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Abstract. We study the large time behavior of solutions of time dependent
Schrodinger equations ίdu/dt = —%Au + taV(x/t)u with bounded potential
V(x). We show that (1) if α >— 1, all solutions are asymptotically free
as ί-κx), (2) if α g - 1 a solution becomes asymptotically free if and
only if it has the momentum support outside of supp V for large time, (3) if — 1
rg α < 0 all solutions are still asymptotically "modified free" as t -• oo and that (4)
if 0 ̂  α < 2, for each local minimum x0 of V(x), there exist solutions which are
asymptotically Gaussians centered at x = tx0 and spreading slowly as £-> oo.

1. Introduction

Several years ago Kuroda and Morita [6] proposed the study of the Schrodinger
equations of the form

ίdu/dt = - $)Δu + fV(x/ήu, t ̂  1, xeMn, (1.1)

in conjunction with their study of the equations

ίdu/dt = - (i)Δ u + fv(x/tβ)u, t ̂  1, xeU\ (1.2)

with β \ 1. Equation (1.1) is considered in the Hubert space L2(Un) = J f of square
integrable functions and was named the surfboard Schrodinger equation because of
its obvious pictorial analogy with the motion of a surfboard: the potential spreads at
the same rate as a free wave packet. In this paper we shall study the asymptotic
behavior of the solution of (1.1) with a < 2, and show the following results. We write
the propagator for Eq. (1.1) as U(t9s) and Ho = -(\)Λ.

(I) If α < — 1, then for every we Jf, the strong limit

lim t/(l,ί)exp(-ΐ(f- ΐ)HQ)u= W+u (1.3)
ί-> oo

exists and the wave operator W+ is unitary.
(II) If α ̂  - 1, the limit (1.3) exists if and only if gueL2((supp V)c\ the elements in

J f whose essential supports are in the complement of the support of V.
(III) If 0 > a ̂  — 1, the modified wave operator still exists and is unitary.
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(IV) If 0 < α < 2, corresponding to each of the local minima of V(x) there exist
solutions which are asymptotic to Gaussians traveling with velocity one and
spreading at the rate t1/2~al4 as t-> oo. A similar result holds true for α = 0 if the
eigenvalues of the Hessian matrix {d2V/dxidxj(x0}} are larger than §.

We assume for simplicity the following:

Assumption (A). V(x) is a real-valued function on Un and Ve&(Un% the set of
infinitely differentiable functions which are bounded with all their derivatives.

Under this assumption, it is well-known [4] that the operator H(t) = ( — \)Λ +
taV(xlt) with D(H{ή) = H2(Un) is selfadjoint jf and Eq. (1.1) generates a unique
strongly continuous unitary propagator {U(t,s):t,s^. 1} satisfying the following
properties: (i) U(t9 s) is a unitary operator on J f and is strongly continuous is (ί, 5);
(ii) U(t9s)U(s9r)=U(t9r) and l/(ί,ί) = H, the identity operator; (iii) U(t9s)Ha(Un) =
H%Un) for any σeR 1, and if feH2(Un)9 then id/dtU(t9s)f = H(t)U(t,s)f and
- id Ids U(t9 s)f = U(t9 s)H(s)f Here Hσ(Un) is the Sobolev space of order σ and the
derivatives are strong derivatives in ffi.

In Sect. 2 we shall prove the statements (I) and (II). Since the third statement (III) is
already proved in Kitada [5] we shall in Sect. 3 present a simpler proof of (III) only
for \ < — α ̂  1. The last statement (IV) will be proved in Sect. 4. For the proofs
of (II) and (IV) we shall use the conjugate transform of Eq. (1.1) which will be
explained at the beginning of Sect. 2.

The following notation and conventions are used in what follows. 9(W) = 9 is
the space of all rapidly decreasing functions and 9" is its dual space. For ue 9",
supp u is its support and gw = ύ is its Fourier transform:

For aeC, a is its complex conjugate. For a nice function p(x9 ξ), P(x, D) is the pseudo-
differential operator with the symbol p(x9 ξ):

P(x9 D)u(x) = (2π)-"/ 2 J eixξp(x, ξ)ύ(ξ)dξ

(cf. Kumano-go [7]). Various constants are denoted by C when it is not necessary
to trace them precisely. Thus the constants denoted by the same symbol C are
different from context to context. \\f\\p is the IΛnorm of/and | | / | | = | | / | | 2 . δjk is
Kronecker's delta.

2. Conjugate Transform, the Proofs of (I) and (II)

The key technique for the proof of (II) and (IV) which we shall employ is the
conjugate transform of Eq. (1.1) which we explain here. We suppose that V(t9 x) is a
smooth real-valued function of t > 0 and xeUn which is bounded with its derivatives.
Then each of the equations

i du/dt = - (i)4 u + V(t9 x)u9 t > 0 (2.1)
and

i dv/dt = - (i)4 v + Γ2V{l/t9 x/t)v9 t > 0 (2.2)

generates a strongly continuous unitary propagator on the Hubert space Jf. We



Surfboard Schrodinger Equations 351

denote it for (2.1) as U(t9s) and for (2.2) as Ό{t,s). We define for t > 0,

T(ήv{x) = (l/ίt)n/2 exp(ίx2/2t)υ(x/t). (2.3)

Lemma 2.1. Let U(t,s) and U(t,s) be the propagators for Eq.(2.1) and (2.2),
respectively, and let T(t) be the anti-unitary operator defined by (23). Then for any

lim || exp( - itH0)u - T(t)ύ\\ = 0, (2.4)
ί->oo

l/(ί, s)u = T(t)U(l/t, l/s)T(s)~ \ t, s > 0. (2.5)

Proof The relation (2.4) is well-known and we omit its proof here (cf. for example
Reed-Simon [9], p. 60). Since T(t) is anti-unitary and U(t, s) and U(t, s) are unitary, it
suffices to show(2.5)fovueCS)(Un).ForueCS>(U%u(t,-) = T(t)ϋ(l/t, l / s^sΓ^i san
^-valued smooth function of t (Kato [4]). Clearly u(s) = u. On the other hand an
elementary computation shows that u(t,x) satisfies Eq. (2.1). It follows by the
uniqueness of the propagator that w(ί, •) = U(t,s)u and Eq. (2.5) is proved.

The transformation T(t) is called the conjugate transform ([2], [10]).
We now prove the statements (I) and (II).

Theorem 2.2. Suppose Assumption (A) is satisfied. Then Statements (I) and (II) of
Sect. 1 hold.

Proof. (I). By DunhameΓs identity, we have

U(U l)u = e~ί{t-1)Hou - i\e-*-s)Hos«V(x/s)U(s, l)uds, (2.6)
1

U(t, \)u = e-i{t-1)Hou - i) U(t,s)saV(x/s)e-iis-1)Houds. (2.7)
1

Multiplying both sides of (2.7) (or (2.6)) by U(t91)"1 (or exp(i(ί - ί)H0))9 we have

U(t, l)-χexp(- i(t - l)H0)u = u + i\u(Us)saV(x/s)e-ίis-ί)Houds, (2.8)
1

exp(i(ί - ί)H0)U(t9 ί)u = u -i)e~ι^~s)HosaV(xls)U(s, \)uds. (2.9)
1

Since a < — 1, the integrands in the right-hand side of (2.8) and (2.9) are both
integrable on [1, oo), and the limits

lim U(t, l ^ e x p t - ί(t - l)H0)u = W+u, (2.10)
ί->-00

lim exp(z(ί - l)H0)U(t, \)u = Z+u (2.11)
ί->oo

exist for every ueJ^. Moreover we clearly have

Z + W+u=W+Z + u = u. (2.12)

Since Z+ and W+ are isometries, (2.12) implies that Z+ and W+ are unitary and
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(II) For ue Jf, we write uγ = g(exp(zΉ0)w). Assuming that one of the following
three limits exists, we have by (2.4) and (2.5) that

W+u = lim U(t9l)~1Gxp(-i{t-l)Ho)u = lim U(lήT(ήu1
ί->oo ί-*oo

= lim71(l)ff(l,ί)κ1. (2.13)
ί->0

Here U(t,s) is the unitary propagator for the conjugate equation of (1.1):

idv/dt= -(^Δv + Γ2-<xV(x)v. (2.14)

Suppose now that ue^(W) and supp gw = supp uγ a (supp V)c. Then by Taylor's
expansion formula

y v{-itHofujk\

•]θNVe-itθHodθ{(-ίtH0)
N+ίu1/N\}

o

^[]θN\\v\\0Bdθ)tH+i\\m+iu1\\/N\

. (2.15)

Since C/(l,s)s~2~αF(x)exp(— i(s — t)H0)u1 converges strongly to ϋ(ί,s)s~2~"
V(x)exp(— isH0)u1 as ί-»0, and for 0 < ί < s,

with arbitrary large iV by (2.15), we see that the limit as f-»0 of

[7(1,ί)«i = exp(- i(l - ί)H0)«i - ( | ί/(l,s)s"2-0 !F(x)exp(- i(s- t)H0)u1 ds

exists by Lebesgue's dominated convergence theorem. Hence by (2.13) W+u exists.
Since the set of w's such that the limits in (2.13) exist forms a closed subspace of
Jf, W+u exists for all ueJί? with gweL2((supp V)c).

Suppose, on the contrary, that one (hence all) of the limits (2.13) exists and

We shall show that this will lead to a contradiction. We denote

w2 = limί7(l,ί)M 1. (2.17)

Then the following limits trivially exist:

ux = lim ϋ(t, l)u2 = limexp(ίtH0)U(t, ϊ)u2

no ^ no ( 1 1 8 )

= eiHou2 - i\im\eisHos-2-aV{x)U{s, \)u2ds
ί|0 1
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Therefore for any sequence tn-> 0, tn>0,

lim
0 < tn < tm -*• 0

J eisH°s-2-aV(x)U(s,l)u2ds = 0.

By (2.18), we see that for any ε > 0, there exists a δ > 0 such that

sup
0<f<(5

— " i

sup | | (e ί t H o -1)Fί/(t, l)M 2 | |<g.
0<r<<5

It follows for 0 < tn < tm < δ,

je- Ho c - 2 - α Vϋ(s9l)u2ds

-'f

*(eίsHo - ί)VU(s, 1)M2|| ds

— 1 — α j - — 1 — a

ί+a
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(2.19)

(2.20)

(2.21)

(2.22)
[ | l o g ( f m / g i { | | F M l | | - | | F | | 0 0 ε - ε } i f α = - l .

Since ε > 0 can be taken arbitrary small, (2.22) contradicts (2.19). This concludes the

proof of Theorem 2.1.

3. The Case - 1 ^ a < 0, the Modified Wave Operator

In this section we assume — 1 ^ α < 0. In this case the existence and the unitarity of
the modified wave operator are proved by Kitada [5] in a more general situation.
Here, restricting ourselves to the case — 1 ^ α < — ̂ , we state the theorem and its
proof in a simpler form. We refer the reader to [5] for the general case.

Theorem 3.1. Suppose that Assumption (A) is satisfied and that — 1 g α < — \. Then
the limit

W+u = lim t/(ί, I ) " 1 exp(- itD2/2 - it1+Λ a))u (3.1)

exists for every ueJti? and the modified wave operator W+ is a unitary operator.
We write H{t,D) = tD2/2 + ί1 + αF(D)/(l + α). For proving the theorem 3.1 we

need the following two lemmas.

Lemma 3.2. Let feέf. Then for eachj= 1,2,...,rc,

|| ((xj/t) - Dj)Qχp(- iH(t,D))f\\ ^ Ct\ t ^ 1, (3.2)

α α , ί ^ i , (3.3)

with a constant C independent of ί ^ 1.
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Proof. By elementary computations of commutators we have

(d/dήem-D\xj - tDj)e-ίH«>D)f = eiH{uD\t\dV/dx^{D))e-muD)f (3.4)

(d/dt)U(t9 lΓ^Xj-tDjMt, 1)/ = t/(ί, l)-\nδVldx^x/t))U{u 1)/. (3.5)

Integrating (3.4) and (3.5) from 1 to t by t and taking the norm in J-f in the resulting
equation, we obtain

Hxj-tDjϊe-wwfW £ Uxj-Dj)e-im^f\\ + ̂ rγ\\dV/dxJ\U\f\\9 (3.6)

\\(xj-tDj)U(t9ί)f\\ S \\(xj-Dj)f\\ +^\\dV/dxj\Uf\\. (3.7)

Dividing the both sides of (3.6) and (3.7) by t9 we obviously have (3.2) and (3.3).

Lemma 3.3. Let F be a C00-function on Un which is bounded with its derivatives.
Then

F(x/t)- F(D) = Σ \](dF/dxj)(θx/t + (1 - θ)D)dθ\'(xj/t-Dj)

+ (i/ί) j (1 - Θ){Δ F)(θx/t + (1 - θ)D)dθ. (3.8)

The identity (3.8) follows directly from the symbol calculus in pseudo-differential
operators and its proof is omitted here (cf. also Enss [11]).

Proof of Theorem 3.1. Since V satisfies Assumption (A), J dV/dXj(θx/t +

J(
o

(1 - θ)D)dθ and J(l - θ)ΔV(θx/t + (1 - θ)D)dθ are uniformly bounded operators
o

on Jί? for t ̂  1 by Calderon-Vaillancourt's theorem [7]. Hence combining estimates
(3.2) and (3.3) with (3.8) replacing V in place of F, we have

|| t%V(x/t) - F(D))exp(- M{t, D))f \\ ύ Ct2*9 (3.9)

\\f(V(x/t) - V(D))U(t91)/|| S Ct2*9 (3.10)

with the constant C independent of t ̂  1. Thus the derivatives

\\(d/dt)U(t9 l j ^ e x p ί - iH(t9D))f\\ = ία||(V(x/t) - F(Z)))exp(- iίί

and

||(d/Λ)exp(+iH(ί,D))I/(ί,l)/ll =t«\\(V(x/ή- V(D))U(t9l)f\\9

are both integrable on [1, oo) and this implies the existence of the limits

lim U(t9 l ^ e x p ί - iH{t9D))f = W+f9

lim exp(iH(t, D))U(t91)/ = Z+f.

As in the proof of Theorem 2.1, this implies the unitarity of W+ and the proof of
Theorem 3.1 is completed.
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4. The Case 0 ̂  a < 2. The Existence of the Asymptotic Gaussians

In this section we shall show that when 0 < α < 2, corresponding to each local
minimum xoe(R" of V(x) with positive definite Hessian matrix {d2V/dxidxj(x0}},
there exist solutions which are asymptotic to Gaussians centered about tx0 with
the width Cί 1 / 2 ~ α / 4 times some oscillating factor. We also show almost the same
statements are true for the case α = 0, provided that the eigenvalues of the Hessian
matrix {d2V/dxidxj(x0}} are greater than §.

Postponing the precise statement of the theorem, we begin our discussion with
the following lemma.

Lemma 4.1. Let l(t\ 0 < ί, be a solution of the Riccati equation

dl/dt + ίl2{t) = iλΓ2-a

9 λeC, (4.1)

and T(t) be a solution of

Then the function

u(t,x) = T(t)exp(- l{t)x2/2\ xeU (4.3)

is a solution of the one dimensional Schrodinger equation

idu/δt = - (±)(δ2u/δx2) + (\)λΓ2~ax2u. (4.4)

This is a result of an elementary computation and we omit the proof here. We
should remark that when λeU (4.1) and (4.2) imply

|Γ(ί)|4 = cRe/(ί), (4.5)

with a constant c independent of t > 0. We assume λ > 0 hereafter.
When α^vO, the solutions of the Riccati equation (4.1) can be obtained as

fractions of Bessel functions (cf. [1]).

Lemma 4.2. Suppose that a ̂  0, and set

v = - l / α , s = λt~ηa2. (4.6)

Then the general solution l(t) of (4.1) can be written by means of the Bessel functions

Jv(2^/s) and Yv{2^/s) as

(l(t) = u(t)/t, u(t) = ίasw'(s)/w(s)

\w(s) = s^lJJVS) dY(2/)l

where c and d are arbitrary complex constants and wf = dw/ds.
When α = 0, Eq. (4.1) has solutions

l±(ή = (-i±j4λ-l)/2t, (4.8)

and the general solution can be obtained by quadratures.

Lemma 4.3. Let a = 0 and aeC be an arbitrary constant. Then the general solution
l(t) of (4.1) can be written as follows:
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(i)

(i+. - 1 )(1 - a ex 1 log t + ip))
1

with exp(ip) =
(ii) When,

(iii) When

(i-V '4vl - 1 )/ι

ί((l +

2ί(l

(i + «

ί

2t l at +

Γ4λ^Λ

1

•iίlogί

- α ( l -

logί))
(4.9)

(4.10)

(4.11)

Lemma 4.2 and Lemma 4.3 are well-known and we refer to Chapter 3 of Davis
[1], Using these expressions and the well-known asymptotic formulae for
Bessel functions at real infinity z-> + oo,

Jv(z)= /—cosjz--

and their derivatives

J'viz) = ~

(4.12)

(4.13)

(4.14)

(4.15)

(cf. Magnus et al. [8]), we have the following lemma.

Lemma 4.4. Suppose that α > 0. Set

v = - l / α , s = λΓ"/a2,)

(4.16)

Then with arbitrary real constants A and B, the real part Re/(ί) of the general
solution o/(4.1) has the following asymptotic behavior as ίJ,0:

Re/(ί) =
B

t \ (A cos p(s) + sin p(s) )2 + B2cos2 p(s)
+ 0

1
(4.17)

Proof. By Lemma 4.2 and the relations (4.12)—(4.15), we have

iocs f v — c sin p(s) + d cos p(s) + O(s " 1 / 4 )

ί 1 2 s
c cos d sin p(
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Hence, writing c/d = A + iB, we see

J~S C sin p(s) — d cos p(s) + 0(s ~1/4)
Re/(ί) = Im-

= Im-

t c cos p(s) + d sin p(s) + 0(s 1 / 4)

n p(s) — cos p(s)) 4- j£ sin p(s) -

t A cos p{s) + sin 77(5) + ίB cos p(s) + 0{s 1 / 4)

ί {A cos p{s) +sin p{s))2 + B2 cos2 p(s) + 0{s~ll4y ^ ' '

Here in the final step we used the fact that g(s) = (A cos p{s) + sinp(s))2 +
B2 cos2 p(s) ^ 7 > 0 for some y > 0, since #(s2) is periodic in s and never vanishes.
Equation (4.17) results from (4.18).

Taking the real parts in (4.9) ~ (4.11), we have the following asymptotic
formulae for Re l(t) for the case α = 0.

Lemma 4.5. Suppose α = 0 and let A and B stand for arbitrary real constants. Then
as ίJ,0, Re/(ί) has the following asymptotic expression:

(i)

Re l(t) = κ- ^ ^ ^ . (4.19)
2t(A2 - 2A cosL/4;i--llog t + B) + l)

(ϋ)

Re/(ί) = J l + ^ ί ) )• (4.20)

(iii) Whenλ<\,

Combining Lemma 4.1 ~ Lemma 4.5 with the estimates similar to those used in
semi-classical theory (cf. e.g. [3]), we shall obtain the solutions of the conjugate
equation,

idv/dt= -@)ΔV + Γ2-*V(X)Ό (4.22)

of (1.1) which are asymptotic to Gaussian functions as t[0. We let XOG[RΠ be a
local minimum of V(x) and assume that the Hessian {d2V/dxidxj(x0}} is positive
definite there. After choosing suitable coordinates we may assume without losing
generality that {d2V/dxidxj(x0}} is diagonal with positive eigenvalues 0 < A 1 ^
λ2 ^ λ3 ^ ^ λn. We denote by I jit) a solution of the Riccati equation (4.1) with
λj replacing λ which satisfies (4.17) with B > 0 when α > 0; (4.19) with A>ί when
α = 0 and A7 > i ; (4.20) with A>0 when α = 0 and λj = i; and (4.21) with
A > 0 when α = 0 and 0<λj<^. We also denote by Ίjt) a solution of (4.2) with I ft)
replacing l(t).
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Lemma 4.6. Let 0 ^ α < 2 and let xoeMn, 0<λx^-"ζλn9 l^t),...,ln{t) and
Γ^ί),... Jn{t) be as above. Suppose that when α = 0, λί>%. Then the conjugate
Schrόdinger equation (4.22) has the solution v(t, x) which satisfies

lim
40

t,x)- Π

Proof. We write

ω H . r u i

J

>exp(ϊί~1~αF(;

(xo)/l+«)

co)/l + α).

= 0.

(4.23)

Since 3K/3x/xo) = 0 and δ 2 F / ^ 5xfc(x0) = 4/<5/k, Lemma 4.1 implies that £(ί,:x)
satisfies the equation

(4.24)

(4.25)

j , *

dxk{x0)(xj - xOj)(xk - xOk) \v(Ux).

By the choice of //ί) and ζ (ί) as above, ί;(ί, x) also satisfies the estimate

where

C r 2 - α ( ί ( 1 / 2 ) + ( α / 4 ) ) 3 = C r ( 1 / 2 ) - ( α / 4 ) , when α > 0,

C Γ 2 ( ί 1 / 2 ) 3 = CΓ1/2, when α = 0 and λ, > | .

C r 2 ( ί 1 / 2 l o g ί ) 3 = Cί" 1 / 2(logί)3, when α = 0 and λ1 =\.

p r2^(l/2)-l/2 ( v^4l7)j3 = Cί-(l/2)-3/2vT^4l7? w h e n α = Q a n ( J ^ χ < i . (4.26)

We note that p(t) is integrable on [0,1] if λx > % when α = 0. By (4.24)

/(ί,x) = {id/dt + (i)4 - Γ2-«V(x)}v(t,x)

(4.27)
7 = 1

and by Taylor's formula and Assumption (A),

It follows from (4.25)-(4.28) that

(4.28)

(4.29)

Writing the evolution operator for (4.27) as ϋ(t9 s) and solving Eq. (4.27) for v(t, x%
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we see

v(t,x)=U(t,

When we set

we obtain from (4.29) and (4.30) that

359

) — i\U(t,s)f(s9-)ds
1

(4.30)

(4.31)

(4.32)

as ί JO. Since v(t,x) is a solution of (4.22) by Definition (4.31), we have the statement
of the lemma.

Combining Lemma 4.6 with Lemma 2.1 about the conjugate transform, we
finally obtain the following theorem.

Theorem 4.7. Let V(x) satisfy Assumption (A) and let 0 ^ α < 2. Suppose that
xoeW is a local minimum of V(x) with the positive definite {d2V/dXjdXj(x0)}.
Suppose further that the smallest eigenvalue of {d2V/dxidxj(x(^)} is larger than §
when a = 0, and the coordinates, the functions l}{t) and ζ (ί), are taken as in Lemma 4.6.
Then Eq. (1.1) has the solution u(t,x) which satisfies the asymptotic formula

lim u(t9x) - \ {l/itγ Π ζ(l/ί) \ exp I - it1 +αF(x0)/(l + α) + ix χ0

-itxlβ+ Σ {(i/2ή-W/t)/t2)}(xj-tx0J)
2) = 0. (4.33)

We note that modulo the oscillating factors which are bounded from above
and below we have

{Re(//l/ί)A2
Cί1 / 2, when α = 0 and λj > i ,

Ct1/2 log ί, when α = 0 and λj = \,

C ί ( 1 + ^ ) / 2 , when α = 0 and ^ < i

as ί->oo and the second function in the norm of (4.33) represents a slowly
spreading Gaussian function with a linearly moving center tx0.

Proof Combine (4.23) with (2.3) and (2.5) to obtain (4.33).
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