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Abstract. We consider infinite Jacobi matrices with ones off-diagonal, and
independent identically distributed random variables with distribution F(v)dv
on-diagonal. If F has compact support and lies in some Sobolev space L\, then
we prove that the integrated density of states, k{E\ is C00 in E.

1. Introduction

In this paper, we will study the one-dimensional Anderson model

(hωu)(n) = u(n + 1) + u(n - 1) + VJn)u{ή)

on /2(Z), where VJn) are independent identically distributed random variables with

distribution dη(v). The operator restricted to /2([0, /— 1]) with u(— l) = w(/) = 0

boundary condition is denoted by hι

ω. This / x Z matrix has eigenvalues eι

ω(l)< •••

< eι

ω(ΐ). The integrated density of states, k(E\ is defined by

k(E)=\hnΓ1#(j\elU)<E)

It is a basic result [3,2,11], essentially a consequence of the ergodic theorem, that for
a.e. ω the limit exists for all E.

It is a result of Pastur [15] that k(E) continuous in E, Craig-Simon [6] show
that k is Log-Holder continuous, i.e. \k(E)-k(Ef)\^cR{\n{\E-Ef\}~1 if
\E\^R9 \E-E'\ < | , and LePage [12] that k{E) is Holder continuous of some
order α > 0 in this situation. (The results of [6,15] hold in great generality.) Here we
want to consider greater regularity in E. Without restrictions on dη, one cannot
expect too much more regularity. There is an argument of Halperin [24], essentially
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already rigorous, that when dη(υ) = θδ(v — a) + (\ — θ)δ(v — b) for α, b, θ suitable,
then k is not C1; indeed, for any a > 0, there are a, b, θ so that k is not Holder
continuous of order α. Since this argument is not widely known in the mathematical
community, since Halperin's model is slightly different from this discrete model, and
since he does not deal with some unessential points of rigor, we provide a formal
version of his result in Appendix 3. Thus, we will restrict ourselves to the case where
dη is absolutely continuous,

dη(v) = F(v)dv.

We are especially interested in the case originally discussed by Anderson, where F is
a multiple of the characteristic function of an interval.

We will need a weak regularity condition on F9 expressed in terms of Sobolev
spaces defined by: L£(KV) 1 g p ^ oo; α ̂  0 is the set of feU so that there is a gel?
with the Fourier transforms related by g(k) = (1 + k2)a/2f(k). The properties that we
need of these spaces are discussed in Appendix 1. We remark now that if / has
compact support and /eLJ, then feh\, and that if / is the characteristic function of
an interval, then feL2 for 0 ^ α < \, and so in L\ for 0 ^ α < \ (actually, one can take
α < 1 for Ll). Our main result in this paper is:

Theorem 1.1. IfF has compact support and FeL\ for some α > 0, then k(E) is a C00

function of E.

In particular, this result applies if F is a multiple of the characteristic function of
an interval. There is some previous evidence that k(E) is C00 in this case. If F(x) =
(b — a) ~x χiaib)(x), then the points of increase of k(E) are precisely on [α — 2, b + 2] but
near a — 2 (and similarly, near b + 2), k(E) goes to zero as exp (— c(E — a + 2)~1/2)
[7,13,14,17,19]. These "Lifschitz tails" are suggestive that k is C0 0: At least at the
points where all derivatives from the left vanish, the behavior on the right is
consistent with the smoothness of k. One can also see evidence of the smoothing
nature of putting V into a Jacobi matrix by directly computing the average over Vω

of the #(J\elω2U) < E) One finds this density k{2\e) has the form J F{2\v)dv, where
— 00

F{2) is now continuous (unlike F(1)(v) = (b — a)~xχiatb)(υ))9 but dF(2)/dv is discon-

tinuous at the points a±l,b+l,%[b + a)± /( — — ) + 1. In fact, our proof of

Theorem 1.1 shows that k(l)(e)= J F(l\v)dv, with F(l\v) having more and more
— oo

derivatives as / gets larger and larger.
In Sect. 2, following Schmidt [18], we show that smoothness of k in E is

connected to smoothness in E of the invariant measure on PR(1) (the projective line)
associated to the "transfer matrix" for hωu = Eu. We will discuss the reason why the
attempt to analyze this measure directly appears to fail, and forces us to
convolutions on SL(2, R). In Sect. 3, we analyze this problem by using convolutions
on SL(2, R\ and reduce the proof of Theorem 1.1 to a result on the three-fold

Γe-υ - Π
convolution of the measure on SL(2,JR) given by L where v has

distribution F(v)dv. In Sect. 4, we prove this technical result, thereby completing the
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proof of Theorem 1.1. We provide appendices on Lζ and SL(2,R) for the reader's
convenience.

While we will discuss the smoothness of the density of states appropriate to the
electronic Hamiltonian, the same arguments prove smoothness of the density
appropriate to a random harmonic chain; that is, we seek solutions of

! * „ + ! + « „ _ ! + (mnω
2 - 2)un = 0,

where mn is now the random variable and the "spectrum" is the set of values of ω.
Again (up to signs) the integrated density of states is given by the weight an invariant
measure on {#e(0,2π]) gives to (0, π), so smoothness of the invariant measure yields
smoothness of £(ω2). Essentially one can consider the invariant measures on RP(1)

associated to the measure dμλE on SL(2, R) given by L where V has

distribution dκ(v). The electronic case corresponds to smoothness in E for λ = 1,
while the harmonic chain corresponds to smoothness in λ for E = 2. It is easy to
show that the same hypotheses on v that yield smoothness of k(E) also yield
smoothness of U if m has the distribution d,κ.

2. Invariant Measures on the Real Projective Line

The key to relating the behavior of k(e) to invariant measures is the following version
of the Sturm oscillation theorem:

Theorem 2.1. Fix a potential V, and let u be any non-zero solution of

u(n + 1) + u(n - 1) + (V(n) - E)u(n) = 0. (2.1)

Let iu(n) = 1 ifu(n)u(n + 1) > 0, or ifu(n) = 0 and ijn) = 0 otherwise. Let eι

v(j) be the
eigenvalues ofh1. Then

i-x

limZ - i #{j\e'v(j)<E} = 0. (2.2)

Proof. Let ύ be a solution of (2.1) obeying u{— l) = 0. Then the discrete Sturm
oscillation theorem [1] says that

#U\elv(J)<E)=ΣoΦ)'

A comparison theorem implies that

which implies (2.2). •

Remark. The reader familiar with the continuum case may be surprised that we
count non-sign flips (u(ή)u(n + 1) > 0) rather than sign-flips (u{n)u(n + 1) < 0; equiva-
lently the linear interpolation of u to R has a zero in (n, n + 1)). This is because the
discrete analog of - d2/dx2 has a - (u(n + 1) + u(n - 1)) term, so that the direct
discrete analog of Sturm oscillation counts sign flips to get #(j\eι

v{j) > E).
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Define x{n) = u(n + l)/u{n)eύ = one point compactification of U, so x obeys

x(n) = E- V(n) - x{n - 1 ) ~ \ (2.3)

and ίu(n) = X(o,oo](xM) with X(o,oo] t n e characteristic function of (0, oo] in M.
Consider now a random potential V(n). For each choice x0 of boundary

condition and each sample potential VJn), let xn{ω, x0) solve (2.3) with V(n) = VJn)
and x(0) = x0. Since l~1#ϋ\eω(j) < E) is bounded and the limit is k{E) for a.e. ω, we
see that:

Corollary 2.2. For each fixed x0:

*k{E) = lim Γ 1 £ Exp(χ ( 0 ? 0 0 ]Wω,x 0))). (2.4)
/ 0/-

Since this holds for each x0 and the quantity on the right of (2.4) is bounded, (2.4)
holds if x0 is also a random variable, and if Exp then takes the meaning of
expectation independently over Vω and x0. A distribution dv for x0 is called invariant
if xx(ω, x0) has distribution dv also. Since Vω is i.i.d., it is easy to see then that xn{ω, x0)
also has distribution dv, so (2.4) implies

Theorem 2.3. (Schmidt [18]). If dvE is an invariant measure for {2.3), then

](x)dvE{x). (2.5)

This result says that smoothness in E will follow from suitable smoothness of vE

in E. If V has distribution F{v)dv and x0 has distribution dv, then x1(ω, x0) has
distribution dμ{y) = G(j/)dy, where

G(j) = f F(β - j ; - xo x)rfv(x0) = f (v)(y). (2.6)

We remark that (2.6) is not quite intended literally: If dv has no pure point piece at
x0 = 0, then dμ{y) is G{y)dy with G given by (2.6). If dv = aδXo = 0 + dv, where dv has no
pure point at 0, then dμ = aιδy = ao + T{v)dy with T given by (2.6). Thus, applying T
twice, we also get a measure of the form G{y)dy, so to look for fixed points of vι—>u, we
need only look for fixed points of the map

(TeG)(y) = ίF{e -y-xo 1)G{x0)dx0. (2.7)

The naive strategy is now clear: Let Ge be the solution of TeGe = Ge. We want to
show that Ge is smooth in e (there is a problem associated with the non-compactness
of [0, oo) if one doesn't specify in which space Ge is proven smooth; we will eventualy
study the transform of Te acting on a compact space). As we shall see, it is a theorem
of Furstenberg that 1 is a simple eigenvalue of Te. Thus the following result is of
some interest:

Proposition 2.4. Let dμ0 be a probability measure on a space X. Let {Λe}eeI be a family
of compact operators on L2{X,dμ) for e in an open interval /, so that;

(1) 1 is an {algebraically) simple eigenvalue of Aefor each eel.
(2) The eigenvector φe associated to Ae with eigenvalue 1 has j φe{x)dμ{x) Φ 0, so we
can normalize φe by

Sφe{x)dμ{x)=l. (2.8)
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(3) Ae is Cι as operators on L2.

Then φe is Cι as vectors on L2.

Proof Let [α, b~\ c /. By compactness of Ae, 1 is an isolated eigenvalue of Ae9 so there
exists ε so that if e e \a, b~\ and 0 < | λ — 11 < 2ε, then λ φ spec (Ae). Fix e0 e [α, b~\ and let
φ = φ e o . Then for e near e0, φe can be written:

\λ-l\ = ε

Since Ae is C\(λ-A,)'1 is C1 and thus Pe is C". It follows that φe is C\ •
The above result is not directly applicable to Te. The fact that we don't have a

probability measure will be treated by shifting the background measure from dx to
π~ 1(\ -f x2)~ ιdx. Te is not compact (it can't be, since it maps δx = 0 to ^ x = oo), but T2

e is
compact. The key point is that if F isn't infinitely smooth, then Te cannot be infinitely
smooth. But Tι

e has an integral kernel given by a kind of twisted convolution, so one
can hope that as / increases, Tι

e become smoother and smoother in e. For example, if
F is only assumed in C1, then one might hope to prove that the kernel of Tf,

T2

e{y,z) = [F{e~y- x~ι)F{e - x -z~ι)dx

is C 2 by formally taking second derivatives, but then shifting second derivatives on
one F to first derivatives on each F by a change of variables and integration by parts.
This procedure does not work: The x " 1 factors resulting from the change of
variables make various integrals absolutely divergent. In a sense we will eventually
make precise, one wants to integrate by parts not a whole time, but at most a third of
a time. This is hard to do in the setting of functions on R with a "sort of convolution,"
but will be easy if we shift to SL(2, R) where "sort of convolution" becomes legitimate
convolution. The fact that the naive approach fails should motivate the more
abstract framework of the next section.

Before ending this section, we want to realize U in an equivalent way as RP{1), the
real projective line. That is, we set x = tan θ; 0e[ —(π/2), π/2] with π/2 and — (π/2)
associated to a point. This is equivalent to considering the line lθ =

ί I r e K \ { 0 } >eRP(l\ t h e s e t o f a l l lθ. A n y 2 x 2 r e a l m a t r i x , A , i n d u c e s arWθ)
map, A, on RP{\) by Alθ = lλθ.

Given F, define the measure dμiF'E) on SL(2, R) to be the measure on matrices of

[ 17 1 ~l

where v has distribution F(v)dv. Theorem 2.3 then becomes:
Theorem 23'. Suppose that dvE is a measure on RP(1) so that if A and θ are
independently distributed with θ having distribution dvE and A having distribution
dμ{F'E\ then Άθ has distribution dvE. Then k{E) = $χ(0tπ/2](θ)dvE(θ).

Corollary 2.5. IfdvE has the form H(θ,E)dθ with HC°° in θ and £, then k(E) is C00.
We note that the Thouless formula [10,23,2,6] relates the Lyaponov exponent,

γ(E), to k(E) by
) = $ln\E-E'\dk(E')
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so that smoothness of k in E implies smoothness of y in E. Actually, one can obtain
this also from smoothness of H(θ, E) in E without recours^tp the Thouless formula
since one has [9]:

γ(E) = i$F(v)H{θ9 E) In {[(£ - ύ) sin θ - cos θ ] 2 + sin2 θ}dθdυ.

3. Formulation on SL(2, R): Reduction to the Main Technical Result

Following Furstenberg [8,9], one can formulate the condition defining vE most
naturally in terms of convolutions on SL(2, R) and on RP{1). Given a measure μ on
SL(2,#) and a measure y on PR(1), we define a measure μ*γ on PR(1) by

$f(θ)d(μ*y(θ))=jf(Άθ)dμ(A)dy(θ). (3.1)

Thus, iΐdμiF'E) is the measure on SL(2, R) described at the end of the last section,
and if TE:Ji{RP{\))^Ji{RP(\))(Ji( ) = measures on •) is defined by

then yE is determined by

TE(vE) = vE. (3.2)

In this regard, the following theorem of Furstenberg [8,9] is important.

Theorem 3.1. Let μ be an arbitrary probability measure on SL(2, R) with the property
that there is no measure y on RP(1) obeying δA *y = yfor each ylesupp μ. Then there is
a unique probability measure, v, on RP(1) obeying μ*γ = y.

Remarks. 1. δA is the point measure on SL(2,R) concentrated at A.
2. The result in [8,9] involves SL(n,R) and RP(n-l).
3. If [supp μ~] is the smallest closed subgroup containing supp μ, clearly δA * y = y

for all v4e[suppμ].
4. In particular, if [suppμ] = SL(2, /), μ has the required property since RP(l)

supports no measure invariant under each δA.
We need the following consequence of Furstenberg's theorem:

Corollary 3.2. If μ has the above property, ifT(y) = μ*y and 1 is an isolated point of
spec(T), then 1 has algebraic multiplicity 1.

Proof. The theorem says that T has geometric multiplicity one. We must show that
there is no yeM(RP(l)) obeying

Ty = y + v. (3.3)

There is no such 7, since JT(y) = Jy, so (3.3) would imply jv = O, which is not
true. •

Following the idea in the last section, we want to take powers of TE. In this
context, one wants to define convolution on SL(2, R). If μ, K are two measures on
SL(2,.R), we define the measure μ*κ on SL(2,K) by

lf(A)d(μ*κ){A) = $f(AB)dμ(A)dκ(B).
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The fact that (AB)~= AB implies that if μ, κeM(SL(2, R)), yeM{RP(l)),

= μ*(/c*y). (3.4)

In (3.4), one * is an SL(2,#) convolution and the others are SL(2,R) x RP(l)
convolutions. This associative law justifies the use of one symbol for both
convolutions.

Thus, powers of TE are just convolution powers of μ(F'£). We let *ιμ denote the l-
fold convolution of μ. In this section, we want to first reduce the proof of our main
result, Theorem 1.1, to a result on *ιμ, and then reduce the proof of this result to a
technical fact proven in the next section. The result on *ιμ is:

Theorem 3.3. Let FeLl(R)(oc > 0) with compact support. For any fc, there exists l0

(depending only on α and k) so that, for I §; l0, *^ ( F ' £ ) is absolutely continuous relative
to Haar measure, dA, on SL(2, R) and

d(*ιμF>E) = Gι(A,E)dA,

where Gx has compact support in A and is Ck jointly in E and A.
As explained above, we will first show how Theorem 3.3 implies Theorem 1.1. We

need the following:

Lemma 3.4. Ifκ is a measure on SL(2, R) of the form G(A)dA, with G a Ck function of
compact support, then T(κ), the map on L2(RP{l),dθ) defined by κ*{fdθ) = (T(κ)f)dθ
obeys

(a) T is Hilbert Schmidt.
(b) Any eigenfunction ofT is Ck in θ; in fact, T is a bounded map from L2 into Ck

functions (in the natural Ck topology).
(c) Any solution ofκ*γ = xγ, some complex x obeys γ = Gdθ, with G a Ckfunction.

Proof. Let X be the map from SL(2, R) x RP(1) to RP(1) by X(A, θ) = Άθ. A direct
calculation shows that X is C00, and that at A = id (where daxι = — da22) we have

dX{A, θ)\j=Jd = [sin2θ)da11 + cos2 θda12 - sin2θa21

so VAX\A = id φ 0. Since X(A, θ) = X(AAQ \ Aoθ), we see that globally VAX φ 0. The
formula for the integral kernel of T(κ):

T(κ)(θ, ff) = j g(A)δ(X(A, β') - θ)dA

shows that T has a bounded integral kernel (so (a) holds), and T(θ, &) is Ck in θ
uniformly in &, so T is actually continuous from measures on RP(1) to Ck, proving
(b) and (c). •

Proof of Theorem 1.1 (assuming Theorem 3.3). By Corollary 2.5, we need only show
that the solution of T(μ(F'E))v£ = ve has form H(θ,E)dθ with HC"° in θ and E. Set
TE = T(μ(F'E)). By the last lemma, Tι

E is a family of compact operators on L2.
Corollary 3.2 is applicable since [supp **μ] is all of SL(2, R). By Corollary 3.2,1 has
algebraic multiplicity 1 (for each /), and by the last lemma and Theorem 3.3, Tι

E is Ck

in E. Thus, Proposition 2.4 applies and vE is Ck in E (as elements in L2). Since Tι

E

mapsL2 to Ck(in θ),anddrTι

E/dEr(r = 0,l,...,k)mapsL2 to Ck(by Theorem 3.3 and
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the last lemma), Tι

EvE is jointly Ck in θ and £, i.e. H is Ck. Since k is arbitrary, H is
C00. •

Our proof of Theorem 3.3 will exploit the use of Sobolev spaces on SL(2, R). An
alternate proof might be possible by using the Fourier transform on SL(2,#), but
because of the complicated calculations required of such a procedure, we have not
used that approach. If such a proof worked, it might well extend the theorem to one
where the hypothesis could be replaced by a requirement \F(k)\ ̂  C(l + k2)~δ (for
some δ > 0) which would include some continuous singular dη(v). Such a procedure
also might allow one to drop the hypothesis that F has compact support.

There is a technical complication on SL(2, R) that the right and left invariant
Laplacians are unequal, and differ in a significant way at infinity (see Appendix 2); we
finesse this difficulty by dealing everywhere with objects of compact support. The
translations are defined on functions on SL(2,#) by {τL

Af)(B)=f{A~1B\ (τ$/)(£)
=f(BA). There exist "Laplacians" ΔL, ΔR (depending on a choice of metric on the
Lie algebra SL(2, R) with ΔL commuting with all τA, etc. These operators are
essentially selfadjoint on Q?(SL(2,K)), so (1 — Δ)s/2 is defined by the spectral
theorem. The Sobolev spaces, Hs, are defined for s ^ 0 by geHs if and only if geL2

and (1 - ΔLγ12 geL2 with || g \\s = || (1 - ΔL)s/2g | |L 2. For s < 0, Hs is defined by duality
in the usual way. For K compact, let Hs

κ = {/ef ί s | supp/^ K}, and define Hs

comp

= (J Hs

κ. To say a map S: 3' -• 3' maps H s

c o m p to Hr

comp means that for each X,
K compact

there exists K compact and a constant C(K) so that S maps Hs

κ to Hr

R and ϊoτfeHs

κ,

\\Sf\\r^c(K)\\f\\s.

It is not hard to see that if/ has support in X, then feHs

κ if and only if / is an Hs

function in the usual R3 sense in a local coordinate system about each point. In
particular, every distribution of compact support lies in some Hs( — oo < s < oo). By
an ordinary Sobolev estimate, for any measure of compact support, μeH\ all
s < - 3/2 and

Lemma 3.5. For any F of compact support, drμ{F'E)/dEr lies in Hs for all
s < - f - r.

Proof. We can cover SL(2,.R) with two coordinate patches; if A = \ Ί , we take
\_c d]

one patch where b Φ 0 and use coordinates α, b, d with Haar measure b 1 dadbdd,
and one patch where a φ 0 with coordinates α, £>, c and Haar measure a ~ι dadbdc. By
changing variables in §g(A)dμ{F'E)(A) and shifting E into the α-coordinate, we see
that

dr

so long as s < — r — f by an ordinary Sobolev estimate. •
Now define Lζ(SL(29R)),p > 1, to be those distributions, T, on SL(2,K) with

I T{f)\ S C || (1 - ΔLy«l2f \\q for some C and all/εC? and q the dual index of p. As
above, if T has compact support and α ̂  0, TeL% if and only if T = ί(,4)ίL4 with t
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locally in the conventional Lζ in local coordinates. The following result is proven in
Appendix 2.

Theorem 3.6. (a) Let TeLξ, 1 < p, 0 rg s ?g 1 with compact support. Then left convo-
lution with T defines a bounded map from H[omp to Hl

c^p for all t.

(b) Let TeHs have compact support where s < 0 is allowed. The left convolution
with T defines a bounded map of H[omp to H^mp for a^ t-

The last element we need for the proof of Theorem 3.3 is the following result we

prove in the next section:

Theorem 3.7. For each α > 0, there exists a' > 0 so that the measure μ(F'F) obeys
μ ( F '£Uμ ( F '£ )*μ ( F 'F )eL£, (SL(2, R)) if FeLι

a(R) and p is sufficiently close to 1.

Proof of Theorem 3.3 (Assuming Theorem 3.7). We first show that for sufficiently large
/, *'μ ( F '£ ) has a Ck density. By Lemma 3.5, μeHs if s < — 3/2. Thus by Theorems 3.6
and 3.7 *<3m + 1)μ lies in Hs if s < ma' — 3/2. In particular, if m is sufficiently large,
*ιμeHS0, with s0 > k + 3/2 for all / > 3m + 1. But functions in such an HSo are Ck by a
Sobolev estimate. Now compute the weak derivative (d/dE)(*ιμ(F'E))

= Σ (*j μ)*(dμ/ dE)*(*ι~ ^ ~j μ). By Lemma 3.5 and Theorem 3.6, convoluting with
7 = 0

dμ/dE decreases the Holder index by at most 5/2. If j — 2, we may not get any extra
smoothing from those two factors, so if/ g: 3m + 6, then (d/dE) (*zμ(F'F)) lies in H* if
t<moc-ψ. (Note: (4 = f + f).) Thus, for / sufficiently large, (d/dE) (*ιμ)eHSo with
s0 > k + 3/2. By integrating this formal derivative, one sees that the kernel
Gi(A, E) is Lipschitz in E (uniformly in A) and that all derivatives Dj

ACι(A,E);j ^ k
are Lipschitz in E. By doing the same thing with (d*ldEa) (**μ); α = 2,...,
k + 1, we see that for / large D^G^A, E);j ^ k is Ck; in fact, since *ιμ is Ck in HSo, one
gets that Gx is jointly Ck. •

4. Proof of the Main Technical Theorem

Our goal in this section is to prove Theorem 3.7. As we shall see, even if F is C00, the
density in μ*μ*μ is not only not C00: It is not C 1 or even in L\ any p> 1;
rather, it will lie in Lζ for all α < 1 and p > 1 approaching 1 as α approaches 1. The
fact that the derivatives are fractional means that we cannot check μ*μ*μeL£ by
taking classical derivatives, and indeed we will use complex interpolation (but in an
especially simple way). Presumably, if F is C1, then μ*μ*μ*μ lies in L\ (and perhaps
it even has C 1 density), and this could be checked by direct calculation. We deal
with the triple convolution here for three reasons: (i) We need to deal with fractional
α if we want to have minimal regularity properties on i7, (ii) The triple convolution is
the first which can possible have a density ( = be a.c. with respect to Haar measure),
(iii) SL(2, R) is three dimensional, so the map Φ below is away from singularities a
diffeomorphism; if we took the four-fold convolution, the map would be from R4 to
U3 and at best a submersion. This would make explicit calculations more
complicated, although we are sure they could be done.



10 B. Simon and M. Taylor

Note that

\x " Ί P ~ΊΓZ " Ί - Γ " b~]
U o J|_i o l i o J Ic d\'

a = xyz-x-z, b = -xy + 1, c = yz — 1, ά— — y. Thus, the map Φ:M3-+SL(2,R)

by Φ(x,y,z) = is basic and μ*μ*μ is just the push forward of the measureγ = Gdxdydz with G(x9y9z) = F(x)F(y)F(z) (i.e. μ*μ*μ(s) = γ(φ 1(s))). Since Fe
Ll(U) with compact support, FeLζ_δ for some p> 1 and δ small (see Theorem
A.1.2) so GeLζ_δ(M3) (see Theorem A. 1.7), so we will consider the linear map
Φ*:Gi-+γoΦ~1 and prove that, for p > 1, α > 0, this maps L^ c o m p into some LJ for
some r > 1, en! > 0 .

Proposition 4.1. Φ is a diffeomorphism in a neighborhood of any point (xo,yo,zo) with

Proof Since d0 = — y0 φ 0, we can use fe, c, d as coordinates in a neighborhood of
Φ(xo,yo,zo). Clearly Φ has the inverse

x = (b-ί)/d9 y=-d9 z = (l-c)/d •

For G supported in a fixed compact, we can, by exploiting a partition of unity,
study Φ^ locally. Since L£ c o m p is left invariant by diffeomorphism
(Theorem A. 1.8), Proposition 4.1 implies that we need only study Φ* for G
supported in a set of the form: SM = {(x,y9z)\\x\ ^ M, \y\ r gβM)" 1 , |z| g M}. On
this set, fe(x,y, z)= — x^ + 1 lies in Q,f], so we can use a, fe, d as coordinates. In
fact, since the singular point y — 1 corresponds to fe = 1, we use coordinates u, i;, w
so that

[ w 1 —

φ(w, t;, w) u

Thus, we define the map Ψ: U3 -• [R3 by ^(x, ^, z) = (w, ι;, w) with w = — y, v = xy,
w = xyz — x — z.

We use r£ to denote (x, ̂ , z) and ^ to denote (w, ι;, w).

Proposition 4.2. (a) On Ψ[SM\ | I ; | ^ M | M | .

(b) the Jacobian \det(dΨ/dr^)\ = \u(v — 1)\ = J(u, v9 w),
(c) the inverse map Ψ1 defined on Ψ[SM]l{{u,v,w)\u = υ = U] obeys.

(d) U W ^ I ^ C ^ + ̂ - ^ I V ^ l / J K ^ I ^ C ^ + i; 2)- 1 on!P[S M ] .

Proof, (a) is immediate from the formula for u, v. It is easy to compute d Ψjdr{ and
see that its determinant is y(xy — 1) = — u(v — 1), proving (b). Ψ ~1 has the form x =
— v/u, y= —u,z= — (1 — v)~ 1(w — vu~ *), and using the fact that v/u is bounded on
Ψ\_SM], i t is e a s y t o p r o v e t h a t W d Ψ ' ^ d η ^ ^ C\u\~\ B u t s i n c e \v\^M\u\,
Iu\~x ^ (1 + M2)~1/2(u2 + v2y1/2. Given this fact, (d) is a trivial computation using
the form of (b). •
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Since the singular points (r|jμ = 0} have Lebesgue measure zero, it is obvious that
Φ^{G) has a density, i.e. Φ^(G) = Φ\G)dA, where Φ\G) is given by Φ\G){η) =
(1 - v)T(G)(η) with T(G)(η) = J(η)~HGo Ψ'1)^). The factor (1 - υ), which comes
from the fact that dA = (ί—v)~ί dudvdw, is C00 and so unimportant. Thus, Theorem
3.7 is implied by:

Theorem 4.2. Let α > 0. Then,for all p sufficiently close tol,T m a p s Lζ(SM) to Uβ(R3)
for some β>O,r> I.

We will obtain this result as a corollary of Theorem 4.3 below. We note that
T does not map C 0 0 into IF1 since, if G is C 0 0 and G Ξ I O Π SM = {r | |x | £

\y\^(4My\\z\^M}MienT(G)(η) = J(ηΓ1onΨ(SM) and J

We introduce a family of maps, 0 ̂  Re z < 2,

Theorem 4.3. Lei O ^ α ^ l , l < p < o o , \<r<p. Then Tz is a bounded map
from Lζ(SM) to Lr

Λ(R3) so long as

2r~1-p~1> max (1, α + Re z).

Proof Suppose that r,p are fixed with 2r~ι — p~ι > 1. If we prove the result
for α = 0,1 (with polynomial bounds in Im z on norms), then by the Stein inter-
polation theorem [16], the result holds for all αe(0,1).

For α = 0, $\J(η)\-1\F(φ-1oη)\Pdudvdw = $\F(r)\pd3r so Fell implies that
J-ιipF°Φ~1eU. Thus, by Holder's inequality, the α = 0 result holds if

J \J-z\q\Jq/p\d3η<oo, (4.1)

when Re z < 2 r " 1 - p ~ 1 , where q~ι=r~1—p~1. To check this, we note that
if R e z < 2 r ~ 1 - / ? " 1 , then

so that (4.1) is equivalent to

j \J\-ad3η<oo if α<2. (4.2)
nsM)

Inequality (4.2) is easy to check if we note that | J\~a ̂  (u2 + v2)~a/2 on the region of
integration.

For α = 1, we note that

dΨ
Since ^cJ ι and \VJJ z)\ S c(\z\ + 1)|J z 1 | , we see that

Lg

\VηTz(G)\ S c\J\-R*z~ι{\z\ + l)[ |Go ψ~'\ + |(Vr(G)o ψ''\\

so that the exact same calculation as above proves the desired α = 1 result.
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Proof of Theorem 4.2. Without loss, we can shrink α so α < 6. By a Sobolev estimate,
Lζ c Lζf2 so long as 1 < p < p0 = (1 — ^α)~ *. Let r 0 = (1 — α/24)~*. Then r 0 < p 0 and

Since L J c L J 3 , we conclude by Theorem 4.8 that T z = 1 map L °̂2 to L $ 1 3 . We
remark that by optimizing choices, we can take β arbitrarily close to
min(α/4,1). •

Appendix 1. Some Background on Lp Sobolev Spaces

In this appendix, we present, for the reader's convenience, some necessary
background on the spaces Lζ(Rn) discussed, e.g. in Stein [20], Calderon [4], and
Chap. I of Taylor [22].

Definition. We say that feLζ (α ̂  0,1 ^ p ̂  oo) if and only if there exists geLP with
fflή = (1 + kψ2f(k). We set || / ||p;α EE || g \\p.

Equivalently, one can define the Bessel potential, Gα(x), by (Ga*g)~(k) =
(1 + k2ytx/2g{k), and then LPa = {Ga*g\geL?}. As we will explain, there are special
subtleties associated with the cases p = 1, oo. We can avoid these, since we will deal
typically with/ of compact support, and for such /, Lζ c L\ with L\ c L£ for p > 1
and α' near α. By this set of arguments, we typically lose a little bit on α. There are
surely places below where, by working harder, we could avoid this loss. Since for our
purposes here the loss is irrelevant, we take the easy way out. One place that the
special nature of p = 1, oo occurs is

Theorem A.I.I, (see Calderon [4]). // l < p o > Pi<°°> 0 ^ α 0 , α l 9 the complex
interpolation spaces (L£°, L£ί)t ( 0 < ί < 1) are equivalent to Lζζ with p~λ = tpϊ1 +
(1 — ήpo1, oct = toc1 +(1 — ί)α0. The same result holds if Lζ{Rx) is replaced by
Lζ(Ω) = {/eL£(#v)|supp/c= Ω} for any open Ω.

Since ([20], pg. 132), GaeU so long as p< n/(n-a) and Ga*Gβ = Ga+β, Young's
inequality implies a Sobolev estimate.

Theorem A.1.2. Lζ^Lq

β if q^p, β^oc and p'1 - q ' 1 < ( α - β ) n ~ \
We will not need the more subtle result that one can have equality in the last

requirement if p > 1, q < oo. It is not hard to see (e.g. [16], Sect. IX. 10) that the
Fourier transform of (1 + k2)a/2 is a distribution given by a smooth exponentially
decaying function away from x = 0. Thus, if/eL1 has compact support and g =
(1 + fc2)α/2f, then g is a smooth exponentially decaying function away from a
neighborhood of supp /. It follows that if geLP, then geΠ for all q < p. Thus:

Theorem A.1.3. // feLζ has compact support, then feL\ for all q<p and
II/Ilg ; βύC\\f ||p;α, where C only depends on q, α and supp /.

The last two results imply that

Corollary A.1.4. (J {/eL£|supp / is compact) = \J {feL\\supp / is
l^p^oo,a>0 α > 0

compact}.
It is for this reason that our basic result, Theorem 1.1, is stated in terms of L\.
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Example. The characteristic function of an interval has a Fourier transform χ
bounded by (1 + \k\y\ Thus (1 + k2f/2χeL2 so long as α < | . It follows that χeL2

for all α < \ and so in L\ for all α < ̂ . Actually, a more careful analysis shows that
χeL\ for all α < 1.

The following result is a consequence of Theorem 3 on pg. 135 of [20]; see also
pg. 31 of [22].

Theorem A.1.5. Let 1 < p < GO. If a is an integer k, then feLζ if and only if for all

multi-indices \β\^K Dβf (distributional derivative) lies in II and £ \\Vβf\\P

 is

\β\ύk

equivalent to | |/ | |p > α.
The next few results are needed on L\. We begin with L£, 1 < p < GO, and then

apply the strategy indicated above to get the L\ result.

Theorem A.1.6. //geC0 0, with all derivatives bounded, then fv^g f maps Lξ to itself
if 1 <p < oo.

Proof This follows from Theorem A. 1.5 if α is an integer and for general α by
interpolation. •

Theorem A.1.7. Letl<p<oo. IffeLζ(Rμ) and geLζ(Rv) and iff® g is the function
f(x)y(y) on Rμ+\thenf®geLp

q(Rμ + v) and \\f®g\\p,^C(p,a,μ,v)\\f\\pJg\\p,a.

Proof If α is an integer, this follows from Theorem. A. 1.5 and for general α by
bilinear interpolation. •

Theorem A.1.8. Let 1 < p < oo. Let Ω be a bounded open set in Rμ, and let Φ be a
diffeomorphism of Ω to a bounded open subset Ω' a Rμ which extends to a
diffeomorphism of a neighborhood of Ω. Let Φ* be defined from functions on Ω to
functions on Ω' by (Φ*f)(x)f(Φ " ^x)). Then Φ*isa bounded map ofLp

q(R) to Lζ(R').

Proof By hypothesis, all derivatives of Φ and Φ ~x are bounded, so Theorem A. 1.5
yields the result if α is an integer. We obtain general α by interpolation. •

Let L£ c o m p = u {Lζ(Ω)\ all bounded open fl}. We say T from L£ c o m p to L«fComp is
bounded if, for any Ω, there is an Ω' with T[LJ(Λ)] c L ^ Λ ' j and \\Tf\\q^
C ( β ) | | / | | p > α . We have the following analog of Theorem A.1.6:

Theorem A.1.9. If gsC00 with all derivatives bounded and a' < α, then f\-^gf maps

α,comp ^ α',comp

Proof By Theorem A. 1.2, L\ lies in LJ, for some p > 1. Thus, by Theorem A.1.6, gf

lies in Lζ>. Finally, by Theorem A. 1.2, L£ c o m is imbedded continuously in
Jx • '
-'-'αScomp ^

The same reasoning implies our final results:

Theorem A.1.10. Let α ' < α . Then f®g maps L\ c o m p ( ^ ) x L\ comp(Rv) to

Ll,comp(Rμ+*).

Theorem A.l.ll. Under the hypothesis of Theorem A.I.8, Φ* maps L\(Ω) to

n
α'<α
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Appendix 2. Some Background on SL(2, R) and its Sobolev Spaces

In this appendix, we present for the reader's convenience some elementary facts
about SL(2, R), including the proof of Theorem 3.6. SL(2, R) is, of course, all 2 x 2

real matrices of determinant 1, i.e. ad-bc= 1. It is, of course, a three
a bΊ

c d\
dimensional manifold covered by two "coordinate patches," Pί = {(a,b,c)\a-
and P2 = {(a, b, d)\b Φ 0}. By the standard Jacobian formula, SL(2, R) acting on all

[x yl
2 x 2 matrices by either left or right multiplication leaves the measure

[_w z j
dxdydwdz invariant, so the measure δ(ab-cd)dadbdcdd is a left and right invariant
Haar measure on SL(2,R), i.e. Haar measure has the form \a\~x dadbdc on Px and
\b\~ι dadbdd on P2.

We define maps τA, τA for AGSL(2,R) on functions, /, on SL(2,R) by
(τL

Af){B) =f(A ~ 1B) and (τ$/)(£) =f{BA). A vector field X is called left (respectively
right) invariant if it commutes with all τL

A (respectively all τ^). It is standard fact that
the map Xv-*XX sets up a bijection between the left invariant (or right invariant)
vector fields and the tangent space, SL(2,.R) at the identity, 1.

Pick an arbitrary basis Xι, X2, X3 for SL(2, R\ and let X\ (respectively X?) be
the left invariant (respectively right invariant) vector fields equal to Xt at the identity.

3

Let A L = Σ (X[)2 and similarly for A R. lΐg0 is the metric on SL(2, R) in which Xt is
an orthonormal basis and gL (respectively gR) is the unique left (respectively right)
invariant metric on SL(2,#) agreeing at 1 with gOi then AL (respectively AR) is the
Laplace-Beltrami operator associated to gL (respectively gR). Because of the
invariance of the metric, it is easy to see that there is a δ independent of A so that
every speed 1 geodesic starting at A can be run for time <5, and from this one obtains
the completeness of the metrices. Standard theorems on the self adjointness of
Laplace-Beltrami operators [5,21] thus imply:

Theorem A.2.1. AL and AR are essentially self adjoint on C^(SL(2, R)).
We define the Sobolev space Hs for s > 0 to be the set of ueL2 which lie in

D((AL)S/2) with the norm |((1 - AL)s/2u\\ = \\u\\s. For s < 0 , the space is just the
completion of L2 in this same norm. By Calderon's theory [4], the complex
interpolation spaces (HSo,Hs% are just HΘSI+(1~Θ)SO. Any distribution of compact
support lies in some Hs (— oo < s < oo). We note that by a standard partition of
unity argument, for any compact K, and any bounded open neighborhood U of K,
and any s >0, || Γ | |H-s^ C, sup{T(φ);suppφ c (7, | |(JP| |HS= 1} for all T supported in
K. Thus, we can associate the dual of F c o m p with //,~c

s in the sense that a bounded
map from Hs

comp to //cOmp has a dual mapping H{ol to H^*. If such a map is given by
convolution by a compactly supported distribution, then the dual map also takes

#c~oίnp t 0 #c~omp

The standard theory of Sobolev spaces on manifolds implies that for each

bounded open set, K, and each even integer, n, the norms || ||π, £ Il#αw|l2 and

| |(l-ZlR)n / 2w|| 2 are equivalent norms on {U\UECQ{K)} (this result remains true for
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all integers n and for non-integral n if a suitable replacements for || Dau || 2 is found; we
won't need that).

For p > 1, we define Lζ to be the completion of C£ in the norm || (1 - ΔLf/2f \\p.
It is proven by Strichartz [21] that (L£o°, Lp

a% = L^ where OCΘ = ΘOL1+(1-Θ)(X0,
PQ1 = ΘPΪ1+(1—Θ)PQ1. It is again standard theory of Sobolev spaces on
manifolds that if u has compact support, that ueLζ if and only if it is in the standard
LP(x(Rv) in a local coordinate system about each point.

Convolution is defined by (f*g)(A) = ̂ f(AB-ί)g(B)dB. If/, geL\ then by
Fubini's theorem the integral converges for a.e. A and we define convolution initially
on L1 x ]}. Since the Haar measure is both left and right invariant, dB is invariant
under B^B'1 and thus, by a change of variables

These equations can be written in the form

f*g = ig{B)(τξ-if)dB (A. la)

= lf{C){τL

cg)dC (A.lb)

Since Δ# commutes with τ# (for # = R or L), we see that for/, geC™,

(l-ΔR)"2(f*g) = Ul-ΔRF2n*g, (A.2a)

and

/*[(l - ΔLr'2gl (A.2b)

It is easy to see that if/, #eL\ then the measure convolution (defined in the text)
of fdA and gdA is (f*g)dA. If fϊ(A) =f(A~1) and (f,gY = \f{A)g{A)dA and
/,^,/i6Co

ro, then

<f,h*g>~ = <h**f,g>~ = <f*g*,hy (A3)

by a change of variables. This allows one to define the convolution of a distribution
of a compact support and a C00 function of compact support (by (ψ*T)(φ) =
T(ψ%*φ)), and to check that this convolution is again a C00 function of compact
support. Thus, one can define the convolution of any two distributions of compact

00

support, and so f*g for any/, ge \J Hs

comp.

Theorem A.2.2. ( = Theorem 3.6(a)). Let TeLξ, l<p; O ^ s ^ l /zαt;̂  compact
support, and feHι

comp. Then

^ (A.4)

where C depends only on s, t and the supports off and T.

Proof We claim first that we only prove here the result for t ̂  0. For the duality (for
H[omp as discussed above) and (A.3) imply the result for t ̂  — s, and we can
interpolate to obtain the result for all t. Also, by interpolation we need only prove the
result for s fixed, t a non-negative even integer, and then for such t and s = 0 or 2.
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By (A.lb) and the fact that τL is an isometry on each H\ if/eL1 and geFΓ:

\\f*g\\H^\\f\\i\\g\\H<,

and so if fell has support in a compact set K (so feLι\

Wf*9\\H<ύC\\f\\p\\g\\Ht,

where C depends only on K. Thus, if s = 0, 2, t = 0, 2, 4,... and TeLξ, then

i ι ^ = ι ι c ( i — ^ i 2

But as we have already remarked, the usual theory of Sobolev spaces on manifolds
implies that on a fixed compact || (1 — A R)s/2 T || p and Lξ are equivalent norms, and
that || (1 - ΔR)s/2h \\Ht and Ht+S are equivalent norms. •

omp *
Theorem A.2.3. (= Theorem 3.6(b)). Hl^H^ c Hs

c

Proof. The previous argument extended to general positive 5 yields the result for all t
and s ̂  0. By duality (using (A.3)) for any t, *Ht

comp maps H'J^' to H;o

s

mp for all 5 > 0,
i.e. we have the original result if s + t rg 0. That is, we know the result for all pairs
{<5, ί> | s^0or5 + ί^0} . Thus, for t fixed we directly have all 5 if t ̂  0 and we have
all s with 5 in ( - 00, - ί] or [0, 00) if t > 0. By interpolating in 5, we obtain the result
for all s. •

Appendix 3. A Theorem of Halperin

In this appendix, we will prove

Theorem A.3.1. Let dη(v) = θδ(v-a) + (l-θ)δ(υ-b);O<θ^^. Then k(E) is not

Holder continuous of any order α larger than

α0 = 2|log(l - 0)|/Arccosh(l + \\a - b\).

Remarks. 1. This result is essentially due to Halperin [23], whose strategy we follow
quite closely. For reasons given in the introduction, we include it here.

2. Notice that α0J,0 as either Θ-+0 or \a — fc|-• 00. Thus one cannot hope to
prove Holder continuity of any preassigned order.

3. Once \a — b\> 2.25, we see that α0 < 1 for all θ.
4. As we will explain, there is reason to believe that dk has a singular continuous

component for suitable α, b, θ.
We will need a version of Temple's inequality:

Lemma A.3.2. Let Abe a selfadjoint operator. Suppose that {fi}ki= x is an orthonormal
set obeying

(i) ||μ-£0)/£ | |^ε,
(ii) (fh Afj) = (4/1, Afj) = 0 all i ΦU

for some Eθ9 ε. Then the spectral projection PιEo-ε,Eo+ε-](A) has range at least k.

Proof Let V be the span of the fx. An elementary calculation shows that for any/e V,
II (A - E0)f II ̂  ε II / 1 | . If dim Ran P [ £ o _ e , £ o + ε ] g k - 1, we can find/e V orthonormal
to it, in which case \\(A — E0)f\\ > ε | | / | | . This contradiction establishes the
result. •
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Proof of Theorem A.3.1. As a warm-up result, we will prove the theorem with α0

replaced by the larger number,

α 1=2|log(l-θ) |/Arcsinh(i |α-6|).

Without loss of generality, we can suppose that a > b, since Ho+ V and — Ho + V
are unitarily equivalent. Consider an infinite volume potential, V, with V(0) = a,
V(n) = b(nφ 0). It is not hard to see that Ho + Khas an eigenfunction

φ(n) = e~kW
with

k = Avcsmh£\a-b\)

and eigenvalue Eo = a + 2e "k. For each L, we can find a normalized φL supported on
{n||rc| <ΞL-1} so that

for we need only take φL(n) = N[ι φ(n) for | n | ^ L - 1. NL > 1 and (H - EΌ)φL(j) = 0
i f j # ± ( L - l ) ; = - β - f c L i f 7 = ± ( L - l ) a n d - β - / c ( L - 1 ) i f j - ± L .

Now fix a "typical" potential Vω, "typical" in the sense that lim L~ ι(# of ev of
L^oo

H^^E)-^ k(E) for each E, and in a sense made precise below. Fix Lo and take
L = m(2L0 + 1) with m = 1,2,.... Break [0, L - 1 ] into m blocks [0,2L0], [2L0 + 1,
4L0 + 1], — Suppose that nm of these blocks have Vω equal to a in the center and b at
the other 2L0 sites. Let f 1 , . . . , /Wm be the function φLo translated to be centred at the
center of the special blocks. Then

and since Hfj is supported in the/Λ special block, the other hypotheses of the Temple
inequality hold. We conclude that H^ has at least nm eigenvalues in the interval
[£ 0 -2^- f c ( L °- 1 ) , Eo + 2ίΓ k ( L o- 1 ))]. Thus

/c(£0 + 2^- f e ( L o - 1 ) )-M^o-^" f e ( L o " 1 ) )^ lim L-1nm = (2L0 + iy1 lim m~lnm
m~* oo m~* co

The law of large numbers tells us that for a typical ω, m~1nm^Prob(V(0) = α,
7( + 1) = - = V(±L0) = b) = θ(l - Θ)2L°. Thus, letting δLo = 2e~k^-γ\ we see that

k(E0 + δLo) - k(E0 - δLo) ^ (2L0 + I ) " 1 θ(l - θ)\\δLoγ\

Since LQ1 =0([log(5^]~*) and δLo JO, we see that /ccannot be Holder continuous
of any order cc>a1.

Clearly the same argument works for any eigenvalue of an operator with
potential V\ή) = b for |n| large. If /c# is the rate of decay of the eigenfunction as
|rc|->oo, then one cannot be Holder continuous of order larger than oc# =
21 log (1 - 0)|/7c#. If £# > b + 2 is the eigenvalue and F# - b for n large, then fe# obeys
2 cosh fe#=|£#-fo|. If we look at the largest eigenvalue e5 of the potential
V(n) = a (respectively b) if \j\<n (respectively ^ n), then ^ -• α + 2 as -> oo. Thus
α/ -^ α0 as 7 -> oo. •

Remarks. 1. This argument is restricted to one dimension, for in higher dimensions
the value of \\(HL — E0)φL\\ still goes as e~kLo but the probability of a given
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configuration with one V(ή) = a goes as Θ(l — θ)(2Lo + 1)d~1 ^ e~cL°. One can
speculate that just as the normal singularities of the periodic potential density of
states get less severe as dimension increases, so might it happen that the minimal
smoothness Anderson model density of states gets better as dimension increases.

2. The argument is valid for continuum models — (d2/dx2) + V(x). For example,
if Vo and Vί have period 1, and if in each cell [n, n + 1], V is either Vo or V1 with
probability θ and (1 - θ\ and if σ{ - {d2/dx2) + Vo) φ σ( - (d2/dx2) + VJ, k will not
be C 1 if θ is suitably chosen.

Let us give a heuristic argument suggesting that dk has a singular component.
We suppose that the system only has localized states and that in a certain small
energy region they decay as e~yM in this energy region in a large box of size (2L0 + 1),
roughly half of them should be localized in the middle half of the box, and so should
be of size at most e~yLo12 at the edges. Thus, using the construction above, we find
half the eigenvalues in this region in intervals of size Ce~yLo12. But the number of
intervals is no more than the number of eigenvalues of all possible potentials in a box
of side 2L0 + 1, is (2L0 + l)2 2 L o + 1. Thus we have concentrated half the eigenvalues
in a union of intervals of Lebesgue measure (2L0 4- l)2 2 L o + 1 e~yLo12 -> 0 as Lo -> oo if

Nieuwenhuizen and Luck [25] have recently made a nonrigorous but very
illuminating study of the Anderson model with two valued potential.

Acknowledgement. It is a pleasure to thank Tom Spencer for stimulating our interest in this question, and
Eli Stein for the useful remark that it is often easier to control convolutions on SL(2, R) with one's "bare
hands" rather than by using the non-commutative Fourier transform.

References

1. Atkinson, F.: Discrete and continuous boundary problems. New York: Academic Press 1964

2. Avron, J., Simon, B.: Almost periodic Schrόdinger operators. II. The integrated density of states.
Duke Math. J. 50, 369-391 (1983)

3. Benderskii, M., Pastur, L.: On the spectrum of the one dimensional Schrδdinger equation with a
random potential. Mat. Sb. 82, 245-256 (1970)

4. Calderon, A.: Intermediate spaces and interpolation. Studia Math. Spec. Series 1, 31-190 (1983)
5. ChernoίΓ, P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct

Anal 12, 401-414 (1973)
6. Craig, W., Simon, B.: Subharmonicity of the Lyaponov index. Duke Math. J. 50, 551-560 (1983)
7. Fukushima, M.: On the spectral distribution of a disordered system and the range of a random walk.

Osaka J. Math. 11, 73-85 (1974)

8. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377-428 (1963)

9. Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces, pp. 193-229,
Proc. AMS Summer Institute on Homogeneous Spaces. Providence, RI: AMS 1973

10. Herbert, D., Jones, R.: Localized states in disordered systems. J. Phys. C4, 1145 (1971)

11. Kirsch, W., Martinelli, F.: On the density of states of Schrodinger operators with a random potential.

J. Phys. A15, 2139-2156(1982)

12. LePage, E.: Empirical distribution of the eigenvalues of a Jacobi matrix, pp. 309-367. In Probability

measures on groups, VII, Springer Lecture Notes Series 1064. Berlin, Heidelberg, New York:

Springer 1983

13. Mezincescu, G.: Bounds on the integrated density of electronic states for disordered Hamiltonians,

IPTM (Bucharest) preprint



Harmonic Analysis on SL(2,R) and the One-Dimensional Anderson Model 19

14. Nagai, H.: On an exponential character of the spectral distribution function of a random difference
operator. Osaka J. Math. 14, 111-116 (1977)

15. Pastur, L.: Spectral properties of disordered systems in one-body approximation. Commun. Math.
Phys. 75, 179 (1980)

16. Reed, M., Simon, B.: Methods of modern mathematical physics, II. Fourier analysis, self-
adjointness. New York: Academic Press 1975

17. Romerio, M, Wreszinski, W.: On the Lifshitz singularity and the tailing in the density of states for
random lattice systems. J. Stat. Phys. 21, 169 (1979)

18. Schmidt, H.: Disordered one-dimensional crystals. Phys. Rev. 105, 425-441 (1957)
19. Simon, B.: Lifshitz tails for the Anderson model, Lifshitz Memorial Issue of J. Stat. Phys. 38, 65-76

(1985)
20. Stein, E.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton

University Press 1970
21. Strichartz, R.: Analysis of the Laplacian on a complete Riemannian manifold. J. Funct. Anal. 52,

48-79 (1983)
22. Taylor, M.: Pseudodifferential operators. Princeton, NJ: Princeton University Press 1981
23. Thouless, D.: A relation between the density of states and range of localization for one dimensional

random systems. J. Phys. C5, 77-81 (1972)
24. Halperin, B.: Properties of a particle in a one-dimensional random potential. Adv. Chem. Phys. 31,

123-177 (1967)
25. Nieuwenhuizen, T. Luck, J.: Singular behavior of the density of states and the Lyaponov coefficient

in binary random harmonic chains. J. Stat. Phys. (to appear)

Communicated by T. Spencer

Received February 22, 1985; in revised form April 5, 1985






