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Abstract. The existence of quasiperiodic trajectories for Hamiltonian systems
consisting of long chains of nearly identical subsystems, with interactions which
decay rapidly with increasing distance between the interacting components, is
studied. Such models are of interest in statistical mechanics. It is shown that
nonergodic motions persist for much larger perturbations than prior work
indicated. If the number of degrees of freedom of the system is N, the allowed
perturbation decreases only as an inverse power of JV, as the number of degrees
of freedom increases, rather than the inverse power of Nl which previous
estimates yielded.

1. Introduction

The Kolmogorov, ArnoΓd, Moser (KAM) theory [15, 1, 16] proves that "small"
perturbations of integrable Hamiltonian systems possess "large" sets of initial
conditions for which the trajectories remain quasiperiodic. In this paper we discuss
how the "strength" of the allowed perturbation varies with the number of degrees of
freedom, N, in the system. (We give precise meanings to the words in quotation
marks below.) Classical estimates for a general analytic perturbation of strength ε0

require

ε0 < C(N!y« (1.1)

to ensure that the theory applies. Here C is a constant depending on all the
parameters of the system except N, and [11] gives a value of α = 31.

Recent numerical experiments [4, 6, 3, 10] indicate that at least in systems with
short range interactions, perturbations much larger than those permitted by (1.1)
still give rise to quasiperiodic motion. In the present paper we initiate a study of such
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systems and show that for a class of Hamiltonians with short range interactions the
perturbation need only satisfy

\ (1.2)

to ensure the existence of quasiperiodic trajectories. We obtain a value of α' = 160.
Nearly thirty years ago [8] it was pointed out that the existence of such

trajectories is at variance with the commonly held belief that large systems behave
ergodically. It seems that the rapid decay (with increasing N) of the estimate (1.1)
ensuring applicability of the KAM theory has discouraged examination of its
importance for statistical mechanics. Even the estimate (1.2) gives only a small
region of quasiperiodic behavior as N becomes large, but the exponent of AT in (1.2) is
certainly not optimal, and we hope that the improvement in the range of
applicability of the theory as compared to (1.1) will encourage further research, both
to determine the optimal power of N in (1.2), and also to determine whether or not
there may be a finite allowed perturbation as N -> oo, for which the motions are not
ergodic (although possibly not quasiperiodic either).

To state our results we introduce the following notation. Let V be the sphere of
radius r in UN, (with respect to the Euclidean metric), and TN = [0,2πY, with
opposite ends identified. A Hamiltonian in "action-angle" form is a function
H{L φ): F x Γ ^ R We write the Hamiltonian as

with /°(/, φ) a perturbation of the integrable Hamiltonian h°(Jβ. Since /°(/, φ) is
periodic it may be expanded in a Fourier series,

Defining z- = f j zf = f j eiVjφj we can regard /°(J, φ) as a function on C2N, which

we write as /°(/, z). We demand that H(l, z) be analytic on

IeV

\Γj-Ij\<p0; Vj = l JV}. (1.5)

Given a Hamiltonian define £ 0 , ε0, by

SE0, (1.6)

sup di
- 1

dφ
(Li) (1.7)

where the suprema run over W(p0, ξo; V). In (1.7),
zN(d/δzN)). Also, by d2f/dφidφj we mean - z ι (δ/δzi)(zJ (3//3zJ)), the only

possible confusion coming when ί=j. For any ve£N define |v| = £ |v7 |. For a

N

matrix M, \M\= ^ \Mtj\. The factor of p^1 in the second term of (1.7) is

to keep the dimensions of the two terms the same, since as was pointed out in
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[11] this greatly simplifies the resulting estimates. Also, we will assume for con-
venience that p0 < Eo.

The Hamiltonians we consider consist of almost independent almost identical
subsystems, lying along a line, with interactions which decrease rapidly in strength as
the distance between the points of interaction increases. (Note that keeping r, the
radius of the set V9 fixed corresponds to decreasing the average energy in each
subsystem, which is why the volume of phase space does not grow as (const)^ as one
would expect for JV identical systems.) As a prototype consider

J V - l

Σ
£ = 1

cos(φt+1-φd. (1.8)

We note that the constant ε is not the "strength of the perturbation," ε0, as
defined in (1.7), but differs from it by a constant. (Comparison with (1.7) shows that
one should have, (i)εNe2^0 ̂  ε0.)

More generally we require:
(a) nearly independent, nearly identical subsystems:

Define ω°(J) - (dho/dQ(L) We require

sup

and

dω?
dl,

dωf

(1.9)

(1.10)

with sup|χ°(/)| ^BXN

ditions are satisfied for (1.8).
(b) weak, short range interactions:
The Fourier coefficients of /°(J, z) must satisfy

and B1 some universal constant, say 2 3. These con-

su | ^ εopo(εoPo (1.11)

where d(suppv) = distance between the two most widely separated points in
supp v (regarding v as a function on [1, AT] n Z). We also require that if / is the point
in supp v farthest form j

d
S U P -^rfvil) ύso{εopo )' Jle ξφ-\ (1-12)

and finally

sup -(/) (1.13)

In each of the inequalities (1.9)—(1.13), the supremum is taken over W(p0, ξo; V).
Also note that (1.8) obeys (1.7) and (1.11)—(1.13) if we take pQ = l, and ε <
min((2εo/iV)e~2'50, 2εle~2ξo). We mention in passing that one could choose ε to be
the "strength of the perturbation" in the Hamiltonian (1.8), rather than using the
more general definition (1.7), and the statement of Theorem 1.1 would be unchanged,
save that ε would replace e0 on the left-hand side of (1.15) and the precise values of
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the constants B, /?, y9 and σ on the right-hand side of that inequality would change.
We require a great deal of analyticity in the angular variables z, enough to set

ξo = B2lnN, (1.14)

with B2 a universal constant. (Take B2 = 125 + 4, where δ is the constant defined in
Sect. 2.) This is again satisfied for (1.8), for any JV, but this is one restriction on our
theorem which it would be very nice to weaken—at least to remove the N
dependence.

Under assumptions (1.6)—(1.14) we obtain

Theorem 1.1. There exist constants B, β, y, σ > 0 such that when

>o~TW~ff, (1.15)

for some Λ,e(0,1), there exists an open setΓ cz V, and constants p 0 , ζQ > 0 and a change
of variables, C:(/',zf)-• (/,z), defined and analytic on W(po,ζo;Γ). Furthermore the
image of W(βθ9 ζo;Γ) under C is contained in W(pθ9 ξo; V), so define

Then

sup

C(V 7f) — ΐj°(Γ\4- T°(Tf

 7'\

dΓ

sup
df°
dΓ

- 1
+ Po

d2h°

dl? (

δφ'

1 = 1 + ^ 0 ,

with

and

sup \Ul')\^ 2-2N- 2 Λ Γ - 1

sup
d2n°

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

Also, the transformation C is 1-1 and canonical on Γ x TN

9 and \olΓ ^ (1 — λ)
vol V. In (1.16)-(1.20) the suprema run over W(po,ζo;Γ). (When we say C is
canonical onΓ x TN, we are identifying TN, with the set of zeCN such that \zt\ — 1,
i = ί,...,N, and then C is canonical with respect to the variables (/,</>), I_eΓ and φ
defined by z = eιt)

It is possible to compute the values of the constants β, 7, and σ. The best values I
have obtained are β = 12, y = 18, and σ = 160. We do not present those calculations
here—the interested reader may refer to [20].

Note that Theorem 1.1 is not a KAM type theorem since H(Ll) is not an
integrable system. To complete the proof we need:
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Theorem 1.2. Given the Hamίltonian H(l,z) constructed in Theorem 1.1, analytic on
W(p0, to\Γ) and satisfying (1.16)-{1.20), there are constants B, β, y, σ, κf ζand μ>0
such that if

ε0 < βoβP(l - Xf(p^E0)-\p^EQYN-όNe-*\ (1.21)

for Xe(0,1), and λ the parameter in Theorem 1.1, then there exists Γ c Γ and 2ΛΓ,
C°°(Γ x TN) functionsΓί9...9ΓN9z'ί9...9z'N such thatΓί9...9ΓNare first integrals for
the perturbed motions starting in Γ x TN. Furthermore, the change of variables
€' (l,z')^(Lz) is 1-1 and canonical on f x TN

9 and for Γ9z
r in the preimage (with

respect to C) of Γ x TN

9 there is a function h, depending only on Γ such that,

HoC(T,z') = h(Γ). (1.22)

Finally, vol/7 ^ (1 - X)volΓ.
We note that Γ will turn out to be a Cantor set. To define derivatives of the

functions /', z' on Γ x TN

9 we take the restrictions of their derivatives on Γ x TN to
t x TN. In fact, the functions are constructed by just the opposite procedure—one
constructs a family of functions on Γ x TN which are shown to obey the formal
relations expected of the derivatives of (/', z'), and these are then extended to give
C^iΓ x TN) functions by the theorem of Whitney [21]. (See [5,17] for more details.)
Once more a long calculation gives β = Π,ζ= 17, y = 2, κ= 16, σ= 1 4 a n d μ = 185.
The desired KAM theorem is

Corollary 1.3. Let H&z) be analytic on W(p0, ξo; V) and satisfy (1.6)-{1Λ4). Then
there exists B' > 0 such that if

ε0 < poB'(Eopo 'yy'λ^l - λfN~σ\ (1.23)

there exists asetΓ aV and 2JV, C™(V x TN) functions Γl9m..9ΓN,zf

l9...9z'N such that
Γί9...9ΓN are first integrals for motions of the perturbed system starting in Γ, and the
change of variables C: (Γ, zr) •-> (/, z) is one to one and canonical on ΓxTN.
Furthermore H ° C(Γ, z') = h(T% on the preimage ofΓ x TN and v o l Γ ^ (1 - 2λ) vol V.
We may take γ' = 18, ζ' = 8, ζ" = 2 and σf = 160.

Proof The corollary follows immediately if we take λ = X and C = C°C, where C
and C are the two canonical transformations constructed in Theorems 1.1 and 1.2,
since (1.23) implies that both (1.15) and (1.22) are satisfied, using the definition of p0

that emerges from Sect. 2, and the fact that <f0 can be chosen to be one (which also
comes from Sect. 2).

We close this section with some comments of a general nature. First we note that
Theorem 1.2 is almost identical to the theorems of Chierchia and Gallavotti [5] and
Poschel [17] except that instead of assuming a bound on the anisochrony parameter
η0 = sup\(dh°/δldQ~\ we will derive a bound on this quantity from (1.16)—(1.20).
This gives better control over the constant f.

Our second comment concerns (1.10). This condition looks very restrictive but
we point out two respects in which it is somewhat less so than it may at first appear.
First is the trivial observation that we may replace the "one" on the right-hand side
of (1.10) by any positive constant, just by changing the scaleof /, and possibly
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N ~ ~
altering the constant Bί. Secondly suppose h°(Γ) = Σ P(/ f), with P(/f) analytic in a

ball of radius r in C. Then if P"(0) > 0, we may write

ί(U (1.24)

and Xiili) will obey the bound (1.11) provided r is sufficiently small. One might also
wonder how the restrictions (1.11)—(1.13) arise. It would seem more general perhaps
to drop the factors of ε o p o , ε0, and εoPo : i n front of (1.11)—(1.13). In fact the proof
goes through with very few modifications if one makes this change, and the choices
used in (1.11)—(1.13) are just one convenient choice of the many possible. Note
further, that if one chose to make the change suggested above one could recover the
present form by a slight redefinition of ε0 and p0.

Our third comment concerns the numerical experiments mentioned earlier
[4,6,3,10]. These seem to show that nonergodic behavior persists in the system for a
finite perturbation even when N becomes very large. Even more surprising, the
maximum perturbation per mode (so/N in our notation) for which nonergodic
trajectories survive seems to be almost independent of N for N larger than about ten.
While the exponent of N which we quote in (1.23) is certainly not optimal, and might
be reduced by more careful estimates, it is by no means clear how the present
methods could yield an ΛΓ-independent estimate for the allowed perturbation. Thus
a very interesting unresolved question becomes can one extend the KAM theory to
explain the experimental results? If not, can one perhaps show that there is some
nonquasiperiodic motion, but also nonergodic motion in these systems? If the
answer to either of these questions is yes, one should also ask what implications such
motions have for statistical mechanics.

As we mentioned, the proof of Theorem 1.2 is a straightforward application of
the KAM machinery which we present in [19]. The proof of Theorem 1.1, on the
other hand, proceeds by making a finite number of canonical transformations which
successively reduce the strength of the interaction while including the effect of
interactions on longer and longer distance scales. This multiple length scale analysis
appears trivial in the case of (1.8) which has only nearest neighbor interactions.
However, the first change of variables produces interactions of arbitrarily long
range, making the multiple length scales necessary. To study the decay of the
interactions we generate, we borrow an idea from statistical mechanics and field
theory [17,2] which is introduced in [19].

The KAM theory is constructed so that the sequence of canonical transform-
ations may be repeated indefinitely, but the transformations used in Theorem 1.1
permit only a finite number of iterations. We iterate until the characteristic length
scale is of order N (the size of the system), and then appeal to Theorem 1.2. This
procedure is reminiscent of the renormalization group where one starts with a
system in the critical region and iterates the renormalization group transformation a
finite number of times, until one is far enough from the critical region to treat the
system by other means (e.g., perturbation theory). Because of this similarity we shall
often refer to the transformed Hamiltonian as the renormalized Hamiltonian, and to
the interactions generated by this procedure as the renormalized interactions. The
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similarity between KAM theory and the renormalization group has been commen-
ted on previously by Doveil and Escande [7], Gallavotti [11] and Kadanoff [14].
Also, that part of our analysis which studies the effects of small denominators on
longer and longer length scales is reminiscent of the work of Frohlich and Spencer
[9] on electron localization.

At a number of points we bound derivatives by what we refer to as dimensional
estimates. When the derivative so estimated is a derivative with respect to /, this is
just the observation that if /(/) is an analytic function on the domain D, and r is such
that the set of points {l\\Ij — IOj\<r} is contained in D, then \df/dlj(lo)\^
sup \f(L)\/r. The case of derivatives with respect to φ is somewhat more delicate

D

and we refer the reader to Appendix 2 for an explanation. Also, a number of
constants c1 ?c2,...,c/,c/ /,... appear throughout the paper. These are generic
constants of magnitude less than one. They may represent different constants in
different contexts.

We close this section with an outline of the remainder of the paper. In Sect, two
we present an inductive lemma leading to a proof of Theorem 1.1. Section three
defines the sequence of canonical transformations used to prove this lemma and
shows that the resulting changes of variables are well defined. Section four proves
that the interactions in our renormalized Hamiltonian decay nearly as fast as those
in the original Hamiltonian, and finally in Sect, five we estimate the amount of phase
space lost in this procedure.

2. An Outline of the Proof of Theorem 1.1

Theorem 1.1 is proved by constructing a sequence of Hamiltonians jF/k(/,z), each of
which will obey a short range condition similar to (1.11) but with the additional
requirement that the size (in the sense of (1.7)) of the nonintegrable part has been
reduced with respect to Jϊ*" 1^,^). Specifically, if k0 = 1 + integer part of
[{lnN)/{ln3/2y1l one has:

Lemma 2.1. There exist positive constants B, β, y, σ such that if

oT'N-^ (2.1)

for some Λe(0,1), there exists a decreasing sequence of regions V n> Vo n> ID Vko- x

such that vol(F k \F k + 1 )^(l/4)^- ( 1 / 2 ) ( 3 / 2 ) f e + 1 (vol V), (and vol(V\VQ)^(\/4)λe-^
vol V) and transformations Ck, Ck which are 1-1 and canonical on Vk x TN. (In each
case, here and below, 0^k<ko.) These transformations are analytic on W(4pk+ί9

ξk - 2δ; Vk) and

Ck: W(2pk+l9ξk - 3(5; V^W(4pk+l9ξk- 2δ; Vk\

uξk-2δ;Vkl (2.2)

with W(4pk+1, ξk - 2δ\ Vk) c W(pk, ξk; Vk_ x). (We define V_ x = V) On their common
domain of definition Ck°Ck = Ck°Ck = identity.

A sequence of Hamiltonians is defined by

Hk+ί(Lz) = HkoCk&z) = hk+ί(L) + fk + 1(Lz), (2.3)
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which satisfy

supj dfk

dL

dfk

dφ }-• sup
dhk

C. E. Wayne

< F Π Δλ

with the supremum running over W(pk, ξk; Vk_ J . (We begin the induction by setting
H°(L z) = H(l, z), our initial Hamiltonian.) Defining ωk(L) = {Shk/dl) one has

~dL
(2.5)

with sup |χf(J)| ^ ^ J V " x +
7 = 0

i for i = 1,..., AT, and for i

sup
dω\

dL m = 0

Finally, each of these Hamiltonians obeys a short range condition, namely, if f\(ΐ)
are the coefficients in the Laurent expansion for / k (/, z),

and

sup

sup

•τr® (2.7)

Here, the / on the right-hand side of the second inequality is the point in supp v

farthest from/ (Again, all suprema are over W(ρk,ξk; Vk_1).)

The constants in this lemma are:

o — n (o n-11(3/2)*
εk — Pθ\εθPθ ) •>

= 8(3/2f,

for δ some (fairly large) constant which

must be chosen inversely proportional to

c 2 —the constant in the definition of
βk, below.

(2.8)

-2L f c), and ηk = 2
fc-1

7 = 0

where βk = c2(3/2) k + c3/k0. Here cί9c2, and c3 are non-zero constants chosen so
that ηko ^ 3/4, and in each of the definitions in (2.8), O^k^k0.
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We first remark that the conditions of Sect. 1 insure that our initial Hamiltonian
satisfies (2.4)-(2.7), for the case k = 0.

Second note that this lemma yields Theorem 1.1 if we set Γ = Vko_l9 H(Lz) =
Hko(L z), C = C°,..., Cko~1, and let β0 and ξ0 equal pko and ξko respectively. Then on

sup

Similarly,

sup

and

dp
si

sup

Po
dp
δφ

d2no

j S sk0 = Po(εopό Ψ/2)k° S PoisoPo T ,

-l\ίβ\i-j\

(since 1 — ηk > 1/8). Finally,

r oo

vo\Γ = γolVko_ί^h- Y
I ^ = 0 J

Thus, we have reduced the proof of Theorem 1.1 to proving Lemma 2.1.
We close by noting that we lose a fixed amount of analyticity in the z variables

each time we iterate this procedure. Thus, it must terminate after finitely many steps.
This is why Theorem 1.1 must be coupled with Theorem 1.2.

3. The Inductive Step

The iterative procedure described in the previous section starts by taking
H°(lz) = H(lz\ with H&z) the initial Hamiltonian of Sect. 1. Estimates (2.4)-
(2.7) follow from (1.9)—(1.13). We assume that the Hamiltonians, Hj, have been
constructed for 0 ^ j ^ k ^ k0 — 1, satisfying the bounds of Sect. 2. In the present
section we construct Cfe, C\ and Hk + 1.

Define Xk = {veZ^I |v| ^ Mk and d(supp v) ^ Lk}. Given a function h(l\ defined
on some region V a RN the "resonances of h on the scale fc" are

(L\v
- i

(3.1)for some veX k ,v^0 v.

Here <.,.> is the usual inner product for AT-vectors. Define βk = Spk + 1, Bk_ί =

{L\leS{2βk,Γ) for some ΓedV^^. Define Vk = (Vk_1\Bk-1)\R{k,hk;Vk-ί) and
Vk=\J S(pJ29D. Here S(r,Q = {ΓeUN\I-Γ\ <r}.

IeVk

For any / such that (/, z)e W(βk, ξk; Vk), for some z, there is a path y connecting /
to some ΓeVk and made up of 2N pieces of length at most βk along which only
one coordinate of / varies. Furthermore, for every Γ'εy, (Γ',z)εW(βk,ξk;Vk).
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Then if ve\ve\k, vφO

dωk - 1

£2Cexp[(3/2)|v| (3.2)

The last inequality combined (3.1) with the fact that (2.5) and (2.6) imply \dcof}/dlt\ ^ 2
on W(pk, ξk; Vk), for all ί, j , and the observation that since ρo<Eo, pk<Ek for all k.
Thus the second term in curly brackets is bounded by 22ΛΓ|v|pfce

(3/2)lϊl+ +Lk ^ 1/2.
Define (on W(pk, ξk; Vk)) the generating function for our change of variables

Φ(L,ι)=

Specify the change of variables (J',z')<->(Lz) by

. dΦk , . x

z-.

δΦk Ί

wa ύϊ

(3.3)

(3.4)

We show below that the implicit function theorem allows us to invert (3.4) to
obtain (/', z') in terms of (/, z) or vice versa.

The choice oϊΦk(Γ,z) is motivated by classical perturbation theory [11]. Unlike
previous studies we introduce two cutoffs, one to take advantage of the decay arising
from analyticity (|v| ^ Mk9 an "ultraviolet cutoff") and one to take advantage of the
decay with distance (d(supp v) ^ Lki an "infrared cutoff").

Derivatives of Φk(Γ,z) are estimated on W(pk, ξk — δ; Vk%

dΦk

(3.5)

We bound the denominator by (3.2), and /*(/') by εkpke
 ξklγ[ combining (2.4) with

Cauchy's theorem. Also, |z v | ^ e~
iξk~δ)M on~W(pk, ζk - δ; Vk). The number of terms

in the sum is bounded by noting that the number of vectors veZN with \v\ = M and
d(supp v) = L is bounded by N-22M-2L. Fix the leftmost point in supp v to be ί. If

/ L \
there are; sites in supp v, there are I I ways of choosing them. Furthermore, if

supp v is fixed there are at most 22M vectors v, with |v| = M, and specified support.
Summing from j = 0 to L, and estimating the number of choices of i by N yields the
stated result. Thus, (3.5) is bounded by

Σ Σ* 2Cεkpke
Lk'N2L M22Me-(δ-3/2)M^22CεkPke

(1+ln2)LkN. (3.6)
L = OM=1

Next note that

δΦk, . ,

δΓ Σ

δωk
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Bound the denominators of these terms by (3.2), bound /*(/) by εkpke~ξkly[ and
\dfk

v/δΓ\ by Nεke-W by combining (2.4) with Cauchy's theorem. Note that \f\ ^

e(ξk-δ/2M o n w(pk,ξk-δ/2;Vk), and finally note that (2.5) and (2.6) imply
\(dωk/dΓ(Γ),v}\ ^ 2N\v\. Bounding the number of terms in the sum just as we did
in (3.6) we find (on W(pk9 ξk - δ/2; Vk)\

sup
dΦk

dΓ
^ 26εkEkC

2N2 exp[(2 (3.7)

The implicit function theorem allows us to invert (3.4) as

z = z' Qxp(ίΔ (/', z')), Γ = L + Ξ'(L z), (3.8)

with Ξ'(L z) analytic in W(βJ2, ξk - δ; Vk) and A (Γ, i) analytic in W(pk, ξk - 2δ; Vk)
provided

dΦk,_.
sup δijdφk

sup (3.9)

In both cases the supremum is over W(pk, ξk — δ; Vk). Inequalities (3.9) follow
from the implicit function theorem of Appendix 3 of [11] as modified in Appendix 1
of the present work. Combining (3.6) and (3.7) with a dimensional estimate, and the
definitions of (2.8) we see that (3.9) are implied by (2.1).

From the definitions of A (/', z') and £"(/, z) we see that

dΦk

)=- — {Γ,z),

and

dΦk

Ξ'a',z')=--~Γ(Γ,z),δφ
(3.10)

on W(pk/2, ξk - 2δ\ Vk\ We also define

_dΦk

and

(3.11)

the first being defined on W(pk/2, ξk — δ; Vk) and the second on W(ρk, ξk — 2δ; Vk). We
obtain transformations

l,z) with
= z'exp(i4(/',z'))'

(3.12)

mapping W(pk/4, ξk - 3δ; Vk) into W{pJ2, ξk - 2δ; Vk) with Ck and Ck real and
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canonical on Vk x TN and satisfying Ck°Ck = Ck°Ck = identity on their common

domain.

Define

= h\Γ + Ξ(Γ9 z')) + f\Γ + Ξ{£9 z'), z' exp(ί4 (f, *')))

with

hk + 1(Γ) = hk(Γ) + fko(n (3.14)

and

/* + 1(/',z') = if k + 1(/',/) - ftk+1α;). (3.15)

Let

/fcc^](L^)= Σ f W >
veXk

and

/ t [= ]α,z)= Σ/ΐαte v (3 1 6)

Since (3.3) insures that

<3Φfc

«"(!') -^r-U', z) + fm\l',z) - fULΊ = 0, (3.17)
όφ

we may rewrite (3.15) using the fundamental theorem of calculus, as

where

i))Ξj9 (3.20)
o f=-\ uij

and

/ ' " (Γ, ! ' ) = fkί~XΓ + S,z'exp(ί4)). (3.21)

We have omitted the arguments on the functions Ξ(Γ9 z') and 4 (Γ? z') to save space.
Using (2.4) we see that

δhk+1,
sup δl

(3.22)

onW(βk/2,ξk-3δ;Vk).
Bound S(/',z') on W(βk/2, ξk - 3δ; Vk) by (3.6), bound δ2hk/dlt δlj by (2.5) and

(2.6) on W(βk, ξk — 2δ; Vk), and bound the number of terms in the sum in (3.19) by N2
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to obtain (on W(pk/2, ξk - 3δ; Vk)\

sup I/^Γ,/)! S 2*ε2

kp
2

kC
2e*hkN*. (3.23)

To bound (3.20) note that \dfkJdIj(Γ + tΞ)\< εke~ξklγ] on W(βk9 ξk - 2δ; Vk). Bound
Ξ(L',l') by (3.6) and control the sum over v just as we did in (3.6) obtaining (on
W(p~ξk-2δ;Vk))

To bound (3.21) note that if vφ\k, then either d(supp v) > Lk or rf(supp v) ̂  Lk and
|v |>M f c . Since (2.4) and (2.7) imply that on W(βk9ξk-2δ;Vk) |/ξ(/' + S ) | ^
min (εopo(εopoψ-ηk)d(su™v)e-ξkM, εkpke~ξkl% we sum over all vφ\k] using the
first of these estimates to control those terms with d(supp v) > Lfc, and the second
estimate on the remainder. (Once again bound the number of terms with |v| = M
and d(supp v) = L by N2L22M) This gives

sup |/'"(f,z')I ^

(3.25)

onW(βk,ξk-2δ;Vk).
Combining (3.23)—(3.25) with a pair of dimensional estimates on W(pk/4,

ξk — 4(5; Ffc)=> W(pk + 1,ξk + 1; Vk) and some algebra involving the definitions (2.8),
we see

sup
fk+l

dΓ PΪ+1

fk+1

This section closes by iterating (2.5) and (2.6). Note that

dl'j

(3.26)

(3.27)

If i = j , bound the second derivative of f% on W(pk+1,ξk+1; Vk) by 2Nεkpk

 J ,
using (2.4) and a dimensional estimate, to obtain the k + Ist case of (2.5). Similarly if
i φ j , bound the derivative of f% using (2.7) to obtain (2.6).

4. Decay Estimates

In this section we prove the decay estimates (2.7). The proof is based on the following
proposition that is proved in [19].

P r o p o s i t i o n 4 . 1 . On W{ρk+1,ξk+1; Vk),

(Li)sup

sup

sup

d2fk+1

dφt δφj

d2fk + 1

dlt dφ •

d2fk + 1

dltdlj

(Li)

ilά

< P (p Λ~ 1

= εO\£θPθ )

(4.1)
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By definition, one has

Jv [L)~\2πiJ
dz

k

(4.2)

where each integral on the right-hand side of (4.2) runs over the contour \z{\ = 1.
Take i and j respectively the leftmost and rightmost points in supp v. Rewrite (4.2) as

dz d2f>2 fk+1

(4.3)

(This is just the multivariable version of the observation that iίgn are the coefficients
in the Laurent expansion of the function g(z\ then (zg'{z))n = (l/n)gn.) Combining
the first estimate in (4.1) with (4.3) we see that we have written f\ + 1{V) as the vίh

Laurent coefficient of a function analytic on W(pk+ί,ξk + ί; Vk) and bounded by
εoPo(εoPo"1)(1~ί/fc+l)|I~'/l Cauchy's theorem then guarantees that

verifying the first inequality in (2.7).
Suppose / is the point in supp v farthest from j . Then just as above we find

fk+l

(4.5)

Proposition 4.1 guarantees that \(l/vι) (d2fk+1/dφιdlj)\ is bounded by
εo(εoPo iY1~ηk+ί)lι~i[ and then Cauchy's theorem implies the second estimate of (2.7)
holds. Finally,

sup

2 J-k+ίd2f
dltδlj ω = sup

32 fk+1

(4.6)

which completes the proof of (2.7).

5. An Estimate on the Volume of Phase Space Lost

at the kth Iterative Step

We complete the induction argument of Sect. 2 by estimating yoUy
V- ί = V) Note that Vk c Vk and Vk is obtained from Ffc_ 1 by first omitting the set of
points, B fc_!, whose distance from the boundary of Vk_γ is less than 2pk, and then
omitting all resonant points, R(k,hk; Vk_1). Thus

. (Set

k.
volR(k9 hk; Vk^).

It was shown in [5,11] that

(5.1)

(5.2)
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Remark. The argument of [5,11] does not apply directly to the case k = 0, directly
to the case k = 0, since V-1 = V is not constructed by the same procedure as
subsequent sets Vk. Since V is assumed to be a sphere, though, it is easy to estimate
the volume of the set of points within a distance p0 of its boundary directly, and one
obtains

vol B_ 1 ^ (1 - (1 - 2po/r)N) vol V.

If ωk is single-valued,

ωk(R(k : ^ ^ - i ) )

det dω.

(5.3)

(5.4)

The single valuedness of ωk follows from (2.5), (2.6) and the fundamental theorem of
calculus. Pick a path, γ, contained in W(p0, ξo; V) from / to /', of length at most
311' — L\9 and made up of line segments along which only one coordinate of / is
allowed to vary. Then

(5.5)

By (2.5) and (2.6) the magnitude of the integral on the right-hand side of (5.5) may be
bounded from below by 3/4 |/ — Γ\.

The argument of Appendix H of [11] shows that (on W(pk, ξk; Vk-1))

0 / τ/\ J 0 / τ\ (5.6)

Thus

^ 1/21/ — ZΊ, (5.7)

so ωk is single-valued.
We now estimate s

1! on W(pk,ξk; Vk-ι),

(5.8)

where by (2.5) and (2.6) we see that O is a matrix whose diagonal entries are bounded
in magnitude by cίN~1 (with c1 < 1/2), and whose off diagonal entries are bounded
(in magnitude) by θ(k; ίj) ^ εopo x An easy induction argument shows

Thus, I t Γ D ^ C i Λ Γ " ^ " 1 ^ and

sup det
Ί)T

oo n\
gexp V ^sup|trθ ;"|^exp2c1.

7 = 1 J

(5.9)

(5.10)
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Inserting this estimate in (6.4) and using the definition of R(k, hk; Ffc_x) we find

vol(R(k,hk;Vk_ί)S22 Σ ί (5.Π)
yeXfc ω:
Vf Q | < φ , v > | ^ ( 2 q ~ 1 e " ( 3 / 2 ) L v μ L k

ωeω k(R(/c/i / £FΓ))

Note that (5.5) and (5.6) when combined with (2.5), (2.6) and the fact that F f c_x

V = sphere of radius r imply that

(5.12)

where || || is the usual Euclidean norm, and leVk-1. (We have used the fact that
|x|^JV||x||.)

This implies that any term with fixed y on the right-hand side of (5.11) may be
bounded by the volume of a slice of thickness (2C)" 1 e" ( 3 / 2 ) | v | " L k out of an N-
dimensional sphere of radius (1 + 22/N)r. Hence

veXk
ΎΨQ

x [r(l + 22/ΛΓ)]iV~7Γ[l + (N ~ l)/2] (5.13)

Since vol V = (πN/2rN)/Γ(l + N/2), we obtain

vol(R(k,hk; Vk-λ)) ύ 2π" ( 1/2 )(2Cr)-1{Γ(l + N/2)/Γ[l + (N -

x( l+2 2 /ΛΓ) i V - 1 | ^ e - ( 3 / 2 ) l ϊ l e " L 4 v o l K (5.14)

I JveXk
vf 0

The sum over v is bounded in the now standard fashion by 2(2/e)Lk. A little
algebra, some standard recursion relations for the Γfunction (see, e.g. [12]) and the
fact that p0 < r by assumption give

vo\(R(k,hk; F fc_J) g 2 9 (Cp 0 )" 1 AΓ 3 / 2 (2/^. (5.15)

If we combine this result with (5.2) and (5.3), a little algebra shows

as claimed in Sect. 2.

Appendix A. The Implicit Function Theorem

We wish to show that the equation

/ 8Φk \
z' = zexph—(f,z)J (A.1)

is 1-1 for (Γ,z) in W(pk,ξk — δ; Vk). Assume not. Then there is some σ(z) =
(θ\Zγ,σ2z2,...,σNzN) such that

/ dΦk \ ( dΦk \
σ(z)expί i—(Γ9σ{z))\ = zexpί ^ ( Γ ^ ) i (A.2)
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Then

327

(A.3)

by (3.7). Thus we can consider

|lnσ7 | ^ s u p
7 = 1

dΦk dΦk

(A.4)

= sup
£ i , 82Φ

2Φk

da

where we applied the fundamental theorem of calculus and σ\z) =
{σ\zι,σ\z1,... ,o%zN). But (3.9) implies the right-hand side of (A.4) is bounded by

N

l n σ k l s o w e have σk = 1 for k = 1,...,N, and (A.I) is 1-1. Standard inverse
k=l

function theorems (e.g., [13, Theorem 1.7.6.]) guarantee that (A.I) has an analytic
inverse on the image B, of W(βk, ξk — δ; Vk). Denote the inverse map by

(A.5)

From (A.1) we see that Δ(Γ,ϊ)= -(dΦk/δΓ)(Γ,zl so

dΦk

B ~ ~ dΓ

Hence as (Γ,z) varies over W(βk,ξk — δ;Vk), (Γ,zr) must cover at least
W(Pk? £k ~ 2δ\ Vk\ so Δ(Γ9z') is analytic on that domain.

The argument for inverting / = /' + (dΦk/dφ)(l\ z) is identical to that in [11] so I
do not reproduce it.

Appendix B. Dimensional Estimates

Lemma B.I. lfe~{ξo~~δ) < \zo\ < eiξo~δ\ andf(z) is analytic for e~ξ < \zo\ < eξ, then

nl '"' Ί ? (B.i)

where the supremum runs over all z such that e ξ < \z\ < eξ.

Proof

dan

n\ f / ( ( l + α ) z 0 )

By the analyticity of/, we may choose the circle over which we integrate to have
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radius r as close to (1 — e~δ) as we wish, so the right-hand side of B.2 is bounded by

- έ Γ V n s u p | / ( z ) | , which proves (B.I).

Corollary B.2. // / is analytic on e ξ < \z\ < eξ, then

sup s; 2 sup I/I and sup ^22 sup I/I, (B.3)
dφ

where the suprema on the left-hand side of (B.3) run over e~iξ~δ) < \z\ < e{ξ~δ\ while
those on the right run over e~ξ < \z\ < eξ.

This follows immediately from (B.I) and the choice of δ in (2.8). The extension to
zeCN is immediate and is left to the reader.

Remark. I wish to thank the referee for suggesting significant simplications in the
proofs of the lemmas in the appendices.
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