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Abstract. We present a renormalization group approach to the renormaliza-
tion theory of Φ\, using techniques that have been introduced and used in
previous papers and that lead to very simple methods to bound the coefficients
of the effective potential and of the Schwinger functions. The main aim of this
paper is to show how one can in this way obtain the n'.-bounds.

1. Introduction

Recently we developed a new technique to construct field theories without cutoffs
[1] and our method came to play an important role in several papers, where they
have been combined with new brilliant ideas [2,3].

The possibility of treating situations as complex as that arising in the
ultraviolet stability of the Coulomb gas [4] in two dimensions relies on the
effectiveness of our method of performing the renormalization which allowed us to
avoid completely the consideration of unboundedly large orders of perturbation
theory in dealing with the construction of superrenormalizable field theories, in
contrast with what was done in the previous breakthrough papers [11].

We shall illustrate in our work how this method can be naturally applied to
derive some of the deepest mathematical results of the formal perturbation theory,
namely Hepp's theorem [5] and the de Calan, Rivasseau n!-bounds [6]. The
experts will recognize in the discussion below most of the intriguing difficulties met
in [5,6] and the ideas used to attack them; they will also recognize a somewhat
different pattern of solution of the problems and several technical differences
which, we hope, make our presentation something more than a rewriting of old
results.

We perform our discussion in "coordinate space" rather than in the usual
"momentum space" because we think that it is much easier and we study the
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"perturbative effective interaction" rather than the renormalized Schwinger
functions, which is a new result. We follow the method outlined in [1], in the d = 3
case, for third-order perturbation theory, showing that it leads to a very natural
organization of the cancellations appearing automatically in a form which allows
us to avoid the introduction of "Hepp sectors" to check finiteness. Our method is
not special for scalar field theories, and we hope that it may be useful to treat
renormalization problems in more structured theories, like gauge ones; it is also
clearly built in order to be fit for a renormalization group study of the above
models.

We present our discussion only for d = 4; this, of course, implies that the same
method would work ϊoτd = 2 and d = 3 with many complications disappearing. An
explicit adaptation to the harder sine-Gordon problem will be, hopefully,
presented elsewhere. A similar approach to the renormalization theory has been
recently produced by Polchinski [7].

Let us now briefly describe the content of the next sections: Sect. 2 contains the
formulation of the Φj-fϊeld theory problem, its perturbative solution and our
results on the "effective potential" which implies both Hepp's theorem and the
de Calan Rivasseau rc!-bound. Sections 3-5 just set the definitions and the
formalism to be used later on; although nearly purely definitory they cannot be
skipped, as the concepts introduced there are a bit unusual; the notion of tree is
given there in detail and it shows its resemblance to the notion of forest introduced
by Zimmermann [14].

Sections 6 and 7 are the central ones. In Sect. 6 the general algorithm to build
the counterterms of a generic order in g is given, the central notion of 01 and 5£
operations is introduced and the general idea of the proof of our version of Hepp's
theorem is presented. In Sect. 7 this proof is explicitly stated; then the remaining
part of the section is devoted to the proof of the n!-bound.

The possibility of partially resumming the divergent perturbation series will be
discussed in a second paper, hereafter referred as (II), where some more technical
details on the problems discussed here will be also provided in the form of
appendices. There also the proof of the Borel summability of the planar Φj-field
theory [13] is sketched.

2. Notations and Formulation of the Renormalizability Problem

Consider the probability measure P on the space of distributions on R4 ("fields")
which is gaussian and has covariance

1 pip(ξ • n)

The problem is to give a meaning to the expression

Jί ίexp - ί (λ: φ\: + μ: ψ\ + a: (dφξ)
2: )d4ξ] P(dφ), (2.2)

I Λ 1
where the Wick product : : is defined as

: x": = Q/2(x2))"Hn(x/]/2WJ), n: 0,1,..., (2.3)
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where Hn are the Hermite polynomials, for any gaussian random variable with
dispersion <x2>.

Obviously <φ 2>=+oo, ((dφξ)
2}= + oo if φξ is distributed as a gaussian

random field with covariance (2.1). The first step to give a meaning to (2.2) is to
"regularize the field." We find it convenient to define a regularized cutoff field by
using a Pauli-Villars type of regularization because it has a simple recursive
structure. However, the simplicity of the recursive structure not being too
important, one could use other regularizations if desired (e.g. the lattice
regularization).

The regularization we shall use stems out of a few trivial identities. Let y > 1 and
observe the following relations:

1 «, / i i \ «> (y2-l)y2k

,h)p* + C(k,h)f + D(k,h))

(2.4)

oo q t

o ή o o

(2.5)

T U f k = y~qp.

Therefore ' r

(2πf P

2 + l ί " ^ ?

^iLC"'''''!^), (2.6)
0 0 0

where C{^}, C(<z'ί}, C^^' 0 can be easily written down explicitly looking at Eq. (2.4).
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To put the cutoff means, here, to truncate the sum over q in (2.6) up to N,
obtaining

0

1
, (2.7)

which defines the covariance of the cutoff field
N N q t

0 0 0 0

where the covariance of Z ^ is

and
(2π)4

1
ι + Ak6 + Bk4 + Ck2 + γ8 k8+Ak6+Bk4 + Ck2 + yi6J'

It is clear that, being < > Ξ J P(dφ[-N]\ we have

(2.10)

\\Pi3klΨξ ) /> \\cijklsΨξ ) /> \K\L Δ) Ψξ ) Z ^ 0 0 ? Vz i J J

Vε>0,

and therefore it makes sense to define

exp- J {λN:(φψNy:+μN:(φψNψ:+aN:(δφψNγ:+vN}d*ξ (2.12)
A

with respect to the measure:

N N q t Λ

P(AfrX^Nh—ΓΛ P(ίim^\ — YΛ FT FT P^'ί'ίV^Z^ (Ί \Vι
r[aφ ) = ΪYq^\βψ ) = i lq 1 It 1 h" \β^)^ \^ ̂ ^)

0 0 0 0

where P{q'ul) is the gaussian measure with covariance Γ^yqη. In fact if /ljV>0, it
makes sense to consider (2.12) as a density function with respect to the measure
(2.13) because it can be shown by classical methods [8] that it is a L1 -function with
integral = Jί~ι< +oo.
Remarks, a) It should be clear that the regularization used is a "multiple" Pauli-
Villars regularization; the necessity of such a generalization of the standard Pauli-
Villars will be clear in Sect. 6 and comes from the need of having the second
derivatives of the cutoff field φ[-N] well defined. Nevertheless a careful investiga-
tion of our proofs shows that whatever regularization one chooses everything
works, provided it satisfies the following requests:
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1) φ[-N] is well defined with its derivatives at least up to the second order.

2) C(Ar), the covariance of φ[=N\ can be decomposed as C{N) = ΣqC
{q) or

φψ qφf
o

I) φψ is regular on the scale y~q,
II) φψ is nearly independent on the same scale.
This is fulfilled iϊC{q)(ξη) is sufficiently regular and decays exponentially on this

scale, but also a power decay strong enough would be sufficient.
The Pauli-Villars regularization turns out to be really useful in the constructive

theory, see [4], where its Markov property is used. Although in this paper we only
deal with formal perturbation theory we have preferred to use the Pauli-Villars
regularization.

b) We shall assume, hereafter, periodic boundary conditions for the volume A.
Therefore the field φ[-k] has co variance:

neZ4

where L is the linear size of A.
The main problem is to see if we can find λN, μN, aN, vN such that

Pffi = (exp -ΠλN: (φψΎ :+μN: (φψΎ :
I Λ

+ aN: (dφψNψ: + Vjv)dJJ P(dφ^) (2.14)

admits a limit as iV-^oo in the sense that

ί (2.15)

for all/e<9%R4) and for a suitable chosen measure P^ on £f'(RA). This problem
has not yet been solved, see [9,12]. However, it admits a perturbative solution;
namely it can be shown [5,6,9].

Proposition 1. There exist four formal power series in a parameter g, the physical
coupling constant,

00 00

4v = 9 + Σk

2 2

such that the resulting formal power series expansion of

N\\\ cy i η\

has the form
00

^ίv)(/? p)= Σn QnSΪN)«(/? p) (2-18)
0

and the limits

lim Sίv);π(/;p) = Sj(/,p) (2.19)
V
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exist VfeSf(R4) and satisfy

! w ? j ) - ( g ) n " ! ' sT(/;4)+o' (2-20)

where || 1̂  is the Lγ-norm.

In this paper we give a new proof of the above result and we study also the
"effective potential" in a formal way. Namely remembering Eq. (2.8),

m

φψm]=Σqφf, (2.21)
we wish to study

^ ^ N (2.22)

and we ask whether there is a function y^m\φ^m^) (the "effective potential") such
that

intdφ jexpφ <j)~ jP<-)(^^m ])expF ( m )(φ [-m l) '

This problem is harder than the former one and is unsolved. However one can
hope that the choice (2.16) leads to a perturbative solution of the problem of the
computation of the effective potential V(m\

In fact in this paper we show not only that V{m) is well defined as a formal power
series but also that it can be written in the following form:

V(m)(φ) = Σp Σ ί dXV}mXX\a,b,c3d9e3£S)
{Q,b,c,d,e,f,g} ΛP

•: φ%{dφxfD\S{D)l-TiSψ:, (2.24)

where

where

^ = ΨΨ"" ~ Ψψm], Sxy = {φψ^ - φψm') - (x - y) δ ^ m ] ,

Txy = (φψ"*-φψml)-(x-y) • dφψ^-^x-y^x-yψφψ"*,

Dxy = dφψm]-dφψm\ Sxy = δφψm]-dφfm]-(x-y)-2,2φψm\ (2.25)

and
:φUdφχΫI>kSi

xD
1

x*TjfSy>:

= - fit ψVtfφJ ^ή D%jS%Dl:i>Ί^.Sx°i>: (2.26)

Furthermore we have the following proposition which is the central result in the
proof of the renormalizability of the theory.
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Proposition 2. Let's denote ηh ...,ηr the r independent variables of the fields in the
Wick monomials : φa

x(dφx)-... S1/: then 3κ>0, G>0, iV-independent such that

J dηi...dηr f d(X\η)\V<r\X;a,b9...,g)\
Δ x *Δ ΛP~r

ni(ymr(y2m)bi Π iiy^y^i-Xj^Hy^y^i-xjl)2)^

• (y2m(ym\χi - χj\)YijXym(ym\χi - Xj\)3)fij(y2m(ym\χi - χj\)2)0iJl

^ ( | α | + ... + | £ | ) ! e - f c y m d ( J l ' "^ )p!feG)^ (2.27)

where d(X\η) means that we integrate over all the variables except the η's, A{is a
P

hyper cubic tessera of linear size y~~m, i= 1, . . . , r , |α| = Σ £ αf and similar definitions
1

far \b\, \c\,..., I/I, |g|. rf(^1? . . . ,^ r ) is the length of the shortest polygonal joining
the tesserae Aί9 ...,Ar. Moreover

\V<rXX9a,b,...,g)\ = O if

This proposition will be proved in Sect. 7.
The integrals (2.27) depend on JV but they are uniformly bounded by (2.27) and

have a limit as JV-> oo if m is held fixed. Estimates like (2.27) have played a key role
in our approach to the construction of the Φ4-theory in 2 or 3 dimensions [1] as
well as in the Sine-Gordon theory and therefore have, in our opinion, some
interest.

3. Free Field Properties

It is useful to have in mind the following simple properties of the fields φίq] and
φ[-q\ which follow from standard arguments [10] based on the inequalities
immediately derived from (2.4)... (2.10),

- Ψ[f -(l-R)' dφf-\{ξ-η) (ξ-η) d2φψ)2y

where Q(y) are constants, depending on y, which can be explicitly computed and R
is >0. The probability that V£, ηeΛ,Vq}£θ9

( * }

tends to 1 as J3->oo if A is kept fixed.



552 G. Gallavotti and F. Nicolό

Therefore the free field will always be thought of as verifying inequalities (3.2)
for some B < + oo. This is a property which will not be used explicitly here but it is
important to keep it in mind in order to understand the intuitive ideas behind the
various techniques we introduce.

The proof of inequalities (3.2) goes back to Wiener; in this form it can be found
in [10] and is a more or less straightforward consequence of the properties of the
covariance of the field φψq\ The dependence on A of B is not important at this
stage, but should be taken carefully into account in any constructive proof of the
Φ̂ j -theory. The inequalities (3.2) play a key role in the actual construction of the P^
measure in the d = 2,3 cases. The reason why they seem to be irrelevant here is only
due to the fact that we deal here only with formal perturbation theory and we do
not really construct P^.

It is important to introduce some notations for the integrations with respect to
the variables φ[q\

We denote

o v e r φίq\φ[q + 1\ ..,φ ,

^ [ I p ] Ξ ^ ( L + i , . . . , P ) Ξ t r u n c a t e d expectation over φ[q\φ[q + 1\ ...,φ[q+p\ ^

where we recall that if $ is an integration with respect to some variables the
truncated expectations or "cumulants" are defined in general as follows: If
xu x2, ••-, xs are arbitrary random variables and fcl5 fe2, ..., ks are non-negative
integers we set

[ ^ ^ ( ) L (3 4)

The truncated expectations verify a "Leibnitz formula"

Σ , , k ! λ\...λ\*gτ(xι,...,xp;ku...,kP). (3.5)
i , . . . , k p K , 1 l . . . Kp\

fci+ ... +kp = k

Since (3.4) turns out to be linear combination of products of expectations of
s

products of the x/s, the notion of cumulant (3.4) makes sense even when exp Σί θ^
1

is not integrable provided ${\Xj\q) < + oo, Vj, Vg ^ 1. Then (3.4) can also be written
formally as ^ τ

^ - § ^ , (3.6)

which gives a concrete way of building the formal power series expansion of the
exponential of a random variable which is a formal power series in a parameter g
with coefficients which are random variables with finite moments of any order.

We shall assume the reader is familiar with the notion of Wick ordering of
products of gaussian variables: the basic property used over and over again is that
given n gaussian random variables xl9..., xn with covariance matrix C ί7 the Wick
ordered monomial of degree (fc l5..., kn) is a random variable denoted : x\x... xk

n

n:
such that if yu ...,y r are r gaussian variables

Aί->fr -nya)=Σ Π ς , (3.7)
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where ίf is the set of sets of pairs of indices (i, α), (α, α') such that in every element of
σ e y the index i—\ appears in k1 pairs, the index i = 2in k2 pairs, etc., and each
index α appears in one pair ("set of all the possible pairings") and Cμ = (x^ a> if
μ = (Ua) and Cμ = (yayβ} if μ = {aj).

Since (3.7) provides us with the value of the integral of every polynomial
gaussian random variables times : x\γ... xk

p

p it could be taken as definition of
: x\ι... xk

p

p :. However the natural definition of: x^1... xk

p

p : is such that the following
basic property stems naturally from it

#T( k φ k^ k^ fc<2> k<2> fc<s) \ v ^ T-r ^ /-> o\

^ ( : V - V ^ ^ V 1 - ^ :> >:*β2
n2 V : ) = Σ Π Cλ9 (3.8)

l i " i i "2 "s G λeG

where 2 denotes a pair (αj/}, α^'}) and

Cλ = i{xaωxau;ύ, (3.9)

while G denotes a set of pairs Λ such that no pair λ e G is built with indices a{j\ a{p
with 7 = / , and furthermore given any pair jj' one can find a sequence
Ji^JJiJs, -"Jm=f and pairs

which appear in G, i.e. G is a connected graph if the indices relative to the same
Wick monomial are thought of as describing the same vertex.

The interest of (3.8) lies not only in its intrinsic elegance but also in the fact that
it shows that the truncated expectation of Wick ordered monomials of gaussian
variables contains very few terms compared to the number which one might
naively expect from the general definition of truncated expectation.

4. Trees

In this paragraph we introduce some very useful definitions that will allow us to
have a very general formalism to compute the formal power series for the non-
renormalized effective potential. Draw on the (x,y) plane vertical lines at
x= —1,0,1, ...,JV+ 1, the last one dotted. Given k^—l imagine all possible
oriented trees starting with an horizontal line at x = k having the other vertices on

the vertical lines x > k and no branches "coming back", i.e. forming an angle θ ̂  —

or θ ̂  — — with the x-axis, and finally having terminal vertices lying on the

x = N + 1 dotted vertical line. We also suppose that at all vertices the branching is
non-trivial except at the first and at the final vertices. These trees can be deformed
by letting their vertices glide on the vertical lines on which they lie: trees obtained
by such deformations will be considered equivalent and denoted generically by y.
The degree of γ will be the number v(y) of its endpoints. Given y we consider its first
"non-trivial" vertex, i.e. the vertex with the lowest abscissa larger than k. From it
bifurcate s0 trees γl9..., γSo of similar type (with a different k but with the same N);
we divide the trees into q families of identical trees each containing Pu...,Pq

copies of the same tree. We define for each tree a combinatorial weight inductively
as

n(y) = ΠiPMydP>, (4.1)
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setting n(γ) = 1 if γ is the "trivial tree", i.e. a tree with only one line (necessarily
ending on x = JV + 1).

Denote Γ(v, k) the set of the trees with degree v and "root" k (i.e. with the initial
vertex on x = k). We imagine drawing the trees γ always in such a way that their
lines do not overlap and choosing once and for all a representative tree from each
equivalence class; we label by 1,2, ...,v the υ terminal vertices of the tree. Each
vertex of the tree γ bears a "frequency index" equal to the abscissa of the line on
which it lies.

We fix an index α to label each vertex and we call ka the frequency index of the
vertex α. The label can be naturally defined to be α = 0 for the vertex after the root,
α = 00,01,..., 0q0 for the vertices arising from the first bifurcation, α = 000,001,...
for the vertices arising from the bifurcation following the vertex 00, etc. The
vertices on the dotted line x = N +1 will be labeled 1,2,... from top to bottom.
Figure 4.1 shows a possible tree.

Fig. 4.1

5. Power Series for the Non-Renormalized Effective Potential

Let φ = φ[=N\ see (2.8), and let

-gl.φ\\Pξ. (5.1)
Λ.

Denoting <f[n] the expectation with respect to φ[n] we define V{m\ m < N by

exp7 ( m )(φ [-m 3) = ί QxpV{N\φ)P(dφ[m + 1])... P(dφ[N]). (5.2)

It is easy to obtain F(m)'s formal power series in g, starting from (3.6) and using (3.5).
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I n f a c t g i v e n y e Γ ( υ , k ) w i t h f r e q u e n c i e s kΌ9 k 0 0 , k O Q U . . . 9 k o l 9 9 k o l θ 9 . . . 9 k 0 q o 9

ô<zoo> •••5 which are partially ordered as discussed in the previous section, we
associate to it the following expression

V(γ) = ι

where the S denote expectation with respect to all the φ[h] with h between the
indices fe+ 1 and k' — 1, where k is the index of the S^ following the first parenthe-
ses containing it and k! is the index of the one immediately former. For instance
the first $ in (5.3) denotes integration with respect to φ[ko+ί\ ..., φ [ k o°" 1 ], the sec-
ond concerns φ[koo + 1\ . . . , φ [ f c o o o ~ 1 ] etc.

As an example let's consider the tree y in Fig. 5.1

Fig. 5.1

To it we associate the factor

ko+ 1] &[koo- l]V0[/cOO]V0[fcoo+ 1] • * &[N]

then the formalism is set up to write an explicit formula for V(k)(φ[-k]\

v V(y)
k])=Σn Σ ^yT+O(g*+1).

1 γeΓ(n,k) WU7

(5.4)

(5.5)

The proof of this formula is inductive on the index k. In fact (5.5) is obvious for
k = N—l being the same as (3.6),

on JPT Π/(N) n\

(5.6)
i p!

where the identity holds in the sense of the formal power series. Equation (5.6) can
be regarded as a sum over the trees

N-1 N-1 N-1

N + 1

Assuming the validity of (5.5) for N9 N -1,..., k + 1, it follows that

V(y)
Σ :>P (5.8)
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and we observe that the expectation written in the right-hand side can be
developed by (3.5) as

/ v i
y(k)=lγ y y

\ 1 Sγ,...,Sγ yu jp bγr bγp

=? «£.,,^ί <59)

as the generic expectation written in the intermediate term of (5.9) is just V(y)/n(γ)9

where γ is the tree obtained by joining in a new vertex syi copies of y l 5..., syp copies
of γp and adding an extra horizontal line which ends with a vertex of frequency k
("the root of the tree").

6. Counterterms

We now discuss the algorithm allowing us to construct the series (2.16) or, in other
words, the series (2.24). As it is well known, the idea is to modify V{N\φ[-N]) [see
(5.1)] as

where A{f}Vis of order) in g and has the form

Δf>V= gJΣβ J rj(N, β): Pe(φψN]): dξ (6.2)

(Hereafter dξ will always mean d^ξ), β = 0,2,2\ 4 and

P0(φ) = 1, P2(φ) = φ2 , P2(φ) = (δφ)2 , P 4(φ) = φ 4 . (6.3)

The choice of the counterterms as well as their effects and the possibility of
obtaining bounds on the effective potential [see inequalities (2.27)] become very
natural and easy to understand only after one realizes the detailed and delicate
combinatorial mechanism allowing us to express concisely the effective potential
V$\ after V{N) is modified as in (6.1).

Of course (5.4) (5.5) are very general, and they hold unchanged if V{N) is replaced
by (6.1); if we now consider V{N) + A^V, and we develop a formula like (5.5) for F2

(7c)

defined by
[=k]) = J P(dφ[k + 1 ] ) . . . P(dφm)exp(F(N) + A<PV), (6.4)

we see that VJv)

jk\^k])= Σ ^τγ> (6-5)

where k(γ) is the root of γ (the lowest frequency of the tree).
The sum runs over the trees of the same type as those used so far but with some

of the terminal lines marked in some way, say with a little empty frame, O ,
recalling which term, in the expansion of (5.4), after substituting V(N) by

, and expanding the powers of (V{N) + A{^V), is selected.
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So typical trees of the new type will be like:

557

N+1

Fig. 6.1

For instance the second tree corresponds to

N + 1

ΐ). (6.6)

Note that the tree below, Fig. 6.2, would produce a term equal to (6.6 with V{N) and
Λ{2]Vm the inner parenthesis interchanged.

Fig. 6.2

On the other hand since the trees y considered in Sect. 5 were always drawn in a
standard way selecting one representative per equivalence class, it is clear that the
second tree in Fig. 6.1 and that of Fig. 6.2 would have to be considered different. It
is convenient, however, to keep consistent the convention that two trees, even if the
new type, should be considered equivalent if they can be superimposed after letting
their vertices glide, suitably, on the vertical lines on which they lie. This can be
easily done provided the combinatorial factor n(γ) is now defined exactly as before,
taking into account the possible presence of little frames at the ends of the top lines
[in this way the (combinatorial factor) of the second tree of Fig. 6.1 will be twice
that of the unlabeled tree (Fig. 5.2), but this tree will be considered equivalent to the
tree in Fig. 6.2 so that no counting error is made].

The formal degree of a tree y with d decorated tops associated to zd(

2

N)Fis |y| + d,
where \y\ is the number of final branches of y; to keep track of the power counting
we shall draw inside the little balls at the end of the tree two lines like (Ξ)
so that the degree of the tree: v(y) can be read out of the tree itself by looking at how
many end points there are in it, including those of the lines in frames.



558 G. Gallavotti and F. Nicolό

It is now clear how to describe graphically V^\φ[-k]) defined by
[= k ]) = jP(dφ [ k + 1 ] ) . . . P(dφίm)exp(ViN) + Aψ)V+ AψV+ . . . ) . (6.7)

In fact one can use more general decorated trees in which at the end of a top line a
frame appears with n lines in it,

Fig. 6.3

corresponding to the term A{*}V oϊ the interaction (6.1).
An example of decorated tree is

Fig. 6.4

which symbolizes the expression

V; δV)), (6.8)

where, to shorten the notations, we used V= V{N) and

£T(X,Y,Z) = £T(X,ZZ; 1,1,1).

The combinatorial factor n(y) associated with a given tree y with several decorated
tops will be computed with the same rules used so far. With the above conventions
we can represent the result of the integral (6.7) exactly with the same formula as
before but with the new meaning of the trees

=k])= Σ ^ f , (6.9)
k(γ) = k

which also provides the formal series of V^k\φ[-k]) in powers of g9 easily. In fact the
terms of order gn are exactly obtained by collecting together all the trees with n
final lines, including those which appear inside the decorations.

It remains to choose appropriately the counterterms Af]V', their choice will be
dictated by the requirement that the sum of the terms of V^\φ[~k]\ of a given order
in g, for k fixed, is "finite" as JV->oo (see Proposition 2 of Sect. 2). As usual in
perturbation theory, this choice is done inductively: given Δψty, A^V, ....Δ^V
one will define A^l 1 Fby requiring that the contribution to V^ of order (m + 1) in g
is "ultraviolet finite" i.e. does not diverge as N -> oo. The first task is to define A ψ} V.
This is done by requiring that V^] be ultraviolet finite to the order g2. V^ is given,
up to second order in g, by the sum of the contributions associated with the
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N + 1 N + 1 N + 1

Fig. 6.5

or, in formulae, if φ = φ[-N\ φ = φ[-K]

-g\ :φt:dξ + iι>k]

(6.10)

The first term is obviously ultraviolet finite; we rewrite the other ones as

a2 « f/4N2

2 »ti IV1

after summing over /z,

+ 2! ί dξ dηiCtf2 - Cg>2)

(6.11)

where C(^ is the covariance of the random field φ[-h\
The combinatorial factors are not developed explicitly to help the reader to

recognize their origin (from the Wick ordering computational rules). Clearly the
second, third and fourth integrals are divergent with JV logarithmically, quadrati-
cally and quartically respectively even if φξ is treated as a smooth field verifying,
for some B, the inequalities (3.2). Inspection of the divergent terms of (6.11) shows
clearly that to eliminate these divergences (let's concentrate mainly on the
divergent parts which are field dependent, as the constant one is easy to cure) we
would need for the logarithmic divergent part a zero in (ξ — η) of order ε > 0 and for
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the quadratic divergent part a zero in (ξ — η) of order > 2. There is a simple choice
of A{2}Vwhich produces exactly the needed zeroes and make the above expressions
ultraviolet finite.

This choice stems out from the following trivial relationships,

φξφη~M + ψD + m-n) dφη)
2 =ίS2

ξη-SξηDξη, (6.12)

where
Dξη = φξ-φηi Sξη = (φξ-φη)-(ξ-η) dφη . (6.13)

In fact these identities tell us which has to be Δ^V to transform the Wick
monomials of the dangerous terms of (6.11) in the right-hand-side terms of (6.12)
which have the needed zeroes in (ξ — η). Therefore we define

2 \2

(6.14)

which is useful to rewrite as

(6.15)

With this choice of zl^Fthe O(g2) part of the "effective potential" Vjp becomes

RΛ92) 2

with obvious notations.
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Let us describe a way of constructing Λ^V which will have a natural
generalization for the higher orders in g: let us introduce a fictitious field of
frequency —l:φ[fί] and compute the order g2 of V{~1] (starting from the
potential V{N\ the result being (6.11) without ^ [ >- 1 ] (^ (

2

] V ) F) ? and with φ = φ[~ί].
Expand the result in Wick monomials and select those of order 0,2,4 in the fields,
change sign of them and localize their expressions, i.e. replace the constants by
themselves and

: φ 2 φ 2 : b y 2 { \ φ2

ξφ
2

η:) = : φ\:
: φ ξ φ η : b y &(\ φ φ : ) ^ ( : φ 2 : + : φ 2 ) \ : ( ( ξ ) δ ) 2

if ξ~<η and with ξ and η interchanged if η-ζξ1, then substitute everywhere

Before going to higher orders in g let's elaborate a graphical rule for the
evaluation of F2

(fe) as defined in (6.4). As previously discussed, see (6.5),

where the sum runs over the decorated trees which are the trees introduced before
with some of the terminal lines, possibly none, of the following type (Ξ)
(see, for instance, Fig. 6.1). It is easy to realize that to a final line

Fig. 6.6

corresponds, in the truncated expectation, the term

2 ! Σ

p+1

C (h— 1)2\ . ^J^π]4 . I ((i \ o\
ξη ) - Ψξ~ ••• r (p.loj

Let us call J(

2

p)

/3,i8 = 0,2,2/,4 the four monomials in the { } of (6.18) defined as in
(6.3). The contribution of each of these four terms will be indicated, graphically, in
the following way

Fig. 6.7

1 Where the ordering ' X " will be defined later
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Let's consider now the first sums of (6.18)

(6.19)

For each) the associated term of the sum can be put in a one to one correspondence
to the contribution to V(y) from the subtree

Fig. 6.8

where the lines which bifurcate from j are final branches.
Therefore collecting together the contribution associated to the subtree of

Fig. 6.8 and the term of index; of (6.19) in any tree y for any p and; we have the
following result: each contribution V(y) to F2

(k), where y has some final bifurcations
as in Fig. 6.8, for some p and; is similar to the previous one for V{k\ with the only
difference that in the truncated expectation the bifurcation of the type of Fig. 6.8
corresponds now to a sum of Wick monomials which is modified according to the
following rules: β

: P: if P is a monomial of order >4,

:φξφη:
(6.20)

φ2φ2)= : φ3

ξ(: φ2

ξφ
2

r)=

iϊ ξ-Kη, otherwise with ξ and η interchanged. To remember this an index R will be
appended to these bifurcations.

This prescription, together with the introduction of framed parts (see Fig. 6.7),
tells us that the contribution of order n to Vjk) will be described by all the
undecorated trees with n final lines but with a letter R hung to each of vertices of
the tree which bifurcate in two final lines, plus the trees obtained by a dressing
operation. The dressing operation consists in drawing a frame around some
(possibly none or all) of the branches of the tree which arise at a final bifurcation in
two lines, then erasing the frequency index of that vertex while writing near it an
index β = 0,2,2',4, which selects the term in the { } of (6.18).

Fig. 6.9
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Fig. 6.9 (continued)

"dressed" trees to second order

A tree, dressed to second order, will look like those of Fig. 6.9, the meaning to
attribute to it should be clear from the above discussion; the combinatorial factor
to be given to each dressed tree is computed with the usual rule, taking into
account all the various labels and frames to recognize identical trees or subtrees.

It is now easy to build Δ{PV; we discuss it now in detail as it will turn out that
this case has nearly all the features of the general one. Let's examine the various
steps to construct it:

1) The order g3 of F2

(k) [see (6.4)] corresponds to the sum of the contributions of
the following dressed trees:

Fig. 6.10

where with σb i: 1,2,3 we indicate the "shape" of the trees irrespective of their
frequencies. Therefore let's compute the order g3 of Vjk) for k= — 1.

2) Isolate from these contributions the monomials of order 0, 2, 4, change
their sign and "localize" each one of them with an operation <£ [see Eq. (6.17)] that
we are going to define.

3) Substitute the "fictitious" fields φ = φ[~1] with φ[=N\
4) Let γ be a dressed tree (with well defined frequencies) of shape σx or σ2 or σ3

let's call Δ^Viy) the expression obtained applying the rules 1), 2), 3) to that part of
F2

(k) associated to y. Then let us define

where

= Σ,^=\ n(γ)
* < y ) = - l

(6.21)
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and means the sum over all the trees with different frequencies but the same
σ(γ) σi

shape, and n(σ) is computed exactly in the same way as n(y) with the prescription
that two trees have to be considered different if and only if their shapes are
different.

Exactly as it has been done for Vjk\ the contribution from A^Vcan be split in
two parts, one giving rise to new framed parts, the other producing an index R to
the lower vertex of the subtrees of shape σi9 σ2, σ3 which are not framed.

Therefore the graphical rules to represent F3

(fe) to a given order in g are the
following:

(F3

(fe) is defined in the same way as F2

(/c) namely [see Eq. (6.4)])

exp F3

(fc)(φ[2/c]) = ί exp(F(AΓ) + Aψ)V+Δ(£ί)V)P(dφ[k+1])... P(dφm). (6.22)

One just has to consider all the dressed trees built in the analysis of Vjk\ then look
at all the final branchings of these trees which have one of the shapes σt of Fig. 6.10,
surround some of them by frames while writing an index R at the lower vertex of
the others; one does it in all the possible ways obtaining the dressed trees to the
third order. One erases all the frequency indices inside the new frames and
introduces in it a new β index which again can assume the values 0,2,2\ 4.

Once the family of all the dressed trees to third order are defined we have to
specify the computational prescription associated with them. For the subtrees of
order 3 enclosed in frames their truncated expectation has to be substituted by

*[>IΓ
n(y)

(6.23)

where σ is the shape of this subtree and the index β tells us which monomial one has
to select. σ(y) = σ means that the sum is over all those subtrees with the same shape
σ, h(γ) ̂  / that the frequency of the last bifurcation of these subtrees has to be
smaller or equal to /. Let's give a more explicit expression of these terms

1 '

lσi) o

Aψtf(σ2;N)_ 1 '
n(σ2) ~ φjϊh

(6.24)

n(σ3)
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where the way in which i f operates over all the Wick monomials which can be
produced at order g3 has still to be defined. The index β tells us which monomial
one has to select among the ones produced by if, and the N is to remember that
A{j]β(σ; N) has still an JV-dependence but is uniformly bounded as JV->oo. The 01
appearing in the second line of (6.24) has been previously defined by Eqs. (6.20) as it
refers to a bifurcation of order g2.

We have now to specify the if operation and simultaneously to give a meaning
to the index R appended to the vertices from which unframed subtrees with shape
σ1? σ2, o3 start. This index will correspond again [see Eq. (6.20) for the order g2~\ to
a well defined operation we still call 3k to be applied to the Wick monomials
associated to these order g3 subtrees.

The & and i f Operations

The 5£ and 3k operations discussed in dealing with the order g2 of V{k) were
produced by the presence of the appropriate counterterms and had the effect of
making the order g2 of V{k) finite in the limit N-+co. The same has to happen at all
the higher orders. In fact the counterterms are constructed once we have defined
the appropriate i f and 3k operations. To do that we have to realize from general
arguments which Wick monomials in the expansion of V{k) have coefficients
diverging as JV->oo.

Therefore we discuss the general ideas behind all that and the general prescrip-
tions for these operations. The rigorous proof that with these prescriptions
everything really works will be given in the next section.

ViN) is a adimensional quantity: [#] = Z°, [φ[~N]] = l~1; therefore each term of
any order in the formal series defining V{k) has still to be of dimension zero.
Nevertheless what really matters is the dimension of the Wick monomial with
respect to a certain scale. Let's give the following

Definition. Let F(φ[-k]) be a function of the field φ[-k\ we'll call "fc-dimension" of
F(φ[-k])9 and we denote dk{F) the coefficient α appearing in the following
expression

((F(φ[=kψ>~γ2k«.2

For instance dk(φ^k])=l dk(dφ[=k]) = 2. In V{k) the terms of order g2 have the
following dimensional structure [see Eq. (6.11)], written symbolically,

*$) = Σt$>./,~MIΣ ΣhFtu.(φUk]Y:. (6.25)
β β fc+1

β is the order of the Wick monomial. The (length) dimension of F{h) must be 4 — α,
where a satisfies

a + β = 4 2 = &. (6.26)

^^φψ^-φψV, we have

and therefore dk(φψk]-φ[

η

m)=2
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The only (length) frequency dependent dimensional quantity in Ff} isy~h, and in
:(φι-k])β: is y~k. Therefore each term of (6.25) can be estimated in the following
way: N

\v$)tβ\~\Λ\ Σh(yhy-\yk)β (6.27)
k + l

In general the terms in V{k) of order gn can be written as (6.25) but now the
dimension of Fψ is [see the proof of Theorem 1 in Appendix A of (II)]

? 4(n-l)-α, (6.28)

where α satisfies
a + β = An, (6.29)

and the analogue of (6.27) is

IC>,/>HΛ| Σh(ϊhΓ4(n-ιV)β- (6.30)
k + l

It is clear that, if β > 4, (6.27) and (6.30) give finite contributions in the JV-> oo limit,
while of β^4 their contributions are divergent. The counterterms transform the
Wick monomial: (φ[=k])β: into 9t(: (φ[=k])β:) [see Eq. (6.20)], which has the same
dimension but a greater "fc-dimension" which will imply in Eqs. (6.27) and (6.30) a
greater value of β and a smaller value of α. Then if the "fc-dimension" of
ffl(: (φ[-k])β:) is > 4 it follows that the estimates (6.27) and (6.30) are now finite.
From (6.20) it is clear that

To extend this kind of argument to build AψΨwe have to recall that the presence
of z l^Fhas produced in F2

(fe) new fields: S[fk] and D[

ξf
k\ which cannot be undone as

they bring the appropriate zeroes in (ξ — η) needed to make the order g2 terms
finite. These new fields can produce, in the lower frequency truncated expectations,
new monomials with "fc-dimension" ^ 4 , which therefore have again to be
modified with new 0ί and if operations which in their turn will imply a well
defined counterterm A^V. Let us therefore examine which are the monomials
which can be produced with these new fields, with "fc-dimension" <; 4 and how we
have to modify them.

Monomials of second order "k-dίmensίon"

'.dφψkVη-
k]: 3

4

3

4

5

6

Therefore the counterterm z l ^ F h a s to modify only the first five monomials; the
first one has been found already at the order g2, and therefore the if operation, and
also the 01 one, have been defined before. We have to do the same for the next four
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monomials. Let's discuss explicitly the third one: one has to proceed, as in
Eq. (6.12), starting from the following relationships:

Sξηφτ = SξηDτη + Sξηφη. (6.32)

As the "fc-dimension of SξηDτη is 5 we have to worry only about the last term

Sξηφη = (φξ-Ψn~(ί~n) S.Ψn-4(ί~# ' d2φη)φη

+ί(ί-rf)2 d2φηφη == Tξηφη + | ( ξ - η ) 2 • 82φηφη, (6.33)

where
2 * ηUξ-η)jdϊjφη. (6.34)

I j

Therefore as the "/c-dimension" of T^k] is 4 we have

:):^n)dφηφη:)

M{:S\fV^:)=-.Tl^φψ* .. (' >

Let us collect all the results one finds, proceeding in a similar way, for the other
monomials to "renormalize", omitting the index [ ^ fe]:

C-Sξηφη:)=:Tξηφη:, (6.36)

<M(:Dξηφη:)=:Tξηφη:,

<%(:DξηDτζ:)=:SξηDτζ: + :SτζDξη: - :SξηSτζ: -(ξ-η)-dφη(τ_-ζ)-D'ζ,

where
j (6.37)

As S£ = \-2k, it follows:

)=i(:?{

2: + :?M-|:((ί-3) ^
)= : ((g-ξ) δ φ ^ δ ^ : + : φξdφξ:,

£ ( ξ η φ τ ) (:Sξηφη)ί(ξη)dφηφη:,

JS?(: D^φτ) = J2?(: Dξ,i) τ,:) + JS?(: Dξηφη:), ( 6 3 8 )

J?(:DξηDτζ:)=:(ξ-η)-δφη(τ-ζ)-δφη:.

Looking at Eqs. (6.36) and (6.38) the careful reader will notice that the M operation
is not defined in a symmetric way. For instance &(:φξφη:) is different from
0l{\ φηφξ:); this ambiguity is eliminated by giving a well defined prescription of
which coordinate of the generic couple (x, y) has to play the role of ξ and which
that of η in the prescription on the first line of (6.36) and for all the other ones which,
otherwise, are ambiguously defined.
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Let us remember that the contribution of order gn to the effective potential is
made by a sum over dressed trees with n final branches, each one associated to
— g\d\\φψm*\. Call the corresponding coordinates ξl9ζ29->,ζn which we
consider ordered by their indices assigned in a definite way, from top to bottom,
to the final branches of the tree which are not allowed to change their relative
position. Therefore we say ξi~<ξj if i<j. Now the prescriptions (6.36) and
consequently (6.38) have no ambiguity if we assume ξ^η in ffl(:φξφη:) and in
&(:Dξηφτ:), and ξ<η, τ-<ζ in 3%(\ DξηDτζ:). If the monomial to which we apply 01
differs by a sign from one listed above then the 01 operation commutes with the
(—). For instance let's assume ξ>η, then

Some remarks are now appropriate: it should, be clear that the 01 and
if = 1 — 01 operations must satisfy these constraints:

a) They cannot destroy the zeroes of the monomials over which they are
applied.

b) The if operation must always produce a local term between these possible
ones \φ\\9 \φ\\, :(dφξ)

2:, 1.
(a) is a technical property which will be clear later on during the proof of finiteness
(Theorem 1). The idea is that we want to estimate separately the coefficient of any
Wick monomial and prove that it is bounded in N. As these zeroes are crucial for
that, we cannot destroy them, once they have been produced, (b) follows from the
general properties the counterterms must satisfy. For the second order monomials
in Eqs. (6.38) it is clear that (b) is satisfied as, after all the integrations are
performed, these counterterms will be of the following type:

J dη{Tt/η): diΨndfi>n: + T}(η): diφηφη: + T(η): φ2

η:} (6.39)

and using rotation covariance (in the restricted sense valid on a torus) and
integrating by parts, we get the expected result.

c) Let us observe that different prescriptions from that in (6.36), (6.38) could
have been given, also suitable for renormalizing the theory. For instance one could
choose a more symmetric prescription which does not require any choice of
ordering between the coordinates; let us give an example:

which implies (if = 1 - St\

Fourth Order Monomials

Looking at the "fc-dimension" of the new fields produced D[fk\ S[fk\ it is clear that
if a fourth order monomial has a D or an S between its fields, its "fc-dimension" is
> 4, and therefore the 3k operation acts as the identity (if = 1 — 01 = 0). The only
difference for the fourth order monomials produced at the order g3 or higher with
respect to those produced to the order g2 is that the φ's in it can be all computed at
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different points. Let therefore ξ, η, ζ, θ be such that, with the ordering discussed in
remark (c), ξ<η<ζ<θ, then

« ( : φ 3

ξ φ η : ) = : φ\Dnξ\\ @(φ2

ξφ
2

η)=: φ3

ξDηξ: + : φ2

ξφηDηξ:,

') =

: φξφ
2φζ:) = : φ ^ Φ ζ : + : fl>f 0 ζ ξ : + φξΨηφζDηξ:, (6.40)

(: φξφηφ
2 : )=

: φξφηφζφθ)= : Φξ-Dζ(«φθ: + : φ | D ^ : + : φξφζφθDηξ:,

Remark. Also this prescription is highly non-unique; for instance one could
completely forget about the previous ordering between the coordinates and define

0l{: φ2φ2:) = : φ\Dnξ: + : φ2

ξφηDηξ:,

(: φfφ^Φζ:) = : Φ ^ . ^ ζ : + : <PξDζξ:,

(: φξφηφζφθ)= : φ2

ξDζξφθ: + : φ | D θ ξ : + : φξφζφθDηξ:.

The possibility of changing in many ways the prescriptions just discussed is the
reflection of the possibility one always has of changing the renormalization
procedure by a "finite renormalization".

Equations (6.37), ...,(6.40) with the associated remarks, nearly conclude the
definition of the St and the i f operations; at higher orders in g there are still some
monomials of second order produced with the new fields that have appeared now,
namely Tξη and D\n that still need the application of 0t. Nevertheless they are in a
finite number and they don't produce under the 91 operation new fields which
require any renormalization. Let's indicate these monomials and let's define the 91
operation on them.

M(:Dί

ξηφη:)=:S1

ξηφη:,

@{.dφξDητ'.)=:D\τDητ'. + :dφτSητ:, η<τ,

where
$.ξη = dφξ-dφη-(ξ-η)-$2φη,

and again if the monomial Jί is — Jί, where JΓ has been listed above, then 9t{Jί)

J?(:dφξdφη:)=:dφξdφξ:, (6.42)

J?(:δφξDητ:)=:Bφτ(η-τ).δφτ:.

Remarks, a) The "fc-dimension" of S^- fe] is 4 and therefore it will not produce any
new monomial of second or higher order in the fields to be renormalized.
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b) The 01 operation can be thought of as defined over any Wick monomial,
being the identity when not explicitly stated differently.

c) Due to periodic boundary conditions, all the integrations are on a four
dimensional torus and for the choice of the covariance, see remark (b) after
Eq. (2.13) our expressions are translation invariant. Therefore this property has
not to be spoiled by the 01 and the if operations. As (ξ — η) is not translation
invariant on the torus, each time it appears it has to be interpreted as a symbolic
expression for

"(ξ-ηγ\ (6.43)
neZ4

where n = (nu ...,n4) and/(r) is a function GCQ(R) with support [ — <5,<5],=1 in

Γ - ^
The above discussion immediately leads to the general formulation of the rules

for computing the counterterms as well as to find the formal series of V^N) = V{N)

+ A{2]V+ Δ{ξ]V+ .... In fact to compute A(

S

N)V, Vs, the procedure is the following:
starting from V}-\ compute all the dressed trees of order gs with root k = — 1, then
to the final monomials in φ = φ[~1\ dφ = dφ[~1\ Z) = D [ ~ 1 ] , . . ., f = Γ [ ~ 1 ] , apply
the if-operation, change the sign and finally substitute φ, dφ, D,S... with φ[-N],
dφ[=N\ Dι=N\S[=m.... The sum of the contributions of all these trees, with these
prescriptions, is Δf]V. Recall also that all these trees of order gs have at any
bifurcation, except the final one, either an index R or a frame with a label β.

In general, given a shape σ, we have, for the corresponding framed subtree [see
(6.21)]

Δ^(σ;N)=Σ Δf\σ,N) = Δ^Vjγ)

n(σ) β n(σ) σ{y)Jσ n(y)
Hy)£k

k(y)=-l

= Σrf\σ;k):Pβ(φ1^):, (6.44)
β

where h(γ) is the frequency of the lowest bifurcation of y, and n(σ) is defined as
after (6.21) for any possible shape.

Let us discuss now, on more general grounds, the way of computing the formal
series of V^\φ[-k]) in terms of dressed trees just recollecting all that has been
explicitly done for Vjk) and Vjk). A dressed tree is obtained from a simple tree γ by
enclosing into frames indexed by an index β = 0,2,2\ 4 final branches of y in some
arbitrary ways; after drawing the above "first generation frames" one can draw
again new frames enclosing terminal branches of any of the trees constructed in the
first step and appending an index β' to each of them etc. The frames are drawn in a
hierarchical fashion so that no frame ever overlaps with another one. Once a frame
is drawn all the frequency indices inside it are erased. Then one proceeds to build
the "third generation" frames, etc. All the above framings are done in all possible
ways. Once a tree with several framed parts is built one puts indices R on each
unframed vertex, the resulting trees are called "dressed" trees. The contribution to
V^k} from a dressed tree γ0 is given by the following rule: To each frame with inside a
shape σ (which itself may contain frames with shapes inside, but which is not
enclosed in a larger frame) we associate a term, depending on the index β, of the
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fourth order polynomial [see Eq. (6.44)]

A(k)(σ;N) =Σr(N)

n(σ) β β
(6.45)

and we replace with it the truncated expectation which corresponds to σ in the
formula we would build for V(y0) [see (5.5)] if y0 were an undressed tree with the
shape σ. Furthermore we modify (proceeding in the ordered way prescribed by the
tree, from top to the root) the truncated expectations corresponding to the
bifurcations with an index .R by the rules explained in (6.37),..., (6.42), after having
developed them (the expectations) into Wick monomials. This completes the
description of the counterterms and of the "renormalized effective potential" V^\

Remarks, a) As it should be clear the notion of "decorated" trees does not play any
role and has been introduced just to make clear that the renormalization can be
thought of as due to a change in the action, i.e. it is a "Lagrangian renormalization"
as opposed to other possible ways of removing the divergences.

b) The dimensional argument to build the counterterms is nearly a proof of the
finiteness of the coefficients of the formal power series of V^\ as iV-> oo this will be
clear looking at the proof of Theorem 1 of Sect. 7.

To prove the estimates of Proposition 2 more work is still needed.

7. Finiteness and the n\ Factorial Bound

7.1

The goal of this section is to prove estimates (2.27); to achieve it we still need
various preliminary notions. In particular we are going to introduce the Feynman
graphs to compute the truncated expectations; nevertheless it should be clear at
the end that their role is here completely auxiliary and also that their use could
be completely avoided paying the price of being more formal.

We want to study the formal series (6.9)

=Σ Σy *—, (7.1)
n k(γ)=k n(y)

v(γ) = n

where γ is a dressed tree, k(γ) is the "root" of γ (its lowest frequency), v(γ) is the
number of final branches of γ including those encircled by frames; therefore
selecting all the y with v(y) = n amounts to fixing the order in g of these
contributions to V^\

Let a Feynman graph ^ be given: ^ has to be thought of as a completely
labelled graph (vertices and lines), connected and with no line emerging from a
vertex and entering on the same vertex.

The use of F-graphs is mainly the following, the generic term V(y) is made by a
truncated expectation of truncated expectations of truncated expectations ..., each
of them being a Wick polynomial times a function which is a product of co-
variances; at the end V(y) can be expressed as a linear sum of Wick monomials
each multiplied by products of covariances. Each F-graph will select one of these
contributions.
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We make this statement more precise introducing the notion of compatibility
between a F-graph ^ and a dressed tree y. Given a graph ^ with n labelled vertices
1,2,..., n and a tree y (hereafter we will omit the adjective dressed as all the trees are
dressed) with n labelled final branches 1,2, ...,n let us associate each vertex of ^
with label j with the top line j of y. Having made this correspondance one asso-
ciates to each tree-vertex (bifurcation) a "box" B surrounding a subgraph
of @9 specifically encircling those vertices of & which correspond to the branches
of y which merge into this bifurcation, and drawing it in such a way that any
line connecting two vertices in the box is also contained in the box.

These boxes are drawn with an iterative procedure, first by looking at the "first
generation" bifurcations of γ, i.e. to the tree vertices from which the highest
frequency lines bifurcate and drawing the corresponding boxes, then we proceed to
build the "second generation" boxes by considering the second generation of
bifurcations of y etc., these new boxes possibly containing in their interior some of
the previous ones.

The bifurcations which correspond to a framed part of the tree γ also produce
boxes which will be drawn "marked" and will bring the same index of the framed
part. Once this is done, a family of boxes, possibly marked and possibly enclosing
other boxes and all enclosed in the largest one corresponding to the final
bifurcation (of lowest frequency), has been built. For a more uniform notation we
will consider as marked boxes also the vertices of ^ which are not enclosed in any
marked box.

If B is a box we call ξ that vertex of ^ contained in B which is the first in the -<
ordering previously introduced. Let us give an example of all that in Fig. 7.1.

Fig. 7.1

The boxes corresponding to the tree in Fig. 7.1 are described next to it, without
drawing ^ explicitly but drawing only the hierarchically ordered clusters of
vertices as prescribed by y. If some frames are present in the tree the only difference
would be that the corresponding boxes will be marked. It is also clear that the
hierarchy of boxes around the vertices of a F-graph, induced by the tree γ, depends
only on its shape σ(y) and not on its frequency indices. The tree y has therefore
produced a family of boxes BUB2,..., Bs; each of them enclosing a subgraph
^Bi> ^B 2> "->^BS\ then <& and y will be called compatible if all the subgraphs
<$B2> - - •> ^BS

 a r e connected.
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In Fig. 7.2 we provide a more complicated example to illustrate the above
concepts. / 1

Fig. 7.2

The graph ^ is not compatible with the tree y above: the graph <$' obtained by
replacing 5 by 75 7 by 5, 8 by 9, and 9 by 8 is however compatible: a simple way to
check this is to draw on the graph ^ boxes enclosing points as prescribed by the
tree's structure [i.e. one box enclosing (1,2), one containing the former one
enclosing (1? 2,3), one containing the former one enclosing (1,2,3,4, 5,6), another
enclosing (7,8) and one on (9,10), one more enclosing (7,8,9,10) and one enclosing
every vertex] then one checks if the graphs cut out of ^ by the innermost boxes are
connected (when two endpoints of a line are in a box, the box is supposed to be
drawn so that the whole line lies in it); then one thinks of the innermost boxes as
points into which all the lines converge with only one vertex in the box and one
proceeds to check the boxes next to the innermost ones to see if the graphs (that
they cut out of the new graph obtained after the above identifications) are
connected etc.

It is quite clear that:
a) this notion of compatibility depends only on σ(γ) and not on y;
b) quite a few graphs are not compatible with a given tree, but there are some

very special trees, those of Fig. 7.3, which are compatible with all the the graphs
with the same number of vertices:

Fig. 7.3

To use the notion of F-graphs to construct explicitly the terms which contribute to
V(y), for a fixed y, we have to attach to each box an index and a frequency in the
following way:
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a) The boxes associated with "framed" bifurcations will keep the same index β
of the frame.

b) The unmarked boxes not enclosed in any marked box will bring a frequency
borrowed by the bifurcations which have generated them.

No fixed frequency index has to be assigned to the marked boxes or to those
contained in a marked one because inside a frame of y no frequency index is
present.

c) The frequency of a line of ^ is the frequency of the first box into which it is
enclosed and to any external line we associate the frequency of the root of y: fc(y).

Definition. We shall call a F-graph @ and a tree y completely compatible when they
are compatible and from every marked box with index β = 0,2,2', 4 go out 0,2,2,4
external lines respectively and we shall write in this case χ(y,^)=l, otherwise
χ(y,^) = 0, the function χ being implicitly defined.

We can now describe the contribution to V(y) of a F-graph ^ with χ(y, ̂ ) = 1
each internal line of 0 corresponds to a covariance at two points (vertices) of ^ and
can be thought of as the junction of two half lines (fields) going out from different
boxes. Given ^ it is possible to fix a rule which assign to each half line a field φ,dφ,
D, S, T, I?1, S1 with a specified frequency so that when two half lines are connected
the covariance associated to the resulting line is completely determined. If a half
line is not connected to any other half line it will go out from every box of ^ and will
be a "external line".

We fix now the rules for the association of the lines with the fields: we classify
the boxes according to how many box boundaries a line, starting inside a given box
and going to infinity, has to cross and call such number the order of the box. Then
we assign a frequency index to all the boxes in the following way: if the box is
unmarked and not enclosed in any marked box it takes the frequency of the
bifurcation which has generated it, as defined before in b). If the box is a marked
one or an unmarked one but contained in some larger marked box we assign to it a
generic frequency q over which we are going to sum later, so that at the end no fixed
frequency will be assigned to these boxes. In this way every box has a frequency.
We start with the higher order boxes which by convention are all marked; if β = 2,4
the half lines (we omit the "half hereafter) going out from the marked box B
represent the field φψh] and if β = 2' the field dφψh\ where ξ is the point inside B
prescribed by the rules defining & and S£ = \—Sl and h is the frequency of the first
box enclosing the line formed by this half line joined with some other half line. We
remark that all the lines going out from the marked box B are associated to fields
computed at the same point, but they can have different frequencies depending on
which unmarked box contains them. The lines inside B keeps the frequency q oϊB.
If β = 0 there are no lines going out from B. After the innermost boxes we go out to
the second generation of boxes which are marked or unmarked: for the marked
ones we proceed as before; if B is an unmarked one the meaning of a line emerging
from it is also clear if the line starts from an innermost marked box inside B, in fact
it has the meaning assigned to it before. If the line emerges from a vertex η
contained in B and not in the innermost boxes it has the meaning φψh] if it is
completely contained in a box of frequency h and if more than four lines emerge
from B. If 2 or 4 lines come out from B, which means that this box corresponds to a
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bifurcation where the ^-operation is, in general, not the identity, [see
Eqs. (6.37), ...,(6.42)], then also to this box we append an index βGβ which tells us
which elements in the right-hand side of (6.37), ...,(6.42) has to be selected. More
precisely if B has only four external lines emerging from two, three or possibly four
distinct points, ξ, μ, θ, ζ9 we attribute to these lines a meaning which depends on the
index βGβ: it tells us which element in the right-hand side of (6.40) to select. Suppose
then that B has only two vertices ξ, η with one external line each. This box again
has one index whose different values describe which of the terms produced by the
^-operation, has to be selected. For instance if βGβ = 1 both the lines emerging

1

ψl
When this procedure is iterated up to the last box enclosing the whole graph G

we have drawn a graph whose lines have well defined "names" and frequencies and
with some of its subgraphs encircled with boxes which also have definite
frequencies. Recall that to each subgraph with all the internal lines specified we
associate a well defined part of the truncated expectation referring to that
bifurcation. Iterating this procedure, we can associate a well defined function of
the covariances and of the fields associated with the external lines to the whole
graph. We have now only to sum over the frequencies qί9 ...9qt of the boxes
which are marked or unmarked but contained in a marked box with the
following rule: if q is the frequency of a marked box one sums over q from 0 to q\
where q' is the frequency of the first box enclosing it. If q is the frequency of an
unmarked box one has to sum over q from q'+\ to N9 q' being the same as
before.

The contribution of a graph ^ with labels β# represent a particular choice of
such contractions and its contribution to V(y)/n(y) will be denoted:

tiy, V)-^τίKyt9tβ (X9; k): Pψ* (φ): άXφ, (7.2)
n[y)

where Pψft (φ) is a Wick monomial in the external fields divided by the
appropriate factors such that the Pψkβ has no zeroes in the coordinates and has
"fc-dimension" =0. To obtain this result we divide the fields φψk],dφψk], #Lf fc]>
Sif\ Dlψ*\ Tlfk\ S^k\ y\ y2k, yk(yk\χ-y\), y\yk\χ-y\)2, y2k(yk\χ-y\) by
yk(yk\x — y|)3, y {yk\x — y\)2 respectively. dX<$ means integration over all the vertex
coordinates of 0 and Ky^β (X^ k) is a function that we are going to estimate
carefully.

Finally with β$ we indicate the family of indices attached to the marked and to
the unmarked boxes, with a slight abuse of notation as the indices of the marked
box are already fixed in the definition of the dressed tree y. From (6.9)

Σy Σ x(y^)^JKy^β(X^k):Pψγ(φ):dX^ (7.3)
n(y) 'p^ 'p*

follows.
The last thing to do before starting with the estimates of the generic term in the

sum (7.3) is to modify the Σφ making use of the factor ί/n(γ).
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72

In the formula (7.3) the sum Σ<$ is made over all the F-graphs compatible with a
fixed y, with labelled vertices and with the fields associated to the internal and to
the external lines specified.

It is easy to show that we can reduce Σφ to a sum over the topological graphs
# (completely unlabelled, except for the names of the external lines which are
specified).

We prove the following lemma:

Lemma 1. Let § be a topological Feynman graph with n vertices and let y be a tree
with n endpoints. Then the number N{@,y,{nB}y) of labellings of # compatible
with y and such that for every bifurcation B of y, the subgraph of & corresponding
to B has nB external lines, is bounded above by C"n(σ)QxpεΣnB> for a^ £ > 0 onά
some constant Cε, if σ is the shape of the tree y. B

Proof. The proof is in the Appendix A of (II) and it is due to Giovanni Felder
(Zurich).

We can rewrite Eq. (7.3) in the following way

where

*2 k W s t I )=Σ Σ y \Ky3{Xv;k):Pψk\φ):dX%, (7.4)
# k(y) = k

Ky %(X%;k)= Σ f JΣ^,θ« τ\~Ky)cg β (Xg\k). (7.5)
{} ί ^ nd ^ n{y) ^
Σ f JΣ^,θ«

{nB}y ί ^ nxed ^
\{«s}y fixed

Using the obvious relationship Σ v ~^τ = Σ Σ V T where h describes the set of
yn(y) σ h_ n(σ)

frequencies of the bifurcations of y, and Lemma 1 we have the following
inequality

ύΣQΣUeεnB sup idXMy,&)Kr.:βJίX*;k)\ (7.6)
(σ,h) {nB}γ {B}γ <$,βg

ί #fixed
\{«s}y fixed

which will be used in the proof of Theorem 1.

73

All the preliminaries are now settled and we can go into the heart of the matter.
Our goal in the remaining part of this section will be to prove the estimates (2.27).

To estimate the generic term of (7.5) we decompose Σ i n the following way: we
y

call f(γ) the number of frames in a dressed tree y [inside a frame there can be other
frames which are also counted by /(y)], v(y), the number of final branches of y [if

= n, V(y) is of order gn~]. f(y)=f means also that any ^ compatible (we omit
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hereafter the adjective completely) with y has / marked boxes. Of course

f(y)^v(y)-l. (7.7)

We still want to decompose Σy depending on how these frames are included one into
the other and how many final branches (vertices in graph language) are in each
frame. This can be done in the following way: consider/spheres and n points, and
any two spheres can be disjoint or included one into the other. We say that a family
of/ spheres is completely determined once we fix a) how many external spheres
there are, how many inside each of them and so on, b) how many points (vertices)
are in the zth sphere and not in any sphere inside it, Vz. For fixed/and n the number
of families of/ spheres with n points inside: Jf{f, n), is finite. Order these families
arbitrarily with an index w running from 1 to Jf(f, n).

We rewrite (7.4) in the following way

Vj?\<p^k]) = ΣΣΣΣ V{k)(n, /, w, #, φ[^k])
n f w §

= Σ Σ ΣΣidX9KlntΛWι9)(X§;k): Pψk\φ):, (7.8)
n f w <§?

where

(k(γ) = k
)v(y) = n
)f(y) = f

where w(y) = w means that Σy is over those trees whose f(y) = f frames satisfy,
together with the final branches, the relation prescribed by the family labelled by
the index w.

Remark. It is clear that from the tree point of view a sphere is a frame and a point is
a final branch, while from the graph point of view a sphere is a marked box and a
point is a vertex.

We are now in a better position to give a general idea of the estimates we are
going to prove. The central point is to prove that

J dη1...dηr J d(Ar^)|X(II>/tWj#)(X§; fe)l
Ai x ... x Λr Λn~r

^{oomt)nμ{w)f\Σ^-e-κyKd{Δ^-Δr\ (7.9)
o J-

where /c>0, ηu ...,ηr are the coordinates of the external lines of # , Δ x , . . . , Δ r are
tesserae of linear size y ~k, μ(w) is a bounded function of w and b > 0 , which will be
specified later. Then one has to prove the easier results,

Σ 1 £ (const)" ̂ , (7.10)

(w, fixed)

and from (7.8) and (7.9) the estimates (2.27) follow.
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7.4. Technical Part

We want to estimate

Vy%φ) =

(y) =
f(y) =
w(γ) =

; k):

(7.11)

(7.12)

To evaluate Vy

(k^(φ) we have to proceed as previously discussed. If /(y) = /, this
means that γ has/frames and w(y) tells us how they are distributed. Let's call s the
number of external frames, s ̂ / or, in the ^-language, the number of external
marked boxes. They correspond to localized terms; in fact remembering Sect. 6 it
should be clear that: an external frame of y whose next bifurcation frequency is h,
which has at its interior a subtree of shape σ and which brings an index
β = 0', 2,2', 4 has to be considered in the computation of the truncated expectation
as a "form factor" times a local term. Remembering Eq. (6.44) we have

β = 0' (trivial marked box = simple vertex)-*-*: φ^

β = 2«->r< 2

N ) (σ J # h ) γ 2 h : φ ψ h ] 2 : ,
ψh]4 :

(7.13)

Remark. r(β\σ,§;h) introduced here differs from rf\σ,h) of (6.44) for the extra
dependence on <S, but their relation is

ε(β) = 1 if β = 2, = 0 otherwise.

Let us rewrite the sum in (7.11) in the following way

(7.14)

k):Pfk\φ):

(7.15)

where :=n> Έifί =

1

a n d Σ ϊ α is the sum over the possible topological

graphs one obtains by shrinking the s external marked boxes of the ^"s
topologically equivalent to #; the sum over the subtrees yt with shapes σt is
inside the r^.\σb ̂  h^ (see the discussion about the counterterms in Sect. 6) and
Σ is defined hereafter = ΣΣ> where h describes the set of frequencies of the

σ h
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bifurcations of ya, where σuσ2, ...,σs are the shapes of the subtrees inside the s
external frames: # 1 ? . . . , # s are the subgraphs of # for a fixed # α contained in the
corresponding 5 external marked boxes, hu ...,/zs are the frequencies of the next
unmarked boxes, ya is the previous y amputated of its s framed parts which have
to be substituted with points with the appropriate index β, # f l is, analogously, #
where the marked boxes are shrunk to points. A graphical example is the
following one;

Fig. 7.4

Of course j dX$a is an integration over less variables, part of the integration
being factorized inside the r{^\ )'s. The first result that we must obtain is an
estimate of

# fixed

This is the content of

# fixed
a, k): Pψk\φ):. (7.16)

Theorem 1. Let # have r external lines starting from r^r vertices, then, given
ε>0:

Σlα ί
fixed 1 x...xzl F )

Ύ(V <y )

{nB}γ f # fixed n\σa)
}{nB}γ fixed

(X9a;k)\

ί>...,Ar) τ - τ ( (7.17)

where
a) Σv runs over the seven kinds of fields we have introduced φ, dφ, D, S, D1, S1,

T, and d(V) is their "k-dimension", where here k should be, more appropriately, h{B'),
but this is unimportant as the "k-dimension" is k-independent, therefore d(φ)=l,
d(dφ) = 2, d(D) = 2, d(S) = d(D1) = 3, d(S1) = d(T) = 4, nB(V) is the number of
external lines of type V going out from the box B.

b) m is the number of vertices of 9 which are not enclosed in any marked box, S is
the number of external marked boxes,
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c) The ε dependence originates from Lemma 1.

d) e-κγkd(Aι,...,ΔF)^ κ > o ? fs part oj ιne exponential decay factors of the

covariances; Δu...,AFare tesserae of linear size y~k.
e) {B}γa is the set of unmarked boxes drawn on &'a following the prescription

given by ya.
f) Bf is the first box containing B, h{B), and h(B'), which satisfy h(B) > h(B') are

the associated frequencies. If B is the largest box h(B') = k(γa).

g) In the last inequality of (7.17) we used Σ$a f ^ ^ ( T + s g e * * V B

ί # fixed n(σa)
){τiB}γa fixed

for an arbitrary ε > 0 and an appropriate Cε, which follows immediately from
Lemma 1.

The proof of the theorem is in Appendix A of (II).

Remarks, a) The crucial information of the theorem is that, given an amputated
tree ya and a compatible graph <SΦ the contribution to V(ya) of (ya, &a, B^a) can be
easily estimated just associating to each internal line of ya (except the final
ones) a convergence factor

- (h(B) - h(B')) U d(V)nB(V) - 4] ^ ^ j g^

where h(B) and h{B") are the frequencies of the two ends of the line and d(V) is the

"ft(BO"dimension" of Vand ΪΣd(V)nB(V)-4] is always ^ 1 .

b) Remembering Eqs. (7.8), ...,(7.14), Theorem 1 and the definition of
r^Xσ, h), it should be clear that we have proved the finiteness, when iV->oo, of the
terms of the formal series in g of V^\φ[-k\ if we prove that the rf\o,hys are
bounded uniformly in JV, by a polynomial in h. In fact we are going to prove a more
refined bound on the rf\σ, h)9s which allows us to get the more accurate estimates
of Eq. (2.24). This is a more complicated task which still requires some work.

We define

where wt is an index implicitly defined, see Eq. (7.14), which plays the role of w
relative to the shape σ{ of the subtree y{ of y. The second crucial theorem we need
gives us an estimate of f^\ ).

Theorem 2.

l*¥>,, ̂  ; hd\ύK*df&^?r, (7.20)

where fi(wi) is a function bounded by a constant independent of JV, §h βb hί7 f is
1 + # (frames inside the ίth one), b is > 0 and will be specified later, insuring the
proof of this theorem which will be postponed for a while.

Remark. The rf\ )'s are the coefficients of the framed parts of the trees; these parts
control the most divergent behaviour in the order n of gn of V^\ Theorem 2 is
essentially an estimate, not very crude, of the dependence of these terms on their
frequencies (the log of the momenta in the more standard Feynman graph
language) and on the number of the vertices.

We shall discuss these matters in a greater detail in (II).
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J dη1..,dη-r J d(X$\η) {K^j^
Δ\ x ... x Δy Λ n ' r

k)\

<e T̂ m + s
ε

(yα)
/(?«) = 0

J (7.21)

We want to estimate the right hand side of (7.25), obtained observing that,
remembering that every unframed bifurcation has an R, the following inequality
holds, for all B and β#a:

\ ] l (7.22)

[see the proof of Theorem 1 in Appendix A of (II)]. Moreover, remembering the
definition of yφ summing over all the possible ya with a fixed number of final lines:
v(γa) means to choose an arbitrary set of frequencies with a partial order between
them (which fixes the shape of the tree apart from the position of the final lines), to
sum over all the possible values of the frequencies respecting this partial ordering,
over all the possible sets and, finally, over all the possible ways of arranging the
v(γa) final lines.

Fig. 7.5

The tree of Fig. 7.5 is completely defined assigning the partial order between the
frequencies, the value of the frequency at each of its bifurcations and how the
v(ya) = 8 final lines are distributed. ya is a tree (amputated) with s final marked ends
and m normal ones.

Perform the Σ?Ω i n the following way: call y a tree (without frames) with only s
marked ends; for fixed y consider all the ya which can be obtained adding in all the
possible ways other branches so as to have m normal final lines in addition to the s
marked ones. Given yω call ρ(γa) = y the "marked" tree obtained deleting all the
subtrees which end with unmarked final lines (Fig. 7.6).

Fig. 7.6
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We can decompose Σyα in the following way,

Σ 7 o = Σy Σ y α > (7-23)
) = k (k(γ) = k ρ(γa) = y
) = rn + s Jv(y) — s v(γa) = m + s
) = o (/(?) = o

where y fixed implies that the frequencies at its bifurcations are fixed. We call these
bifurcations {p(B)}. Those p(J5)'s which bifurcate into final branches are labelled pt.

Therefore j dηi_dr,r J d(X9\η)\K{ntftWt§){X9;k)\
Δ x xA Δn~r

Δn~

y
k(y) = k
v(γ) = s

f(y) =

fί

J\

{B}y

Σ Π
ya {B}ya

where the right hand side is independent from #. Looking at the

(7.24)

term

of the right-hand side of (7.24) we want to estimate it, removing the constraint
ρ{ya) = y. This is provided by the following lemma:

Lemma 2. Let y be an undressed tree with at most n final branches, then

Σ Π y ~ 1 / 4 ( 9 ( B ) ~ * ( B # ) ) ^ c 5 . (7.25)
y {B}γ

The proof of this lemma is in Appendix A of (II).

Using this lemma we have

ί dηi...dηf I d(X§\η)\KMtW99)(X§;k)\
Ax X ... X Δr Λn~r

(7.26)

Remark. The advantage of the bound (7.26) with respect to (7.21) is that now the
sum on the right-hand side is restricted to those trees with marked ends only.

We want to get an estimate of the right-hand side of (7.26) more useful to us.
Rewrite it in the following way, denoting, as usual, by σ the shape of a tree

kφ=k \_{B}γ

/(y) = o

[r.h.s.(7.26)] =

I Σ σ
{f(σ) = O

v(σ) =

Σy

Σy (c,c2y
{γ)

σ(y) =
f(y) =

> m + s Γ Π . .Ί
l{B}y J

Uy

0 J-

' 1 / 8 i h i B ) ~ h { B Ί )

Π

y
(y) = k {B}y

lσ(y) = σ

(7.27)
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(all the terms of the sum are >0). The two { }'s of (7.27) have to be estimated
separately

Lemma 3.

Σ,

i l l

7 V
ί J oJ jl

The proof of this lemma is in Appendix A of (II).

Remark. The bound of inequality (7.28) is independent from σ.
Collecting together Eq. (7.27), Lemmas 2 and 3 we get

ί dηi...dη-r J
A\ X ... X Δr Λn~

(7.28)

ύ<%c% ψ'ΐW (7.29)

which is essentially the inequality (7.9). We are now in the right position to prove
Theorem 2, which is the last result of this section.

Proof of Theorem 2. The proof will be by induction. We have

rβi V W P ^ ί 5 W — (7.19)

f(σί) =

As w(σt) is fixed = wf it follows that the number of external frames in σt is fixed = st

(also the number of frames inside these frames is fixed).
Remembering the definition of a "amputated" tree yω (see Fig. 7.6) we can write

Graphically

(7.30)

Fig. 7.7

where aia is, in the picture where we drew a possible σb

Fig. 7.8
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To compute (7.30) we have to proceed in this way:
a) Remove the external frame, call y{ the tree with shape σt and without the

letter R appended to its last bifurcation of frequency h (due to the presence of the
frame we have just erased) and with root k{y^) = — 1. Then compute F(yf) and erase
the final Wick polynomial.

b) Perform the sum over yt as suggested by (7.30), namely first over the yt with
yUa fixed and then over the yUa. As to sum over yt with yUa fixed means to sum over
the subtrees inside the frames 1,2,..., st in this computation each line ending with a
frame has to be estimated by ή^Xwij, $itj\ p3), which by the inductive assumption
satisfies Theorem 2, where wUj is the index referring to the subtree contained in the
j t h framed part of ff and §Uj is the corresponding part of the graph §t. Therefore

[ Σ* ί

( 7 3 1 )

where Σ * o v e r ft, a means to sum with the condition that the frequency h of the
last bifurcation of yUa has to be summed from 0 to qt instead of from 0 to N and
Σ$, α is defined.

It should be clear, after a moment of reflection, that apart from this condition
on the last sum and from the fact that the last bifurcation of yUa is not
"renormalized" this computation is exactly of the same type as that performed to
estimate the left-hand side (7.21)

UXz\KMt^Xκk)\, (7.21)

where now k = — 1 and (n, /, w, #) = (ni5 fb wb #£). Therefore one can repeat all the
steps done to estimate (7.21), except the last sum over h and taking care of the
missing R, obtaining, as it should be clear by looking at the proof of Lemma 3,

S i

eξ ΠjP(*>ιj)
1

(bhr>\ (Ί32)

J
 (7 32)

where mt is the number of vertices of # f not enclosed in any marked box and st ̂  st is
the number of lines with marked ends which merge into the last bifurcation of
frequency h, Fig. 7.9.

Fig. 7.9

Moreover remembering the definition of/f we have

Tι=Σjfuj, (7-33)
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where 06 x is the set of external frames which end in the Ith line which bifurcates from
"ft". Therefore

Σιfι = Σjfij=fi-l, (7.34)

where f{ — 1 is the total number of frames inside the external one associated to
ήilKwi^iiqi). Then, omitting the index z,

o V r!

:£ [with the use of the simple Lemma 3 a discussed in (II)]

o r\

or r\

= [see (7.34)] = c? + ' Π,Mw;) ^ Σ ^ r • (7.35).

In order to complete the proof of Theorem 2, the following inequality must hold

μ(w)^crsΠ;/Kw;). (7.36)

Iterating this relation we get

jHyv)^-*""**'-1 Πk fi(Wk), (7.37)
(innermost)

boxes

where n is the total number of final branches (vertices of the associated graph)
prescribed by w, nint is the number of "vertices" contained in the innermost boxes
or the number of final branches contained in the innermost framed parts, in the tree
language, / is the total number of frames. If we make the following inductive
assumption

j \ (7.38)

as for the innermost frames /} = 1, it follows that

μ(w)^4"~" l n t ) + /"1cM

7

i n t^c (/~1 ) + M (7.39)

choosing cΊ>c6 which shows that the inductive assumption

(7.40)

is reproduced provided it is true that μ(w) ̂  cn

Ί if this w refers to a frame which
inside has the contribution of all the possible trees without frames (/= 1) and n
final lines. This is true and follows from inequality (7.32) with ^ = 0,
f1= ... =f- =0 and mi = n. Theorem 2 is therefore proved. •
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We have the following inequality

J dηi...dη-r ί d(X§\η)KintftWt9)(Xφ;k)
ά\ x ... x ΔT Λn~r

-^, (7.41)

where C 8 is a constant uniform in N, k, <§9 β<#. This is the inequality (7.9) we
promised to prove.

To complete this "technical section" we have still to prove the easy estimates
(7.9) which we state below.

L e m m a 4 Σ ί^cn

9(n-f)\ (7.42)

w fixed

The proof is in the Appendix A of (II).

Lemma 5. Σ ^ j / . {7A3)

(n,/fixed)

The proof is in Appendix A of (II).
Inequality (7.41), Lemma 4, Lemma 5 together allow us to write the following

estimate: We rewrite Eq. (7.8) as

Σ \dXV*\X;a,...,g)
{Q,b,c,d,e,f,g} Λn

(7.44)

where φ = φ[=k] (the same for dφ,D,S,...), X = (xu . . .,xn),

α = (α! , . . . ,α B ) , h = (bl9...,bn)9 c = {cίj}i<j,

d = {dij}i<j, e = {eij}i<j, f={ftj}i<j9 g = {gij}i<jm

ίj vary over (l,...,n), ai,bi9cip...,gijeZn[0,4']

= ΓL φVdφl1 Π Dc

x

ij

x Sίij

x Dl^Ti" S1^:, (7.46)

then the following result holds. Let us denote ηu...,ηr the r independent variables
of the fields in the Wick monomial : φ |(δφ x )^. . . Si J : . Then 3κ;>0, G > 0
JV-independent such that

ί dηi...dηr ί d(X\η)\VikKX9a9b9...9β)\
Δ\ X ... X /l r Λn~r

hi(ykT(y2k)biY

(y'WlXi-XjW'i:

(7.47)
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which is the estimate (2.27) and

\Vtk\X;a,...,g)\ = 0 if |α|+ ... + \g\>4n. (7.48)

7.5. The Formal Power Series for the Schwίnger Functions

Let φ = φ[-N\ f a test function. The truncated Schwinger function is

dp

oo 1 AP + s

y
θ = τ = 0

co 1 {0,p) Ό\

ΣS^ Σ τ/—Ί^^\f),...,φ^\f),V^\j0,...,jN,s) (7.49)
0 5 ! Jo,...JNJ0l ...JNl

ΣΛ = P

To express {(7.49)} in the tree formalism we proceed as follows: The following
relation holds in general:

We define

(0,co)

h,...,lq,s S l l i l . . . lq\

On the other hand integrating frequency by frequency

(7.51)

V{k)= Σy i ^ ω > (7-52)
k(γ) = kΠ(γ)

where F(y) is the contribution of the tree y to the truncated expectation,
remembering that the final lines can be associated to Vu ..., Vq and V(N) arbitrarily.
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Therefore

G. Gallavotti and F. Nicolό

• ' * " -
p final lines

oftype(l,2,...,«) (7 53)

(7 5 4 )

where {/l5..., lq} means that there are lx final lines of type Vί,
we draw wavy.

Define now

then
(0,N)

Σ
(l,p)

Σ
1

.Jq of type Vq which

(7.55)

(7.56)

y are dressed trees, the potential being V^N} + ]Γf φ
[kίKf) which does not require any

1

more counterterms. The tree γ has p wavy lines and an index δ running from 1 to q.
The bifurcations where they merge and the following ones do not require any
^-operation, as we are going to prove.

Before that, expand SlN)(f; p) in a formal power series of g,

1 ~ °° 1 ~
y V(y) = Σ Y, V(y), (7-57)

k(y)=-i n(γ) c " ' y " A Λ

where ι (y) means the number of lines (final) associated to —g\άξ\φ\\, counting
also those included in frames. Then

P (0,N) 1 ~
(7.58)

We turn now to the estimate of S^)>π(/; p): The generic tree of(7.58)is a dressed
tree with p final wavy lines

associated to φ[kl\ ...,φ[kq\ These lines will merge in normal internal lines of y
between two adjacent bifurcations or in a bifurcation together with other straight
lines.

Fig. 7.10
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Consider the bifurcation made by a wiggled and a normal line

Fig. 7.11

It corresponds to the truncated expectation S^ between φ[kq] and a Wick
polynomial made by the sum of monomials of any order, to those of order ^ 4
being the ^-operation applied. The contribution of this truncated expectation is
proportional to a sum of terms of this kind:

(7.59)

where P[=fe«]() is "normalized" to have "fc-dimension" = 0 and F(q, kq;ξl9...,ξp)
satisfies

q;ξu...,ξp)\Sy~iq'k^d^VMV)'4l (7.60)

φttq] w h e n contracted with another field of P[-k] gives rise to a covariance
proportional to yk + σk, the yσk being then cancelled by the yσk present in the
denominator of the Wick monomial due to its "normalization." Therefore it
remains a factor yk but also an exponential factor e~

γkd{x'ξ) which produces a
volume factor γ~4k. The net result is a factor y~3k and the monomial P[-k] has now
the degree in fields lowered by one. Nothing really changes if we have a bifurcation
of this kind

Fig. 7.12

It is easy to recognize that this factor y 3k is such that along the whole line from the
kq bifurcation to the lowest frequencies there is no longer need of the M operation.

Therefore extracting from each of these factors, one for each wiggled line, a
factor y~εk with ε > 0 we can easily deduce the following estimate:

1

v{γ) = n

which implies _^

which is the promised result (2.20).
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