and put η =
\h\δy2/2, k = nβ- λ. From (2.6) we get

tψίΆn-2λ)/eδ]Tl2-λ

We shall now prove that

I"/2! Γ2(n — 2yί)/pS~\n/2~λ

n! Σ J Z{ ^ t 4 d + ̂ )/^]"/2(»/2)! (2-8)
Λ = O λ\[n — lλ)\

in order to obtain, from (2.7) and (2.8), the following bound:

\Fn\ ^ \Xl I... \xn\ [2|Λ|(1 + ^] π / 2 (π/2) ! , Im A < 0. (2.9)

We recall first that
(2x)! = 22xx! (x - \β)\ly/π9 for x ^ 0, (2.10)

and (see ref. [12])

xx

y/ϊκxexp(-x)^x! gx x

y / ϊπxQxp{-x + l/12x), forx>0. (2.11)

From (2.10) and (2.11) we easily get that

2*(x/2)*/2 exp ( - x/2)/x! g ^/(x/2 - 1/2)!, x = 0,1,2,... (2.12)

and

2*(x/2)*'2 exp( - x/2)/x! ^ l/(x/2)!, x = 0, 1, 2,.... (2.13)

For n = 2p, p = 0, 1, 2,..., and from (2.10) and (2.13), we get
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* (p\ x = (p- 1/2)!

λl(n-2λ)\ = p\

= \2

In the same way, for n = 2p + 1, p = 0,1,2,..., and from (2.10) and (2.12) we obtain
the inequality (2.8).

Finally we shall compute an upper bound for the integral
k

/ = J . . . J | α 1 | . . . | α f c | ( | α 1 | ί 1 + ••• + | α f c | ί k + \β\)m ]Γ d\μ\{<Xj)dtjd\v\(β),

where aιί9...9ak9 βeJf, tl9...,tke[0, 1] and μ, veJ/{J^). Assume that

f |αΓd|μ|(α) ^ n\L/εn, 0 < n ̂  m + 1,

\\β\»d\v\{β)^n\M/εn, OSnίrn.

First we remark the following; let s, neN; the number of n+1-uples (jo>->Jn)

such that Jo+'~+Jn = s> with jθ9...9jneN9 is lS n\. The proof is done using

the usual properties of the combinations. Now using formula (2.3) we get

nύ k (m 4- kVTkM
/ = ( ^ T ^ f ' ' ' ί ( | α i l + <' + |αfel + I A I ) ^ -

(2.14)

All these bounds will be needed later.
C) Integrable Functions. We give now a simple example of an integrable function
[7]. Let <*!,...,ocn9βeJf. Then (x,α1)...(x,απ)exp{ι(:x;,/?)} is integrable and

f i/i 1 ίίihY12 ίih\112 \ίih\112 \

=»•«»{-T"TW " - - ( I ) « |(y) 4 <215>
Obviously sums of functions of this type are also integrable. We have now the
following lemma.

Lemma 1. Let Xbea metric space, ω a bounded complex measure defined on the Borel
subsets of X and Im h< 0, h Φ 0. We consider the measurable functions g,
ffu...Jp:X-+Jf such that f,fl9... Jp are bounded and

$χ\g(ξ)\jd\ω\(ξ)<oo, j = O,ί,...,p.

This last condition can be dropped iflmh< 0. Then, the function φ: JΓ-»C defined by

φ(x) = jixJM)... (x,fp(ξ)) exp U(x, g{ξ)) + l-{x,f{ξ))\dω(ξ)
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is ^-integrable and

exp < ~~x2 > φ(x)dx = J exp < — ^rf(ξ)2 — i(g(ζ\f(ζ)) }

where the right-hand side is defined by (2.15). Sums of functions of this type are also
integrable.

Proof The lemma is proved in the same way, mutatis mutandis, as Proposition 5B in
ref. [7], The possibility of using Lebesgue's dominated convergence theorem is
ensured by the conditions imposed on g, f fί9...,fp9 taking into account the
bounds (2.6) and (2.9). From these bounds we see also that the condition on g is
necessary if Im h = 0 and can be dropped if Im h< 0. •

Remark. The class of functions φ of the lemma is also closed under certain natural
operations like translations and multiplications. Lemma 1 is necessary in order to
justify formula (3.13) below.

3. The Case of a Unique Non-Degenerate Stationary Point

In this section we shall develop the method of the stationary phase for the integral
I(h) as defined by (0.2) in the case where B > 0 and the phase function φ(x) has a
unique non-degenerate stationary point.

Consider the mapping /(x)->/β(x) ==/(#" 1/2x), which defines an auto-
morphism of the Banach algebra ^ ( ^ f ) . One has immediately

J exp {^Bx) j/(x)ώc = &\fB) = J exp j ^ x 2 \fB{x)dx.

As we see one can assume first that B = H and later derive the results for general B
using the above defined automorphism.

From now on V and g are Fourier transforms of μ and v, respectively. Moreover
we shall assume the existence of constants L, M, ε > 0 such that

(3.1)

(3.2)

Lemma 2. V(x) is twice continuously Frechet differentiable, d2 V(x) is of trace class
and

where || || j is the trace norm.

Proof The proof follows as in ref. [2]. Π
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We remark that

(dV(x),y) = *f(α, j;)exp {ί(x,α)

(y,d2V(x)z) = - j (α,y)(α,z)exp {i(x,α)}dμ(α), (3.3)

for every y,zeJf.

Lemma 3. a) If there exists ak>0 such that \\ d2V(x) || ^ k < lfor every xe Jf, then
the equation dV(y) = y has a unique solution in #?. b) Let V be such that Jα2d|μ|(α)
< 1; then there exists a k> 0 such that \\ d2V(x) || 5Ξ k < 1 for every xeJίf.

Proof Part a) of the Lemma is contained in Lemma 2.3 in ref. [2]. For the proof of
part b), take k = J α2 d \ μ \ (α). •

From now on we shall assume that 2L < ε2, which implies that

Jα 2 r f |μ | (α)<l . (3.4)

We see that (3.4) is a sufficient condition for the existence of a unique non-degenerate
stationary point of the phase function, which we shall denote in the following by
a. We shall also use the following notations: Va(x) = V(x + a), ga(x) = g(x + a),
dμa(ot) = exp {ί(α,α)}dμ(α), and so on. From now on we define

W(x)=Va(x)-V(a)-(x,a). (3.5)

Using the translation property of the normalized-oscillatory integral, we can

write

l = /*(fc)exp

where

I*(h) = ]exp j ^ x 2 - l- W(x)\ga(x)dx,

with W(x) defined by (3.5).
We are now going to investigate the asymptotic behaviour, as h -* 0, of the

integral I*(h). Let us begin by introducing two functions: φnE^h(Jf), for ImftgiO,
ft Φ 0; and φnG^h{je), for Im ft < 0.

We recall first an integral representatipn which we shall often use

jznP \n—i)\o

Let

φn(x)=W(x)nga(x\ O^n. (3.7)

From (3.5) and (3.6) we obtain the integral representation

= - J A J(l -ί)(x,α)2exp{fί(x,α)}dμa(α). (3.8)
0 jf
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In order to apply Lemma 1, let

f(ξ) = 0;

and ω is the measure such that for p: X -* C

J p(ftMί) = f \p{ξ) Π Iα,|2(l - ψμ^
X j=ί

Let Im h ^ 0, h Φ 0. From Lemma 1 we get that φn

Now let

- ί)""1 e x p ί - ^ ( x ) ί J Λ , 0<n. (3.9)

From (3.5) and (3.6) we obtain the integral representation

1

W(x) = J Λ J ί(x,α)exp {ΐφc,α)}rfμα(α) - (x,α). (3.10)
0 jf

Define for 0 ^ λ ^ n,

^M(x) = ΓjΛf(x,

j(i -tf~
0

Then

Define now θteJΐ(Jtr) such that

t/j = e x p < - V ( α ) ί > 2 ^ y r l ~ 7 i ( ^ ) * v ( 3 - 1 1 )

Then

( λ ii nil 1 Γ /S ii #iii Ί
>, (3.12)

and ^α(x){ - (i/h)(Va(x) - V(a))t} is the Fourier transform of θt. Again, in order to
apply Lemma 1, let

X = p f x [ 0 , l ] ) Λ + 1 , ξ = (Λ1,t1,...,aλ,tι,β,t)eX;

fffl = *j/\*j\, j=l,...,λ; fj(ξ) = a, j=λ+l,...,n; f(ξ) = at; g(ξ) = tiai +- +
tλaλ + β; and ω is the measure such that for p: X -* C,

j p(ξ)dω(ξ) = J(l - t r x A J f P{ξ) Π 10L}\dμa{aμtμθt{β)
x J=i
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Let Im h < 0. From Lemma 1 we get that φΛtλ9 φne^h (Jίf). Let n > 0. From formula
(3.6) and Lemma 1 we get

I*(h) = ]Γ — I — - I Texp<—-x2 \ φj{x)dx + Rn(h\ (3.13)

j=oβ\ hj [2h J
where

As we have just proved (3.13) is well defined in the region lmh< 0.

Lemma 4. Rn(h) converges uniformly to zero on compacts in the half-plane Im h< 0.

Proof We shall use the results of Sects. IB and 2C. We have

• W{x - tαfexp {i(x,β)}dxdθt{β) ϊ, (3.14)

where θ, is defined by (3.11) with the substitutions μ" by μ(1 ~')α and vα by v(1 " ί ) α. Then

W(x-ta)nexp{i(x,β)}

^), (3.15)

where μ(α, w) is a measure on J f x [0,1] such that for p: J f x [0,1] ->C,

jp(α,w)rfμ(α,w) = JJp(α, w)exp { - itu(a,α)}dμa(cc)du.

As before we put Im A = - <5|ft|, with δ > 0. From (2.9), (3.12), (3.14) and (3.15), we get

Λ]txV^x2\w{x-ta)n^{i{x,β)}dx\d\θt\{β)}

From y-—- ! = J exp { - η}ηip+r)/2dη, we get
\ 2 / o
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(3.16)\Rπ(h)\^f
w! o

where

P = |α|[2|h|(l+W2,

[2|Λ| \h\'

From (3.16) we get immediately

\Rtt(h)\ ^ τ ί e χ P ( -n}(P + Q

v .

^ 1 exp { - η}ηn'2(P + Q + R + S)"
n! i

It is now easy to see that if h belongs to a compact of the region Im h < 0, then | h | and
δ are bounded from below and above and the conclusion of the lemma is
obvious. •

It is natural now to investigate the asymptotic behaviour, as /ι->0, of the
functions

With the definition

n' \j=l /(α,2)j=l

one has the following result.

Lemma 5. Under assumptions (3.1) and (3.2) /* (h\ n ̂  0, ΪS we// defined in Im /z ̂  0
analytic in Im h < 0 and C™ on U. We have in Im /ι ̂  0, for / ̂  0,

satisfies the following estimate:

M /2L(3 + 2 V /2)V/ 2\h\

(2 — ^f%J~π \ ε / \ε2(6 —4^/2)/ n^
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Moreover, for 2L(3 + 2 y/2) < ε2, ί/ze series £ /*(/i) converges absolutely and
n = O

uniformly in imh^O.

Proof The fact that J*(ft) is well defined in Im h ^ 0, h Φ 0, results from (3.1), (3.2)
and Lemma 1. We can now calculate I*(h) in two ways, using either the integral
representation (3.10) or the integral representation (3.8) for W(x). This gives,
respectively

*(Λ) = h-"Σo

ll~n^f- J e x p I - y Λt

2 j iff > j j dμ°(aJJ)dtjdv'>(β), (3.17)

( 3 J 8 )

where Ak = a1t1 + / ? , fc= l , . . . , n ,

ί/ι\1/2

12

>\W) α *

12

w-
Comparing (2.5) and (3.18) we get

Now we have

[n/2]

= Λ" X Λ - A α (

Λ

k ) a n d
λ=0

( 3 1 9 )

(3.20)

From (3.18), (3.19) and (3.20) it follows immediately that I*(h) is analytic in Im h< 0

and C00 on R. From (2.6) and \a\ = \dV(a)\ ̂  L/ε, we get

n~k

From (3.6), (3.17) and (3.20), we get

m=-[n/2]

for some bmeC, m = - [π/2] , . . . , /- 1. From (3.6), (3.18) and (3.20), we get

n (Λ2/7Y

(3.22)

m = 0

|«ΛI(1 - ί i ) (l - O (3.23)

for some cmeC, m = 0,...,/— 1. Comparing now (3.22) and (3.23) we see that bm = 0
for m = — [n/2],..., — 1 and bm = cm for meM. Comparing (3.19) and (3.23) we see
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that

2 ) J = l

We need now to estimate the right-hand side of (3.22), i.e. Rn j(/z). From (2.14),
(3.1), (3.2), (3.21) and (3.22), we get

( L V/l/ilY n (n + 2/ + k)\ ίπ/2ί 2~2λ+n

2?) [^) nl

kZokl2{n_kyΣo{λ + m n

From

ψ] 2-
2λ+n (2n + 2ΐ)\ 22"+2/(n + / -

l)\λ\(n - 2λ)\ ~ n\(n + 2/)!(B + 1)1 ~ n\{n + 20! ^

(see formula (3a) in ref. [13], p. 8) and from

fcl^o k\2(n~k)\ = n\{2-Jl)2l + ι '

the bound for KM>/(/i) follows. The inequality (3.24) is proved in the following way.
First we observe that

" (Π + 2Z + *)! (n + 2/)! » M / π

fce0 /c!2(π-fc)! n! kt-oV^Λ k

It is clear now that Σ I )ί I is the coefficient oϊzn in the development in
k=o\kj\ k )

powers ofz of (1 +z)n (1 -z)~n~2l~\ \z\<\. Therefore

(w + 2/ + fe)! (w + 2Q! . (1 + z)"

k±O k\2(n-k)\ ~ 2πin\ J=r(ί - z ) n + 2 i + 1 z " + 1 Z

r)" . . .
,, , w i t h θ < r < l .+ 1 "

Choosing r = ^/2 — 1 to optimize the estimate, we obtain inequality (3.24). From the
bound for Rnj(h) one gets

and the final assertion of the lemma is easily established. •

Lemma 6. Assume that 2L < ε2. Then for every m ̂  0 the series

( j\m oo / 1 \ " 1 / n \2m + 2n „

is absolutely convergent; moreover, for m = 0, its value is given by

Όet(ί-d2V(a)yll2g(a),

where Det(1 — d2V(a)) is the Fredholm determinant of the operator 1 — d2V(a).
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Proof. By estimates of the type (2.14) we get

ί ••f fl

"'V'
+jn+j=2m + 2n

j ^ 2

' Jn'J

2m+ 2/ιn!(2m)!ε

Now it is trivial to check the absolute convergence of the series if 2L < ε2.
In order to compute the value of the series for m = 0 let us first remark that

(Xj + β
2n

7 = 1

Put

and

We have then that

Hence

2n

I n ^ S c a s e t * l e s e r i e s i s reduced to

2n

j= l / ( α,2)J=l

Π
(α,2)J=l

, Ajic n

i f cίi
fi hJv Jkι

2-(71+ +jk)

Now put T = d2K(α). Then from (3.3) we get

and also

3.25)

(χ,τ"y) = (-
7 = 1

This implies

Π
7 = 1

i) = ( - i y 1 ^ (3.26)

where (e^)^!,.. is any orthonormal basis of Jf.
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From the assumption of the lemma and from Lemma 2 we get that || T\\ < 1.
Hence Det(1 — T)~1/2 exists and we have

Det(1 - T)'1'2 = exp { - (l/2)trlog(1 - Γ)} (3.27)

From (3.26) and (3.27) we get

where only a finite number of j n are different from zero and Bn = (— VfAJn. Then

oo ?-(Ji+ +jk)

D e t d - D " 1 ' 2 - ! Σ ., ,-, BH-B*
n = 0 h < <f Jl'"'Jk-

HJ1+ +ik!k = n

oo 9-0Ί+ +Jk)

=.?o(-" Λ ί R i Π F f ^ - ^ (3 28)

hJi+ +ikik==n

Comparing (3.25) and (3.28) we get the last statement of the lemma. •
We arrive now at the main theorem of this section considering the general case

where B, B~γe<£(je\ B>0.
Theorem. Let V(x) = Jexp{i(x,cc)}dμ(cc) andg(x) = Jexp {i(x,β)}dv(β)9 where μ and v
are bounded complex measures on Jtif such that

J ( α ) ^ L n ! / β " , 0 < n ,

$\β\nd\v\(β)SMn\/εn

9 O^n,

for some L, M, ε > 0 verifying 2L || B~x || (3 H- 2 yfl) < ε2. T/zen there is a unique point
such that dV(a) = Ba; B'γd2V(a) is of trace class and \\B'1d2V(a)\\ι < 1. Let

[2hy '

Then I(h) is analytic in Im h< 0. Consider the function

5Ξ 0, h Φ 0,

7*(0) = Det(H - J B " 1 ί / 2 F ( α ) ) ~ 1 / 2 ^ ( α ) ,

where Det(1 — B~1d2V(a)) is the Fredholm determinant of the operator H—
B~1d2V(a). Then I*(h) is a continuous function ofh in Im h ̂  0. One has the following
asymptotic expansion and estimate

.ί) y (~2)

z / », = oπ!im + n)!

W|Λ-I/2(Σ«i+/») Π

/*(h)-Det(1 -B-WVia
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exp {i(a, 0L )}dμ!ίμ ) exp {i(α, β)}dv(β)

M /2|Λ|||fl-" Ί Y Λ 2Ll^-1ll(3 + 2y/2)\-f-1/2/ 1\

Moreover the asymptotic expansion is Borel summable and determines I*(h) uniquely.

Proof. The uniqueness of the stationary point follows from Lemma 3 and from the

assumption 2L || B~* || (3 + 2 N/2) < ε2. We remark also that this condition implies

the one of Lemma 6. This condition and Lemma 2 imply that B~xd2 V(a) is of trace

class and \\B~1d2V(a)\\1 < 1. Now I(h) can be written

using the properties of the normalized-oscillatory integral. This expression shows
that /(A) is analytic in Im A < 0 and continuous in Im A ̂  0, A # 0.

We can now prove that

/•(ft) = £ /•(ft)

in Im A ̂  0, with /*(A) defined as before. In fact this series is absolutely and uniformly
convergent in ImA^O, and every term is analytic in Imft<0 and C00 on R.
Therefore the sum of this series is an analytic function on Im A < 0 and continuous
on R. By Lemma 4 this sum is identified with /*(A) in Im A < 0. For this reason /* (A)
is just the sum of the series in Im A ^ 0. Now using Lemma 5 and Lemma 6 we get the
first expression of the asymptotic expansion as well as the estimate of the theorem.

In order to obtain the second expression of the asymptotic expansion let us begin
with another integral representation for W^x). From (3.5) and (3.6) we have

W(x) = (l/2)(x, d2 V(a)x) + W{x), where

Hence (l/2)(x,&c)- W(x) = (1/2) (x, T x ) - W{x\ where T = B-d2V(a). From the

Cameron-Martin formula [7], we get

I*(h) = Det(1 - B-ιd2V{a)y 1 / 2Jexp<^-(x, Tx) - l- W{x) iga(x)dx,

where the integral is normalized relative to the quadratic form (x, Tx). In the same
way as in Lemma 4 one has in the region Im h< 0,

/•(*) = Det(1 - B - ^ F ( β ) ) - ^
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As in the proof of Lemma 5 we get

#3Λ(l-ίi)2-(l-U2

where An = aιt1 — h antn + β, and

2"

1/2 ih\112

— I T~1/2A

Comparing this and (2.5) we obtain for Im h< 0

/*(&) = Det(1 -B~H2V(a))-ίl2

We can now identify the coefficients of hm, which are uniquely determined and do not
depend on the domain of definition of h, and obtain the second expression of the
asymptotic expansion of the theorem.

Finally, as we have established I*(h) is analytic in the half-plane Im h< 0 and
satisfies there an estimate of the type

^Aσιl\\h\\

(for αmeC, meN, A9 σ > 0) uniformly in leN and h. Following Nevanlinna [14,15]
these are precisely sufficient conditions in order to have the Borel summability of the
divergent series Σamhm and in order that /*(/ι) be uniquely determined by it. This last
assertion means that there is one and only one I*(h) which verifies the above
inequalities; this follows also from Carleman's theorem [16]. •

Remark. The definition of asymptotic development was introduced by H. Poincare
[17]. The theory of divergent series was first considered by E. Borel [18,19].
Important theorems on Borel summability were proved by G. N. Watson [20,21].
About the work of Watson, see also ref. [22]. The most powerful theorems on this
subject were proved by F. Nevanlinna [14]. A good summary of Nevanlinna's
results was given in ref. [15]; see also ref. [16,23]. About asymptotic developments,
see also ref. [24].
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