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Abstract. Mayer perturbation theory is designed to provide computable
convergent expansions which permit calculation of Greens functions in
Euclidean quantum field theory to arbitrary accuracy, including "nonper-
turbative" contributions from large field fluctuations. Here we describe the
expansions at the example of 3-dimensional Λ^4-theory (in continuous space).
They are not essentially more complicated than standard perturbation theory.
The nth order term is expressed in terms of 0(w)-dimensional integrals, and is of
order λk iϊ4k-3<n<4k.

1. Introduction

Mayer perturbation theory is designed to provide computable convergent
expansions which permit calculation of Greens functions in Euclidean quantum
field theory to arbitrary accuracy, including "nonperturbative contributions" from
large field fluctuations. Their nth order term is given by 0(n)-dimensional integrals,
as is the case in standard perturbation theory. In principle such expansions have a
chance of converging for asymptotically free theories - including superrenormaliz-
able ones - for problems where a small coupling constant is effective. Some
models will require a more sophisticated treatment of the large field region,
though. In this paper we describe the expansions in their simplest form at the
example of weakly coupled massive Λ,^4-theory in v = 3 dimensions. Part I of the
paper presents the main ideas and constructions. It describes the expansions in
an elementary way, and discusses the relation to standard perturbation theory:
The sum of all terms in the Mayer expansion up to order 4n equals the sum of all
renormalized Feynman diagrams up to order w, plus a computable correction of
higher order or nonperturbative origin. The raison d'etre of Mayer expansions is
their computability and convergence. Here we concentrate on computability. We
plan to present estimates and discuss convergence properties in a subsequent
article (Part II).

Mayer expansions [i.e., iterative solutions of Kirkwood Salsburg or Mayer
Montroll equations, in place of Schwinger Dyson equations] were introduced into
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quantum field theory in Symanzik's celebrated paper on Euclidean quantum field
theory [1]. Brydges and Federbush [2] used Mayer expansions to obtain an
effective action for a Coulomb gas. The Mayer expansions on the staggered lattice
that we are going to present here are equivalent to iterated Mayer expansions
using successively lower lattice cutoffs (cf. end of Sect. 2). Iterated Mayer
expansions with Pauli-Villars cutoff were developped by Gopfert and Mack in
[3, 4], and applied to prove permanent confinement of static quarks in 3-dimen-
sional U(l) lattice gauge theory. The work presented here is a continuation of the
program started there, but the paper will be selfcontained. The expansions
presented here are examples of what is called a phase cell cluster expansion in
constructive field theory. Phase cell cluster expansions were introduced by Glimm
and Jaffe [5] and further developped by Magnen and Seneor [6] and Battle and
Federbush [7, 8]. Our convergence proof (in preparation) combines elements of
the analysis of Magnen and Seneor, and of [4], with a UV-stability argument (the
mass counterterm is dominated by the quartic interaction, cf. below). Elements of
the exact renormalization group approach of Kupiainen and Gawedzki [9] are
also incorporated1.

The space on which the theory lives originally [continuum IRV or cubic lattice
(αZ)v of lattice spacing α] will be called the base space. The generating function
lnZ(φ) of the connected free-propagator-amputated Euclidean Greens functions
depends on a field ψ on base space. Its derivatives at φ = 0 give the Greens
functions, see Appendix A. In Mayer perturbation theory they are computed from
an expansion of the form

inz(Ψ)= Σ f ... ί JΊΛ,. ..,*». (i.ia)

The resulting expansions for Greens functions become particularly simple when
suitable normalization conditions are imposed, see Eqs. (l.lόa), (1.19) below. The
leading term n = 0 is given by

*(0|V)=-^ ί Ψ(z)4. (Lib)
4! base

The integrations over xt in the later terms are actually summations over all points
x of a staggered lattice Λ that is superimposed on the base space (see Fig. 1). The
staggered lattice Λ=(ΛQ9Λl9Λ29 ...) consists of a finite or infinite sequence
[disjoint union] of lattices Λj of decreasing lattice spacing a^ For instance,
α/ = L~J'α0, where L is a suitably chosen integer > 1 and α0 is the physical length
scale2. A point x e A is an element of Λj for some j^O. In the presence of a lattice
cutoff α, there is a finest lattice ΛN with lattice spacing aN = a. For a continuum
theory N= oo - i.e. the sequence is infinite - and the staggered lattice admits as
maps a semigroup of scale transformations by integer powers of LΓ 1 in addition to

1 In recent announcements, Feldman, Magnen, Rivasseau, and Seneor promise an improved
version of the expansions of [6], with application to the infrared behavior of massless lattice
A^4-theory in 4 dimensions [10], and Kupiainen and Gawedzki describe how they handle the
same model [11]. This supports the belief that asymptotically free renormalizable models are not
necessarily intrinsically more difficult than superrenormalizable ones
2 We believe that L = 2 is an optimal choice yet
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Λ2

base

Fig. la and b. The staggered lattice. A point XE Λj of the staggered lattice may be regarded as a
cube of side length as in base space. The cubes are positioned in such a way that smaller cubes fit
into larger ones (i.e. do not intersect their boundaries), a base space with lattices of side length
cij = L~Jα0 superimposed, j = 0,1, 2,.... b Every cube in one of the lattices that is superimposed on
base space is represented by a dot in this pictorial representation of the staggered lattice
A = A0 + A1+A2 + .... The dots in layer Aj represent cubes of side length a}. (Drawing for 2
dimensions)

the group of translations by integer multiples of α0. Integration over the staggered
lattice includes a summation over length scales j. In v dimensions

ί (...)= Σ αj Σ
xeΛ .7 = 0

(1.2)

The augmented Mayer amplitudes Jt(xl9 ...9xn\φ) are finite sums of products of
Mayer amplitudes JK(xiί9...9xik\ψ) with k^n, multiplied with combinatorial
coefficients. The general formula is given in Eqs. (3.6) of Sect. 3. The Mayer
amplitudes Jί are defined for finite subsets X = {xl9 ...9xn}cΛ of the staggered
lattice. That is, they are symmetrical in their arguments and defined only when all
their arguments are distinct. They are defined by considering auxiliary theories in
which the interaction has been switched off, in a suitable way, outside finite subsets
X of the staggered lattice. For 3-dimensional /l^4-theory this is done as follows.
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The interaction of the model is V(φ) — δV(v\φ\

τ\L^ oj)
f %δm2(v\z)φ(z)2 .

base

It is expedient to consider the counterterms as functions of the free propagator v- of
the theory. In our model [and, more generally, in asymptotically free theories], the
counterterms are known a priori. For instance

δm2(»\z) = ±λ»(z,z)-±λ2 J ^(z,z03. (1.4)
•3 ! z'ebase

There is a similar expression for the field independent ("vacuum energy")
counterterm δe. Alternatively, δe may be fixed by imposing normalization
conditions. One may also speed up UV-convergence by making oversubstractions,
i.e. include wave function and coupling constant renormalization counterterms,
and higher order terms in (1.4), if one wishes to. When the propagator v is
translation invariant, then δm2 is independent of z. Both counterterms vanish
when v- = 0.

One splits the field φ into pieces φj that are constant on cubes of side length a}.
The points x e Λj of the staggered lattice may be identified with cubes in the base
space of side length ap As a result, the pieces φj specify a field on the staggered
lattice, viz. φ(x) = φj(z) for z e x, x e Λj. The decomposition reads

Φ(z)= j j/(z,x)φ(x) = £/φ(z) for zebase. (1.5)
xeΛ

The kernels jtf are determined by a choice of block spin (and the free propagator v).
To be specific, let us choose the block spin on the lattice Λj of lattice spacing aj as

Φj(x)=avφ(z) = a^v J φ(z) for xeΛj. (1.50
ZΘX zex

Then the kernels stf are the same as in the work of Kupiainen and Gawedzki
(except for the presence of a mass) [9], see Appendix B. There is a corresponding
split of the free propagator

v(zl9z2) = f ί j/(z1,x1)i;(x1,x2)j/(z2,x2) for z1 ?z2ebase. (1.6)
x\,X2eΛ

The propagator ι;(x1? x2) on the staggered lattice vanishes unless x1 and x2 are in
the same layer. Both j3/(z, x) and u(xι,x2) decay exponentially with distance
[between z and xCbase, or between x t and x2] with decay length3 a^ if xeΛj9

xx 2 e Λj+ 1? see [9]. The decay of the propagator on Λ0 is determined by the mass.
The propagator v is positive semi-definite.

The interaction may be considered as a function of the field φ on the staggered
lattice. We set

3 This implies that the propagator of φj has infrared cutoff aj-^ while a UV-cutoff a] 1 is
supplied by the lattice Λj
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when φ and φ are related by Eq. (1.5). [The external field φ on base space is
argument of the generating function for amputated Greens functions.]

While it is custumary to call V the interaction, the reader is advised to think of
interaction as being mediated by propagators. The interaction is switched off by
putting the propagator equal to zero outside X. Given a subset X of the staggered
lattice, let χx be its characteristic function

\\ for xeX

otherwise,

and define Jf-dependent propagators by

(1.8)

)= Jί J(zl9xi)vx(x

Partition functions Z^Xlψ) for finite subsets XcΛ are defined using as free field
measure the Gaussian measure dμvχ(φ) with propagator [covariance] υx. Because
the propagator vanishes outside X this measure is supported on fields φ = χxφ that
vanish outside X. Therefore the integral is effectively rc-dimensional when X
contains n points [cf. Eq. (3.15) of Sect. 3]. The interaction 93 is as before, but the
counterterms are adjusted by substituting v x for v in the argument

Our definitions are such that

Z1(0|ψ)=l-

The generating function for the amputated Green functions is obtained as an
" oo -volume limit" X ^ A (see end of Appendix B)

lnZ(φ)=-^ f φ(z)4 + lnZ1(/l|φ) ( + const). (1.10)
4 ! base

This switchoff of interaction and induced counterterms on part of the staggered
lattice is the central idea of this paper. It is the key to computability and simplicity.
The adjustment of the counterterms becomes natural when the interaction is
viewed as mediated by propagators. It is also essential in order to maintain
stability. In and close to the continuum the bare mass squared is negative. The
mass counterterm must therefore be dominated by the quartic interaction. The
basic inequality is

sup J -φ(z^ + ̂ δm\Z)φ(z)^6λ-ί f [<5m2(z)]2. (1.11)
φ base |_ J base

When the counterterm is switched off outside X, λ~ 1 j" [dm2]2 becomes of the order
of λ - "volume of X " and its exponential can be controlled by powers of λ in suitable
units.

Let us return to the computation of Mayer amplitudes Jί. They are defined by
requiring validity of the following relations for arbitrary finite nonempty subsets X
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of the staggered lattice Λ. Set

for

X = {xι, ...,xn}, with a(x) = cij for xeΛj. (1.12a)

The dimension v = 3 in our model. We demand

Z1(J!f|φ)= Σ ΠA(Y\ψ) for all finite X. (1.12b)
X = ΣF Y

Summation is over all partitions of X into disjoint nonempty subsets Y. Equations
(1.9b), (1.12b) exhibit Z^X) as partition function of a polymer system with
activities A(Y) (see Sect. 2). It is well known that Eq. (1.12b) has a converse which
determines the activity A(Y) uniquely, given the partition functions Z^X) for
XgY.

For practical calculations (and for deriving estimates) one uses other more
convenient formulae for the Mayer amplitudes in place of Eq. (1.12c). They will be
described in the following sections. It is now clear, however, that the Mayer
amplitudes Jί(x^ ...,xn\ψ) are computable in terms of ^-dimensional integrals,
because expression (1.9a) is an integral over n real variables φ(Xi) when X = {xj
has n points.

Let us note, for comparison, that standard perturbation theory can also be put
on a staggered lattice. This can be done Feynman graph by Feynman graph.
Consider for instance a nth order graph with 4-leg vertices only. The Feynman
integrand in coordinate space is a product of propagators v(zί9 z7 ), multiplied with
(— λ)n and possibly with a combinatorial factor. Split the propagator as in Eq. (1.6)
and imagine that the z7-integration over base space are done. This produces
nonlocal vertex functions on the staggered lattice,

^ f

4! zebase

The Feynman integral becomes an integral over 4n arguments xi in the staggered
lattice. It can be rewritten as a sum of "integrals" over k ̂  n arguments yt that
assume distinct values in A (cf. Sect. 4).

Now we will explain, briefly, how our renormalization procedure with
X-dependent counterterms works. We begin with a perturbation theoretic
illustration. For simplicity we will ignore tadpoles and the 0(λ) piece of the mass
counterterm that cancels them. To order λ2 the generating function lnZ(φ) is a
polynomial in φ, and its quadratic term in ψ is given by

lnZ(ιp)= Jί φ...(^) * φ- ί φ... x ,

in graphical notation, with Z2

= J φ λJλ V (1.14b)
z2ebase zι
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Inserting the expression for the counterterm gives

lnz(v>)= ίί
zι,z2ebase

The counterterm differs from the main term by reversal of sign and a "shift of the
field" ψ from z2 to z^ Such "shift of the field" is also the basic operation in the
recent work of Gallavotti and Nicolό [12] on perturbation theoretic renormaliz-
ation. In coordinate space language, the logarithmic UV-divergence of the self
mass in continuous space appears in the guise of an ill defined product of
distributions ^(z1?z2)

3 which contains a divergent piece proportional δ(zί — z2)
[13]. Expression (1.15) is a well defined distribution, however, for smooth fields ψ,
because of the zero of the factor [v?(z2) — ψ(Zi)] a* Z2 — zι

To put the renormalized Feynman integral (1.15a) on the staggered lattice, we
perform the split (1.6) of the propagator v in the factor t>(z1?z2)

3 in expression
(1.15b). This amounts to splitting the main term and the counterterm simulta-
neously, and combining the two terms piecewise in the obvious fashion. The split
introduces integrations over six variables x", xa

2(a= 1,2,3) on the staggered
lattice, and we imagine that the two integrations of z1? z2 over the base space are
done first. [They converge because restricted propagators v x(zί9z2) are less
singular at z1? z2 than ^(z1?z2), by positivity.] After the split, UV-divergences
would show up as divergences in the sums over scales j as j-*vo. Such sums are
implied in the integrations (1.2) over the staggered lattice. Consider now a term in
the integrals (actually sums) over A which involves a propagator υ(xl9 x2) with xl9

x2εΛj. It appears in the combination Ji/(zl9xl)v(xl9x2)s/(z29x2) = ^(zl9z2].
Because of the decay properties of kernels &f and v, the restricted propagator ΐ>
becomes exponentially small with distance between z1 and z2 with decay length α,-.
Suppose now that the field ψ is smooth on length scale ak for some k <j. The zero of
the factor [φ(z2) — ψ(z1)'] in expression (1.15b) will then give rise to a suppression
factor dj/ak. This suppression factor is enough to eliminate the logarithmic
divergence in the sum over length scales 7-^00 that would be present if the mass
counterterm had not been included in (1.15).

Self mass graphs (1.15a) may also appear as subgraphs of larger graphs. In this
case the factor ψ(z1)'ψ(z2) is replaced by some function f(zi9 z2) that is determined
by the rest of the graph. Since potential UV-divergences would show up as
divergences in the sum over length scales α,- as7'-»oo (where a$ is the decay rate of
the fastest decaying restricted propagator in the subgraph) one needs only consider
the case that f(zί , z2) is smooth on some length scale αfe, with k <j. (k is determined
by the restricted propagators that appear in the rest of the graph.)4 The effect of the
counterterm is to substitute /(z1?z2)— f(zί,z1) for /(z1?z2). This gives rise to a
convergence producing suppression factor aj/ak as before.

4 In the perturbative renormalization theory of Gallavotti and Nicolό [12] ordering of lines by
frequency j replaces the Zimmermann forests [13]
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Our discussion of renormalization has been perturbative so far. Our Mayer
amplitudes may be thought of as given by low order Feynman graphs (split as
described above) plus corrections. The corrections turn out not to produce new
UV-divergences because they have explicit extra factors α,-. In conclusion,
renormalization suppresses dangerous contributions to individual Mayer ampli-
tudes M(x^ . . ., xjφ) with some arguments xr in very fine lattices Λj (j large). This
works in such a way that the sums over length scales that have to be done as part of
the integrations in (1.1) become convergent.

In the analysis of Magnen and Seneor [6], part of the UV-convergence factors
L~j is used up to control combinatorial factors. They arise because a large cube
x'eΛk may be coupled to many smaller cubes x, x'3xeΛpj>k.

We conclude our introductory discussion of renormalization with a remark
about renormalization conditions. The X-dependent mass- and vacuum energy
counterterms δm2 and δe are chosen in such a way that the following renormaliz-
ation conditions are approximately fulfilled, for all finite nonempty subsets
X = {xl5 . . ., xn} of A and all z e base.

= 0) = 09 (l.lόa)

- -x-lv = °) = 0 (L16b)

The renormalization conditions (1.16) are not "too many" because there are
counterterms δe(X) and δm2(X\z) to be fixed for arbitrary XcΛ and zebase.

Exact validity of Eq. (l.lόa) may be enforced by fixing the constant term
δe(X) in the action such that

Z1(JSf|φ = 0) = l for all X. (1.17)

If this is done, then the expansions for the Greens functions become particularly
simple. The full, free-propagator-amputated Greens functions (including dis-
connected parts) are given by

Γ λ Ί
\ -- \ ψ(z)4\.
\_ 4! base J

( }

Performing the differentations in expression (1.12b) one obtains with Eqs. (1.12a),
(l.lόa), and (1.17),

> = 0)

(1.19)

and similar formulae for the higher n-point functions. In Eq. (1.19) the second term
in [ ] is actually zero by symmetry.
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The free-propagator-amputated Greens functions G(xl9 . . ., xw) are not 1-part-
icle irreducible, and neither are the Mayer amplitudes Jί. 1 -particle irreducible
Mayer amplitudes Jtf(lί) can be introduced by the following defining relation. We
write it for activities A which are related to Mayer amplitudes M by Eq. (1.12a).

z l 5z2ebase Jc ιeXι
x2eX2

. (1.20)

Summation is over partitions of X in two nonempty subsets X{ and X2.
Renormalization conditions (1.16) carry over to the one particle irreducible
amplitudes Jί(lί) (and also to Jί}.

One may want to impose also the second renormalization condition (l.lόb)
exactly. Description of such an alternative renormalization scheme is outside the
scope of the present paper.

Our method may also be used to compute effective actions in the sense of Wilson
[15], and corresponding Boltzmann factors, for lattice cutoffs α,-. They depend on
a block spin Φj on Λj. Set

Λ[>Λ=ΣΛj and Φj(x) = 0 for xφΛj. (1.21)
k>j

Then lnZ(A[>j}\£/Φj) and Z(A[>j]\j^Φj\ which are determined by Mayer
amplitudes J?(X\ψ) with XcA[>j}, are almost the desired quantities. ["Almost"
because one needs to correct for the fact that the "partial bare mass" ml(z) = m2

— δm2(vΛ {> j |z) need not be exactly invariant under continuous translations.] This
is of interest for theories which are not weakly coupled at the physical length scale
α0. We hope to come back to this problem in a future paper. Ultimately one may
hope to design a Monte Carlo procedure for continuum theories in which correction
terms in the effective Boltzmann factor are picked randomly.

The plan of the rest of the paper is as follows: In Sect. 2 we recall results of the
theory of polymer systems, and formulae for and properties of truncated
expectation values. In Sect. 3 we show how the Mayer amplitudes can be
computed as truncated expectation values of so-called "molecular activities" B
that are determined by the interaction V and the kernels $4 (i.e. propagator v and
block spin). Formulae for and properties of these molecular activities are
discussed. The result is summarized in Theorem 3.3. Section 4 discusses the
relation with perturbation theory. It includes a pedagogical discussion of the
relation between standard perturbation theory and Mayer expansions on a simple
(as opposed to staggered) lattice. In Sect. 5 the trivial, but still instructive, model of
/l^4-theory on a lattice with only one point is considered.

2. Theory of Polymer Systems

Following Gruber and Kunz [16], a polymer system on a finite or countable set A
is specified as follows. The elements of A are called sites. Certain finite nonempty



276 G. Mack and A. Pordt

subsets P of Λ are declared to be polymers. Among them are the monomers which
consist of a single site x e A. To every polymer P, a (real) activity A(P) is assigned.
The partition function Z(X) for an arbitrary finite subset X of Λ is defined as

Z(X) = Σ (2.1)

Here and in the following, we write Σ and + for union of disjoint sets. The sum in
Eq. (2.1) runs over all partitions of X into polymers. In particular

Z(0)=l. (2.10

In our applications, the partition functions will be guaranteed to be positive, but
the activities A(P) for polymers other than monomers are not necessarily
nonnegative. An example of a polymer system is described in Fig. 2. By definition
(2.1), the partition functions satisfy the following recursion relation, for any x e X

Z(X)= A(Y)Z(X-Y). (2.2)

They are known as Kirkwood-Salsburg equations. Equation (2.1) may be regarded
as the iterative solution of (2.2) with initial condition (2.Γ). Only a finite number of
iteration steps is needed to obtain Z(X) for a finite set X.

Monomers

Polymers P

Fig. 2. Example of a polymer system. A chessboard serves as A and any union of squares that can be
cut out of cardboard without falling into pieces and fits on the board is a polymer. Choosing as
activities A(P) = exp[ — β\P\]9 the partition function would equal e~64β - (# partitions of A into
polymers)
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It will be important for us that Eq. (2.1) can be inverted. That is, the activity
A(P) is uniquely determined by the partition functions Z(X) for X £ P. Indeed it is
obvious from Eq. (2.1) that A(P) = Z(P)- ΣΠ (activities of smaller polymers).
Therefore the activities can be recursively determined. The result is well known
[17] IPI

Λ(P)= ΣC-ir1^-!)! Σ ΠZ(Xύ. (2.3)
n = l P = ΣtXi ί

The inner sum runs over partitions of P into nonempty subsets Xi9 and \P\ is the
number of sites in P.

A function Z( ) of finite subsets X C A may be regarded as a partition function
of a polymer system on A if it obeys Eq. (2. 1"). Arbitrary finite subsets of A must be
admitted as polymers for general Z( ). Since validity of Eq. (2.1) follows from (2.2)
and (2.1'), it suffices to check validity of Eqs. (2.2) for some choice of x = x(X) in
order to verify that some A( - ) are indeed the activities of the polymer system with
partition function Z( ). The monomer activities A({x}) = Z({x}) are positive if the
partition functions are positive.

A central result of the theory of polymer systems is a series expansion for the
free energies InZ(X), together with a sufficient condition for its convergence. We
state it first for finite sets X. Given X, a cluster Q is a nonempty collection of not
necessarily distinct polymers with the property that the following graph y(Q) is
connected. Draw a vertex for every polymer P in Q, and a line joining P to P' if P
nP'φ0. It is customary to write

if Q contains k distinct polymers Pt with multiplicities n^l. One defines reduced
activities by _ .

A(P) = A(P)ΠA({x}). (2.4)
/ xeP

The expansion formula reads

InZ(X) = Σ ln^({x}) + Σ «(Q) Π *(P) (2.5)
xeX Q Pe(Q

The sum over Q runs over all clusters of nontrivial polymers on X. Nontrivial
polymers are, for now, all polymers other than monomers. α(Q) are combinatorial
coefficients which are given by

= Σ (-l) ϊ (0Πn,! (2.6)

Summation is over all connected subgraphs C of the graph y(Q) that was
mentioned above, and /(C) is the number of lines in C. Alternative expressions and
bounds on o(Q) can be found in the literature [18].

For real ξ>l one defines

(2.7)
xeX

The expansion (2.5) for the free energy InZ(X) converges if 93x(ξ) < 1 for some ξ>ί
[16].
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By differentiating Eq. (2.5) one obtains an expansion for the so-called "reduced
correlation functions" of the polymer system

(2 8)

If A is an infinitely extended lattice, then these expansions continue to converge in
the infinite volume limit XsΛ, if (&A(ξ)<\ for some ξ>l. Moreover,

)"1 with n=\Y\ (2.9)
xeY

for all XgΛ. For a more precise statement of these results, see [16]. For the
renormalized Mayer expansions on the staggered lattice one uses these conver-
gence results only at ψ = 0. One can avoid the need to use them (in the discussion of
Greens functions) altogether by imposing the renormalization condition (l.lόa),
viz. J^(X\ιp = Q) = 0. This can be seen from Eq. (1.19). Expansion (2.5) for InZ
serves then merely as a bookkeeping device for combinatorial factors in equations
that could also be obtained by differentiating Eq. (1.12b) for Z. [In the expression
for the connected amputated n-point Greens function that is obtained by
differentiating expansion (2.5) with respect to the external field ψ at ψ = 0, all terms
with Q containing more than n polymers will vanish as a result of the
renormalization condition (l.lόa). There results a finite sum for finite X.~] The
point is that the convergence conditions mentioned above are much more
restrictive than the condition for convergence of the sum (1.19) - in particular they
remain nontrivial for finite X.

It is convenient to introduce the notion of a polymer system with empty sites.
Denote its activities by M(P). Its partition function is defined as

1+ Σ Σ ΠM(Pί). (2.10)
Y

Evidently this is equal to the partition function of a polymer system proper with
activities

A({x})=l+M({x}), A(P) = M(P) for |P|^2. (2.11)

We may identify with a polymer system proper in still another way. Split each site
of the original set Λ into two. Polymers of the original system, including its
monomers {x}, shall occupy double sites. In addition we introduce a monomer
with activity 1 which occupies only one site (either half of a double site). Applying
the expansion formula (2.5) to this system we obtain

lnZ(X)=Σα(Q)ΠΛf(P). (2.12)
Q PeQ

Summation is now over all clusters containing arbitrary polymers P (of the
original system). The expansion will converge if

<l (2.13)

for some ξ> 1. Monomers are included in the sum over P.
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Let us now consider polymer systems whose activities depend on a field φ on A

= Σ ΠB(P\φ). (2.14)
ΣP P

It will be required that the activity B(P\φ) depends only on the restriction of φ to P.
We wish to consider Gaussian integrals of such partition functions. To avoid
confusion with quantities that will appear later on, the polymers of the polymer
system (2.14) will be called molecules, with molecular activity B( - \φ). Let dμv(φ) be
the Gaussian measure with covariance υ ( = normalized free field measure with
propagator v) and consider

Z(X)=ϊdμv(φ)£(X\φ) = (£(X\φ)y9. (2.15)

The symbol < >„ stands for expectation value with respect to the Gaussian
measure dμv. Evidently Z(0) = l. We may therefore regard Z(X) as partition
functions of a polymer system

= Σ UA(P). (2.16)
X = ΣP P

The activities A are uniquely determined by the partition functions Z as we know.
If {M1? ..., Mn} is a finite set of disjoint molecules, we may consider the truncated
Gaussian expectation value 5

(2.17)
/ v

Truncated expectation values obey the defining relation

lπBa(φ)\ = Σ Π/Π[*β(φ);]\ - (2.18)
\ael / v I = ΣJ J \beJ / v\ I \ i

Summation is over partitions of the index set / = {1,..., n] into nonempty subsets
J. Note that this formula has the character of a polymer representation too, with
the ordinary expectation values on the left-hand side playing the role of partition
functions Z(7). The truncated expectation values are the corresponding activities.

It follows from Eqs. (2.15) and (2.18) that the activities A in the polymer
representation (2.16) of the partition functions Z(X) are given by truncated
expectation values

A(P}= Σ Π[*(M|φ);] - (2.19)
P = ΣM \M / v

These relations can be transcribed into the language of polymer systems with
empty sites. We leave this to the reader.

Truncated Gaussian expectation values admit a tree formula which expresses
them as integrals over auxiliary real variables sf = 0...1 of ordinary Gaussian
expectation values. To state it we introduce some notation [19, Sect. 2.4].

An n-tree is a map

^•[2,...,*]->[!,...,n-l] with η(ί)<i. (2.20)

We use the customary "semicolon notation" for truncated expectation values
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It specifies a tree graph with vertices l...n, root 1, and links (i,fj(ί)). Given an
(n— l)-tupel s = (s1? ...,$„_!) of real variables in the interval 0...1, one sets

n

f(η\s)= ΠSα-2Sβ-3 Λ<«)> ds = dsl...dsn-l. (2.21)
Λ = 2

Empty products which arise when τ/(α) = α — 1 (in particular for a = 2) are read as 1.
Given a set of n disjoint molecules Mt C Λ, let χf be the characteristic function of

MI (viz. Xi(x) = l for xeM ί? and =0 otherwise) and define the interpolating
co variance υ[π, s] by

vlπ,s]=ΣXiVXi+ Σ si...Sj.1[χπ(i)ΌχπU} + χπ(j}vχπ(ji)'] . (2.22)
i 1^^7'^w

It depends on a permutation π of 1 . . . n, besides the n — 1 tupel of real variables s.
We assume that products of activities B(Ma\φ) are integrable with respect to the
Gaussian measure dμv(φ), and differentiate.

Proposition 2.1. Let M1?...,MM be disjoint subsets of Λ and suppose that the
activities B(Ma\φ) depend only on the restriction of φ to Ma. Then their truncated
Gaussian expectation values admit the following representation in terms of ordinary
Gaussian expectation values

Π[β(M»;]\ =ΣΣ'ίdsf(η\s)
a=l

i f j4~;v(x>y)j\^ ΠB(Me\φh

Summation over η is over all n-trees. Summation over π is over all (n—l)\
permutations of 1 . ..nwith π(l) = 1 . Integration over then— I variables st runs from 0
to 1.

This proposition is a standard result of constructive field theory [2, 19, 20]. It
can be proven either by the method of partial integration of Gaussian measures
of Glimm and Jaffe [19], or by making a Fourier transform in φ and using the
techniques of Mayer expansions for classical gases [20, 3].

Remark. This proposition covers the special case that no two factors B(Ma\φ)
depend on the field φ(x) at the same point x. A tree formula exists also in the
general case where this condition is not satisfied. It can be used, for instance, to
derive a tree formula for the sum of all (unrenormalίzed) connected nih order
Feynman integrals, on a lattice or in the continuum. As is well known, the sum of
all connected nth order vacuum Feynman diagrams in a theory with interaction
Lagrangian λ£?l equals

f ... J <<?I(φ(zί)) ... 2>I(φ(zn))\.

The general tree formula is obtained with the help of the following trick which
reduces the general case to the special case covered by Proposition 2.1.

The covariance operator v in a Gaussian measure is permitted to have zero
eigenvalues. The simplest example is the 1 -dimensional Dirac ^-measure dμQ(ξ)
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= δ(ξ)dξ, which is a Gaussian measure with covariance 0. Consider the Gaussian
measure for a field φ(x, ί) on A x ... x A (n copies i= l...n) with covariance

Ό(x9i9y,j) = Ό(x,y). (2.23)

It equals

dμ,(φ) = dμ,(φ( , 1)) Π Π S(φ(x,j) - φ(x, iy)dφ(x,j) . (2.24)
j = 2 xeΛ

This can be verified by checking that (φ(x,ί)φ(yj)yΰ = v(x,i,yj). Set

£(M )̂ = 5(MM ,0) (2.25)

Evidently, for any /£[!, ...,n],

(2.26)
i6l v

No two activities B(M^φ) depend on the field φ at the same point (x, /), and the
proposition can therefore be applied to find a formula for the truncated
expectation value <Π [β(M^φ) ;]>„ in terms of a Gaussian measure for a field on A
x . .xA Π

Finally we wish to consider the case that the Gaussian measure dμv(φ) is
represented as convolution of Gaussian measures with covariances vl by splitting
the propagator v6. If

υ=Σtf = d-NΊ with t?^0, (2.27)
i = 0

then

j dμv(φ)f(φ) = f dμvo(φ0).. .dμvN(<PN)f ( Σ <Λ (2-28)
V=o /

Gaussian measures are only well defined for propagators v that are kernels of
positive semidefinite operators. Therefore the split of the propagator must be such
that v1 have this property, viz. v1 ̂  0 (as operators).

Let us first give the result for a split of a propagator v into two. The general case
will then be handled by iterating the result.

Proposition 2.2. Let v = u + w with v^.0, u^.0 and w^O as operators. Then the
truncated expectation values obey the following relations

= Σ /ΠΓ/Π[*ΛΦ+0;]\ ;1\ - (2.29)

The expectation value < >w is computed with Gaussian measure dμw(ζ), and the
expectation value < >M with dμu(Φ). Summation is over partitions of the finite set I
into nonempty subsets Jg/.

The proof of this proposition will be given below, at the end of this section.

6 The material in the rest of this section is not needed for pedestrian calculations
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Let us now iterate Eq. (2.29) to treat the split (2.27) of the propagator and
corresponding split of the field in (2.28). Write

and

The labelling of the propagators shall be such that VN propagates the highest
frequencies, and v° the lowest. (It was the other way around in [4].) Following
[3, 4] we define /-vertices with constituents i e / and associated vertex functions
inductively, for a given index set / £ N. A 0-vertex is a single element a e I which is
its own constituent. The associated vertex function is

σ»a(φ^) = B(Ma\φ^). (2.31)

Higher vertices are defined inductively. An ^-vertex a' is a finite collection {α} of
(f — l)-vertices, no two of which share a constituent, a e / is a constituent of α' if it is
a constituent of one of the (f — 1)- vertices α e α'. We write a e a' in this case, and
C(ctί) for the set of all constituents of α'. The vertex functions are defined by the
recursion relation

- (2.32)
-t+ι

The truncated expectation value is computed with Gaussian measure
dμvN-*+ι(φN~*+ί). It follows from Proposition 2.2 by induction that

) (2.33)

for all / = 0, 1 , . . . , N. Summation is over all /-vertices α whose set of constituents
is C(α). The special case S = N + 1 gives

= Σ <tf+1(0). (2.34)
αe/ / v α

C(α) = I

Summation is over all (iV+l)-vertices with set of constituents /. (The present
definition of vertex functions differs by a combinatorial factor from [3, 4].)
Following Gallavotti and Nicolό [12], the terms in the sums (2.33) or (2.34) [i.e. the
(ΛΓ+ 1)- vertex α] can be represented by tree diagrams. To avoid confusion with
other kinds of trees that occurred before, we call them Gallavotti Nicolό trees
(GN-trees).

The trees are drawn on ruled paper, with lines labelled by k= — 1, ..., N. A
/-vertex α is represented by a point on line N — f . If the /-vertex α consists of
(/ — 1)- vertices α1? . . ., αfc, then the point α on line N — / is linked to k points α1? . . ., αfc
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1 2 3

\ \
A:

τΈ

-1

Fig. 3. Example of a Gallaυotti-Nicolό tree. The tree shown in the figure represents the expectation
ValUe «B(Mί9 φ); <B(M2, φ);B(M3, φ)).,)*

assuming Ml9 M2, M3 consist of points of At and Ak only

on line N — t + 1. Then the procedure is repeated. If the (/— l)-vertex αx consists
of (f — 2)- vertices α11? ...,αlm, it is linked to m points αu online N — ̂  + 2, etc. If α
had constituent set / then the procedure ends with the drawing of points on line
N representing 0- vertices, one for each constituent = element of /.

In this way, a one to one correspondence is established between /-vertices and
GN trees whose root is on line N — f , and whose tips of branches on line N are
labelled by the elements of the constituent set C(α). In our applications it happens
often that the activities B(Ma\φ) are all independent of some φj so that the
integration f dμvj(φj) is trivial. In this case the GN-tree cannot branch on line) — 1 ,
and we erase the vertices on this line. An example is shown in Fig. 3.

These formulae embody the essence of the iterated Mayer expansions of [3, 4]
in a succinct way. They are also the starting point of the perturbative renormaliz-
ation theory of Gallavotti and Nicolό [12]. The truncated expectation values in
the right-hand side of recursion relation (2.32) can be expressed in a tree formula by
Proposition 2.1 (and remark following it).

It remains to prove Proposition 2.2. Since truncated expectation values are
uniquely determined by ordinary expectation values by the defining relation (2.18),
it suffices to show that

= Σ Π { Σ /ΠΓ/ΠCW+0;]) 1; • (2 35)
+ u H = ΣK K [K = ΣJ \ J |_ \l,eJ / wj

By Eq. (2.28) the left-hand side equals

By the defining relation (2.18) of truncated expectation values this equals

Σ

Using the defining relation (2.18) of truncated expectation values again to
reexpress the outer ordinary expectation value, this becomes

Σ Σ Π/ΠΓ/Π[W+0;]\ ;]\ . (2.36)
yίf \_\beJ
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The inner sum is over partition of the set {J} (of subsets of H) into disjoint
subsets Jf\ Thus, Jf is a collection of sets J. Set K = Σ J Then

Σ Σ Π/Π ) = Σ Πf Σ /Π
H — ΣJ {J} — Σutf" 3f \ JG^Λ I H. — ΣK K IK — ΣJ \ J

by the distributive law. Upon inserting this, expression (2.36) becomes equal to the
right-hand side of Eq. (2.35). q.e.d.

3. Expansions on the Staggered Lattice

Now we consider /l^4-theory in v = 3 dimensions, in the continuum or on a cubic
lattice of arbitrarily small lattice spacing a = aN. This space, on which the theory
lives originally, will be called the base space. Integration over the base space is
written as

d3z in the continuum

ί ^ ** (3.1)
zebase α3 Σ on the lattice .

ze(αZ)3

The generating function for amputated Greens functions, the Mayer amplitudes
etc., will depend on an external field ψ on base space.

We put the theory on a staggered lattice A as described in the introduction.
When the interaction and induced counterterms are switched off outside a finite
subset X of Λ, the partition function becomes

! base
(3.2)

Integration is over fields φ that vanish outside X, so that the integral has as many
dimensions as X has points, and

J \- ±Ψ(zr
ebase [_ 4!

(3.3)

The mass counterterm is given by Eq. (1.4), and the vacuum energy counter term
δe(X) = δe(vx) can be determined so that

Z(X\ψ = 0) = l. (3.4)

The factor exp [ — λ J ψ4/4 !] is extracted in (3.2) in order to assure that Zi (0|φ) = 1 ,
as is necessary for partition functions of polymer systems by Eq. (2.1/).

The Mayer amplitudes Jί are related to the partition functions.

= Σ ΠA(Y\ψ), (3.5a)

(3.5b)

..,xn\ψ), (v = 3) (3.5c)

for X = {x !,..., xn} with α(x) = flj for xeΛj. A are the activities of the polymer
system whose partition functions are Zt, and M are the activities of the
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corresponding polymer system with empty sites. Arbitrary finite nonempty subsets
of the staggered lattice are admitted as polymers. According to the discussion in
Sect. 2, activities are uniquely determined by partition functions for polymer
systems. Therefore the Mayer amplitudes are well defined for distinct arguments
xl9 ...,xn. They are symmetrical in these arguments.

It is useful to introduce also augmented Mayer emplitudes Jί(xl9 ...,xn\ψ).
They are defined for arbitrary, not necessarily distinct, values of their arguments,
and symmetrical in these arguments. If all arguments xf are distinct

l9 ...,xn\ψ) = Jί(xί, ...,xn\ψ) (xt distinct). (3.6a)

The general definition is as follows. Consider clusters Q of polymers PcΛ
(including monomers) as defined in Sect. 2. Let suppQ be the disjoint union of
P e Q - i.e. a point x e A is contained in suppQ with a certain multiplicity n(x). It
equals the number of polymers P e Q which contain x. Now define, for X = finite
family of not necessarily distinct elements xt of Λ

(3.6b)
PeQ

= M(X\ψ) Π n(x)\ (3.6c)
distinct

xeX

for X = {xi9...9xn}. The combinatorial factors α(Q) were defined by Eq. (2.6).
Equation (3.6a) is a special case of (3.6b, c) because Q consists of a single polymer X
if suppQ contain no point with multiplicity ^2, and α(Q) = l in this case. In
general, the total number of arguments x e P in the amplitudes M on the right-
hand side of (3.6b) is n, and the sum over clusters Q is a finite sum.

It follows from Eqs. (2.12) and (3.6b) that

\nZ1(X\^p)= ΣM(X\ιp)= ^Σ J ••• ̂ •*(*!> ->*»IV) (3 7)

in the sense of formal power series in the amplitudes Jί'(...). The sum is actually
convergent if the Mayer amplitudes satisfy suitable bounds. For the computation
of Greens functions this is not needed when the normalization condition (3.4) is
imposed, and φ may be considered as infinitesimal in this case. See the discussion
in Sect. 2.

Now we turn to the computation of activities A (or Mayer amplitudes Jί).
Write φx for a field that vanishes outside X and set

ψ(z)4] (3.8)
base _|

so that ^1(0|φ, )=l. We regard Ήf^Xlψ, φx) as partition function of a polymer
system.

&l(X\ψ9φx)= Σ TlB(P\ψ9φP) with φp(x) -
X = ΣP P

The polymers of this polymer system will be called molecules, and their activities B
will be called molecular activities. Arbitrary finite nonempty subsets of A are
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admitted as molecules. A pedestrian way to compute the molecular activities from
the given interaction (3.3) uses the inversion formula (2.3) viz.

B(P\φ,φP)= Σί-irH"-!)! Σ ^(XAψ.φx). (3-10)

A more convenient formula will be derived later on.
By inserting Eqs. (3.8), (3.9) into (3.2), Z^(X\ψ) becomes expressed as a

Gaussian expectation of a partition function ^pf, ••) of a polymer system.
According to the discussion in Sect. 2 [Eq. (2.19)] this implies that the correspond-
ing activities are obtained as truncated expectation values

Λ(X\ψ)= Σ π[.B(P\V,φP)ϊ . (3.11)
X = ΣP \P / Vχ

The Mayer amplitudes are given in terms of A's by Eqs. (3.5b, c). The truncated
expectation values can be expressed in terms of ordinary expectation values by the
tree formula, Proposition 2.1. Finally we note again that the resulting Gaussian
integrals are n-dimensional integrals if X has n points. Let us elaborate on this
point.

Let X be a subset containing n elements ofΛ, and suppose that the function F of
the field φ depends only on φ(x) for xeX. Set

φx = adj(p(x) for xeXnΛj9 with d = i(v-2) = i, (3.12)

and consider the n x n matrix

Vxy = ajdv(x9y) for xeXnΛj (3.13)

Ίξcyis zero unless both x and y are in the same layer XnAjm By hypothesis

F(φ) = f({φx}xex) (3.14)

In this notation

ίdμJtφ)F(φ) = (dGt2πV)-*ί[Ud (3.15)

The right-hand side of this formula is an n-dimensional integral as promised.
Equation (3.15) can be verified by using the standard formula for the Fourier
transform of a Gaussian measure

ίdμy(φ)e'(^> = e-i^. (3.16)

Instead of using the explicit formula (3.10) for the molecular activities B in terms of
the interaction, they can also be determined from a recursion relation which we
will now describe. Let us set

for Zn7-0. (3.17)

The quantity g\(X) = &Y(X)/^Y(Φ) obeys 2?l($) = l and may therefore be
regarded as partition function of a polymer system. Denote the corresponding
activities by Bγ(P\ψ, φp). They obey the Kirkwood-Salsburg equations [for any
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P). (3.18)

The molecular activities in which we are actually interested (for now) are

Let us write P + x in place of Pu {x} if x φ P, and φx in place of φ{x}. φp is short for
χpφ, χp = characteristic function of PcΛ.

Proposition 3.1. The generalized molecular activities obey the following recursion
relation for wφP+Y, xeP

, φp)-Bγ(P\ψ, φPJ] ,

and the initial condition

BY({x}\ψ, φx) =

The notation stfφ was introduced in Eq. (1.5); the other quantities were introduced
earlier in this section.

The proof of Proposition 3.1 is given in Appendix C. This recursion relation can be
solved by methods similar to those of Sect. 2. We shall defer their further analysis
to Part II and record here only one result.

Corollary 3.2. // P consists of n points, 4k — 3^n^4k, then

It follows from Eq. (3.11) that the activities A(X\\p) share this property. Let us
summarize the results obtained so far as

Theorem 3.3. Let the molecular activities B(P\ψ, φp) = B®(P\ψ, φp) be determined by
the interaction Boltzmannίan

J - φ ( Zzebase|_ 4!

via Eqs. (3.8), (3.10) or Proposition 3.1. Then the Mayer amplitudes are expressed as
truncated expectation values as follows. Let X = {xl9 ...,xw}. Then

= Σ τi[.B(P\ψ9φP)i . (3.11)
X = ΣP\P I Vχ

The truncated expectation value is expressed in terms of n-dimensional Gaussian
integrals by Proposition 2.1 and Eq. (3.15). // 4k — 3^n^4k then
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The generating function for connected free-propagator-amputated Greens func-
tions is expressed in terms of Mayer amplitudes by Eqs. (1.1) and (3.6).
Alternatively, the full (disconnected) free-propagator-amputated Greens functions
may be obtained from Eqs. (1.19).

Let us note that the tree formula (Proposition 2.1) involves also integrations
over n— 1 real variables S—0...1, and summation over n— 1 integers
η(ά) = I...a— 1 (apart from symmetrization π). They replace summation over all
Feynman graphs in standard perturbation theory. The summation over order n
and arguments x l5..., xn in Eqs. (1.1) or (1.19) for the Greens functions replace the
sum over orders and integrals over coordinate space in standard perturbation
theory.

If one wishes to, one can compute the truncated expectation value (3.11)
integrating out the fields φj on A 3 in sequence, beginning with the highest
frequencies j. How this is done is explained at the end of Sect. 2. The result is given
by a sum of terms that are labelled by Gallavotti-Nicolό trees. The tree formula
(Proposition 2.1) can be used to do the Gaussian integration in the recursion
relation for vertex functions, Eq. (2.32).

Of course, the truncated expectation values (3.11) can also be evaluated
without recourse to the tree formula (Proposition 2.1) by using their standard
expression in terms of ordinary expectation values, and Eqs. (3.8), (3.10) can be
used in place of the recursion relation (Proposition 3.1).

In Eq. (3.11) the renormalization cancellation occurs between different terms in
the sum over partition X = Σ P of X. In Part II we will show how to change this by
giving the same s-dependence to the propagators that appear as arguments of
counterterms and to the covariance of the Gaussian measure in the tree formula.

4. Relation with Perturbation Theory

The Mayer amplitudes may be expanded in formal (asymptotic) power series in the
coupling constant λ. Theorem 3.3 asserts that Jϊ(xί9 ...9xn\ψ) is of order λk if
4k—3^n^4fe. It follows from their definition (3.6) that the same is then also true
for the augmented Mayer amplitudes ̂ (xl5. ..,xn\ψ). Therefore, if we truncate the
series (1.1) for the generating function of the connected free-propagator-
amputated Greens functions after the term n = 4fe, the result will be correct to order
λk. In other words, the result differs from the sum of all Feynman diagrams up to
order k by higher order and nonperturbative contributions.

In order to deepen the reader's understanding of this fact we will now indulge in
a pedagogical exercise. We will examine v-dimensional λφ4-ύιeory without any
counterterms on a lattice Λ of lattice spacing α, and its Mayer expansions on this
simple lattice. This may be regarded as a simple special case of the general one - the
staggered lattice has only one layer, and the counterterms are zero.

We will exhibit an explicit relation between the Mayer amplitudes, expanded in
a formal power series in λ, and the Feynman amplitudes. Stated in words it says
that the Mayer amplitude Λt(xl9..., xn\ψ) equals the sum of all "point connected"
Feynman diagrams whose arbitrarily many vertices occupy the n distinct points
xl9..., xn of the lattice Λ. A Feynman diagram with given positions of its vertices is
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called point connected if it is connected or becomes connected when vertices that
are positioned at the same site of the lattice are identified.

The partition function at zero external field for the simplified model is

Z(Λ\ϋ) = I dμv(φ) exp Γ - ± ί φ(z)*\. (4.1)
[_ T ! zeΛ J

In perturbation theory, the partition function is obtained as a sum of coordinate
space integrals associated with arbitrary not necessarily connected vacuum
Feynman diagrams.

Z(Λ|0) = Σ (disconnected vacuum Feynman diagrams)

.+.... (4.2)
O-

We adopt the convention that Feynman integrands associated with arbitrary
diagrams are to be evaluated according to the standard rules, including
combinatorial factors. The combinatorial factors coming from symmetries under
permutations of disconnected pieces imply, for instance

. (4.3)

As a result of these combinatorial factors, the series of Z(Λ|0) exponentiates to a
sum of integrals associated with connected vacuum diagrams,

lnZ(yl|0)= Σ (connected vacuum diagrams)

(4.4)
<Q)

Now we perform a reordering and partial resummation. In (4.2) we collect all the
terms in the combined sum, over graphs and over rc-tuples of points (x1? ...,xfe)
with arbitrary k^n, whose vertices {xJi=ι... f c occupy the same set
Y={yi9 ...,yn}gΛ of n distinct lattice points.

. (4.5)

etc., «^Ί,(XI, ...,xπ) is the sum of all point connected vacuum Feynman diagrams
whose vertices are positioned at n distinct sites yί9...,yn of the lattice. There are
infinitely many such diagrams because arbitrarily many vertices may be positioned
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on the same site x. In effect we are summing up diagrams with arbitrarily many
propagators joining any two (identical or distinct) sites JΊ, ..., j/n of the lattice.

By construction, Jίn(xi9 ..., xn) will be of order λn as /l->0. An expansion for
lnZ(/l|0) is obtained from the expansion for Z(Λ\0) by multiplying Jtn with ξ",
expanding in powers of ξ and setting ξ = 1 in the end. This expansion will include
correction terms that come from the constraints x1 ή=x2 etc. in the sum for Z(Λ\0)
("excluded volume effect").

f^T1(x1)+ Jί Jί2(xl9x2) + ...

+

 Xl (4-6)

= f
Xl

with

The whole discussion can be repeated for Z(Λ\ψ) with general external field \p (see
Appendix A). One starts from

Z(Λ\φ) = l + f [0 + O + ̂  X Ψ~\ + ... . (4.8)
*1 ' ' Ψ V

*— 1/J ψ — ̂

The Mayer amplitudes Jίn(xι, ...,xπ) will now depend on φ through
φ^i), ...,ψ(xn). The general form of the expansion for Z(Λ\ψ) is

z(Λ\ψ)=ι+ΣΣ Σ
N>1 k (tiff xι xn

tt, = N distinct

The combinatorial factor is

if m^ of the integers { ̂  1 equal /.
Let us state the relation between Mayer amplitudes and connected Feynman

diagrams in general terms.
Consider n x f matrices k(^ = (k\γ) whose entries are nonnegative integers. By a

permutation of rows or columns, such a matrix can be brought to block form. We
call it irreducible if it consists of only one block and no row or column is identically
0. We write ^(y\, . . ., yk) for the sum of all connected /cth order vacuum diagrams
with vertices positioned at yί9 ...,yk. We abbreviate

.,Xnn). (4.11)

arguments

We shall not indicate the dependence on the external field ψ explicitly.
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Proposition 4.1. t

t/vlj. \ .X1 j .'. 9 ^*n) I / . / j f n β I \_ \_ ^* \S* 1 5 5 Π / \ /

y^ j >> >• ι t(ιθ ^! 1=1

as formal power series in λ. The inner summation is over all irreducible nx£ matrices
k(^ whose entries are nonnegative integers.

Proof. Write

xeΛL

where Ίf depends on φ, and φx = adφ(x), d = ̂ (v — 2). Both the Mayer amplitude
and the Feynman amplitude may be expressed as truncated expectation values

α"vπ n
\ 1

'~\\ —δ.>_ιy °Ί,«. (413)L_i >_ ,« vH 1J;

and

In the first expression one expands

Then one expresses the resulting "partially truncated" expectation value of a
product of factors —λi^(φ.) in terms of completely truncated expectation values
with the help of the following

Lemma 4.2.

'n

= Σ Σ V^ 7T Π Π LFt(φ,)ιT} (4-14)

Summation is over irreducible nx^ matrices k(^ as above which satisfy indicated
constraint.

Sketch of the Proof of Lemma 4.2. One considers first the ordinary expectation
value

Using the defining relation (2.18) of truncated expectation values, this can be
expressed as a truncated expectation value of k factors F^y)

ni and also as a
truncated expectation value of N = Σ nt factors Ff(φy.). It suffices to show that the
two expressions become equal when Eq. (4.14) is inserted into the first. This is so
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because of uniqueness of the activities of a polymer system, cf. remark after Eq.
(2.18). After some combinatorics it is found that they are indeed equal. Details are
spelled out in [21]. D

We mentioned in the introduction that standard Feynman perturbation
theory may be put on a staggered lattice, graph by graph. The new graphs will
involve nonlocal vertices which can connect different layers, and propagators that
link only points in the same layer. Using this, the results of this section could be
extended to the Mayer amplitudes on a staggered lattice. We think, however, that
they are good enough as they stand to give the general idea.

To make sure that there is no misunderstanding, let us emphasize one fact at
the end of this perturbation theoretical section. Mayer amplitudes are not defined
as divergent sums of Feynman amplitudes. They are defined as perfectly
meaningful truncated expectation values like (4.13). These well defined expressions
admit an asymptotic power series expansion in λ whose coefficients are Feynman
amplitudes.

5. The Special Case of a Lattice with only One Point

The partition function for /ί^4-theory on a lattice Λ = {0} that consists of a single
point is given by a convergent 1 -dimensional integral

(5.1)

Its perturbation expansion in powers of λ will be divergent no matter how δm2 and
δe depend on λ, because the integral makes no sense for λ < 0, and is therefore not
analytic at λ = Q [23].

On the other hand, a Mayer expansion for this model amounts to "do nothing".
There is only a single Mayer amplitude, which is given by a convergent
1 -dimensional integral, and

Z({0} I φ) = ΛT(0| φ) exp - ψ4 . (5.2)

Greens functions are obtained by differentiation at ip = 0. They do not involve
divergent sums.

Appendix A.
Generating Function for Free-Propagator-Amputated Greens Functions

In a theory with free propagator v , the connected, free-propagator-amputated
Greens functions Gc(zl5 ...,zn) are related to the corresponding unamputated
Greens function Gc(z1? ...,*„) by

(A.I)
and

ίί
Z'IZ'2
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Amputation is indicated by underlining the argument. The Greens functions can
be obtained by differentiation from generating functions

(A"2)

(A 3)

The above relations correspond to the following relation between generating
functions

F(ιp = vJ) = G(J) - \JvJ (A.4)

in obvious notation. In a theory with interaction Lagrangian V9 the generating
function G(J) is the logarithm of the partition function in the presence of a source

(A.5)

The free field measure is

dμ.X$=(det2πt>)- 1/2 e~^~ Iφ3ιφ . (A.6)

It follows that

if ψ = vJ. (A.7)

Let us define

Z(ψ)=ίdμMe-r(+ + v>. (A.8)

We show that

(A.9)

obeys the relation (A.4).
Making a shift of the field in (A.8) and using Eq. (A.7) we obtain

^ e G ( j ) - j v j if ψ = ̂ j. (A.10)

Making a shift in the field, we must verify that boundary conditions at infinity are
preserved. They are preserved if ψ falls to zero at infinity. This will be the case for
locally supported source J if v is a massive propagator. Equation (A. 10) agrees
with the desired relation (A.4). q.e.d.

The connected free-propagator-amputated Greens functions are not 1 -particle
irreducible, and must not be confused with the so-called vertex-functions = full-
propagator-amputated 1 -particle irreducible Greens functions whose generating
function is related to G(J) by a Legendre transform.
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Appendix B. Block Spins, Propagators, and Kernels <£/

We will follow the procedure of Kupiainen and Gawedzki [9] to carry out the split
(1.5), (1.6) of the field φ and propagator ?>>0 on base space. No summation will be
implied by repeated indices.

Let us assume that there is a finest lattice ΛN = base space. Results for
continuum base space may be obtained by letting ΛΓ-> oo . As we have mentioned in
the main text, the points x e Λj may be considered as blocks of side length α,- in base
space.

Given a field φ = φNon base space, we define the blockspin Φj (x) on Λj as block
average of φ

Φj (x) = av φ(z) = Cjφ(x) . (B. 1)

Accordingly, the free propagators [co variances] v and HJ of the [Gaussian] fields φ
and Φj are related by

Uj = CJvCJ*>Q. (B.2)

* is the adjoint with respect to the scalar products ( , ) that are furnished by
integration over base space and ΛJ9 respectively. The field φ may be split into a part
that is determined by the block spin ΦJ

9 and a fluctuation field ζj+ 1 on base space
that has zero block average.

φ = j/jφj + ζj+1 with Cjζj+ί=Q. (B.3)

In the special case j = N this holds with ζN+ 1 = 0, J#N = 1. The kernel <$/j is chosen
as

jj^vC^u]-1, (B.4)

so that the two pieces on the right-hand side are orthogonal with respect to the
scalar product < , > that is specified by the inverse propagator

Evidently

CJs/J=l. (B.5)

We will define the pieces φk of the field φ in such a way that

ζj= Σ W (B.6)
k^j

Expressed in words, the fluctuation field ζj in the sum of the parts of the field φ with
"frequency" k^j (appropriately transported to base space with kernels j/k). For
j = N+l this relation holds with φN+1 =0. Insert (B.6) into (B.3) to obtain

φ = s/jφj+ ΣJ/V (B.7)
k>j

Suppose this relation holds for some j. We determine φj so that it holds for j— 1.
To this end we define the operation C7_ ltj which averages functions on Λj over

cells of ΛJ- L. Evidently, definition (B.I) implies

Φj~l = Cj_^jΦ
j. (B.8)
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We split the field Φj into a piece that is determined by its block average Φj~ 1 and a
part φj on Λj whose block average vanishes,

φJ = Λ?jJ_ίφJ-1 + φJ, (B.9)

with

The kernel ^jj-ι is chosen as

s/jj-^UjCj-ijUJ ^, (B.ll)

so that

Inserting Eqs. (B.9) and (B.12) into (B.7), we see that (B.7) remains true for; — 1, as
promised.

Equation (B.9), together with definitions (B.I) of the block spins and (B.ll),
(B.2) of the kernel s/. ., defines the pieces φj of the field for all j^ 1 in such a way
that (B.7) holds for all j. Forj = 0 this equation is of the form (1.5) if we set, finally

φ° = Φ°. (B.13)

j/(z, x) is the integral kernel of j/J if xeΛj9 viz.

= J Λ/(Z,X)/(X). (B.14)

It remains to determine the free propagator [co variance] v of φs. Regard φj as a
function of φ. We may then use the definition (B.9), (B.I 3) of ψj to compute

v(x,y} = (φj(x)φk(y)y for xeΛj9yeΛk. (B.15)

Using the relation (B.8) and the known propagator HJ of ΦJ, it turns out to be of the
form

υ(x9y) = δjkυ
i(x9y)

with

υi = u — u c - u ' c - u for l>

v is positive semidefinite by definition (B.15). It follows from Eq. (B.15) and (1.15),
viz.

that the relation (1.6) between propagators holds. That is

Decay properties of kernels stf and propagators v were studied in [9, 22]. Finally
we should transcribe Gaussian measures. We claim that

ί dμMF(Φ) = ί dμv(φ)F(j/φ) . (B.19)



296 G. Mack and A. Pordt

It suffices to verify this for F(φ} = ei(q'φ\ Using the known Fourier transformation
(3.16) of Gaussian measures, one finds

while

ί dμv(φ) ei(q> ̂ ^ = e' i(<fi/*> VJ**> = e~ ̂  ̂ v^ . q.e.d.

Using Eq. (B.19) it follows from the formula (A.8) for the generating function
lnZ(φ) of connected Greens functions, and definitions (1.7), (1.9a) that the relation
(1.10) for lnZ(φ) holds for finite volume and cutoff.

Appendix C. Proof of the Recursion Relation (Proposition 3.1)

We start from the Kirkwood-Salsburg Eq. (3.18) which defines the generalized
molecular activities Bγ. Iterating it once we obtain, for w φ X + Y

p
xePZX

with

(C.2)

Cy(...) can be determined recursively from Eq. (C.I). Therefore, two expressions
for Cy(...) which both satisfy Eq. (C.I) must necessarily be equal. By definition
(3.17) we have

&γ(X + w\ψ + j/φx+w) = &γ+w(X\ψ'+j/φx), ψ' = <φ + ̂ φw.

Inserting the Kirkwood-Salsburg Eq. (3.18) for the right-hand side gives

p
xePQX

But

Σ
X-P + \v

by the Kirkwood-Salsburg equation. Inserting this and setting

p + <2_w = # so that

we obtain

J= Σ ί Σ
R ) P

This is another equation of the form (C.2). Equating the coefficient in { } to
w\...) produces the recursion relation (Proposition 3.1).
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