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Abstract. We investigate the state on the C*-algebra of Pauli spins on a one-
dimensional lattice (infinitely extended in both directions) which gives rise to the
thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model
(with nearest neighbour interaction). It is shown that the representation of the
Pauli spin algebra associated with the state is factorial above and at the known
critical temperature, while it has a two-dimensional center below the critical
temperature. As a technical tool, we derive a general criterion for a state of the
Pauli spin algebra corresponding to a Fock state of the Fermion algebra to be
primary. We also show that restrictions of two quasifree states of the Fermion
algebra to its even part are equivalent if and only if the projection operators E,
and E, (on the direct sum of two copies of the basic Hilbert space) satisfy the
following two conditions: (1) E, — E, is in the Hilbert—Schmidt class, (2) E; A (1
— E,) has an even dimension, where the even-oddness of dim E, A(1 — E,) is
called Z,-index of E; and E, and is continuous in E, and E, relative to the norm
topology.

1. Main Results
We consider the two-dimensional Ising model with the Hamiltonian (with the free
boundary condition)
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where £, = + 1 is the (classical) spin at the lattice site (i,j)eZ2, and J, and J, are
positive constants. We are interested in the thermodynamic limit (L,M — o) of the
Gibbs ensemble average
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where the sum is over all configurations &= {&; }, =0, and F is a function of
EplilEL]jI=m for some [< Land m< M.

There is the following transfer matrix method [9] of expressing it in terms of a
state on the C*-algebra A" generated by Paulispin matrices 60, 6%, ¢! onsites ie Z
of the one-dimensional lattice 7.

By identifying a function of ¢; = + 1 and £} = + 1 as the (¢;,¢}) matrix element of

a linear combination of 2 x 2 matrices 1, ¢¢ :((1) ?), o(yj’=< 0 ;) and
- —i

. 0 1
o) = <1 0), we have the identification

K. M-t M
(Th)e e :exp{TZ __Z (Ejr1 ¢ )+ Ky ) ) fjéjl}, (13)

ji=-M

K M-—-1
Ty = (2sinh2K )M“l/z)exp{ 5 Y o(na(ﬁl)}

j=-M
M K, M-t
% exp{K}" y U)}exp{ 5 y Gmown}
J " (1.4)
where K; = J,(j = 1,2),

K¥ =(1/2)log{cothK,}, (L.5)

and & = (&), & =(¢)). Then
Ziw = [(T) Q% (1.6)

K,
M(é)-exp{ Z 55,“}, (L7)
j=—-M

<F>LM :(TLMQMa /}MTIL\‘/IQM)/ZLM’ (1'8)

4
where F,, e’ (For example, if F= [] F, with F,=F(& _,...¢,). then
i=—1

Foy=Tu'E_TyE_ |, ,...TyF,Ty} with F,=F(c"™...a™).)

The L— oo limit selects the unique unit eigenvector QY = QM(¢) (QM(£) > 0)
belonging to the largest eigenvalue of T,,.

lim (F) = (QM,F,,MQM). (1.9)
Lo w
In M —co limit, Fy, is known to converge to an element F), of AP (it is

oM (F_))...oM(F_ )F o™ (F))...oaM (F) for alf(x)= T, x T, which converges for
all integers [, see [2]), whilst the limit of the vector state by Q™

ppa) = lim (Q¥,aQ™) (1.10)

M- w0
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will be explicitly given in Sect. 2, so that

im lim (F,,,. (1.11)

1
M- L— oo

(Pﬁ(F/;) =

Our main result is the following:

Theorem 1. The cyclic representation of " associated with @y is factorial if 0 <
B < B., whilst it is non-factorial with 2-dimensional center (for the weak closure) if
B> B where B, is the unique value of > 0 for which K¥ = K,.

The two-dimensional Ising model with nearest neighbour interactions was
shown to have a phase transition in [13]. There is a critical (inverse) temperature f§,
such that the spontaneous magnetisation m* =0 for f < 8, and m* 0 for > f..
Moreover for ff < f3., a unique equilibrium state exists, whilst for > g, there are
exactly two distinct extremal equilibrium states [1, 5]. Schultz, Mattis and Lieb
[15] reformulated the Onsager—Kaufman transfer matrix treatment [7, 8] using a
Fermion algebra 2F. Now the even subalgebras of 9 and A" are canonically
isomorphic, even though the algebras A” and AF themselves are not (for the system
infinitely extended to all directions), and so one has a correspondence between even
states on the Paulispin algebra 9I” and even states on the Fermion algebra A”. For a
two dimensional lattice, infinitely extended in all directions, the Gibbs state in the
thermodynamic limit induces a pure (hence primary) Fock state on the Fermion
algebra AT [ 14, 11,16]. In[11] Lewis and Sisson discussed how the phase transition
manifests itself by a jump in the index of a Fredholm operator associated with the
Fock state. Subsequently, Lewis and Winnink [12] showed that the phase transition
also reveals itself in the restricted state on the Fermion algebra A* ([ 1, c0)) of a half-
line (regarded as a subalgebra of 9F). The restricted state is a non-Fock quasi-free
state. It is primary for § < f., and non-primary for > .. Again this involves the
computation of an index (mod 2) of a Fredholm operator. For a half lattice, the Pauli
spin algebra A*([ 1, 00)) is canonically isomorphic to A*([ 1, o)), and Kuik in [10]
showed that (for periodic boundary conditions) the thermodynamic limit of the
Gibbs state induces precisely the above restricted state on AP([ 1, c0)). Hence for a
half lattice, the manifestation of the phase transition is apparent.

In the present case of a two dimensional lattice, infinitely extended to all
directions (in contrast to a half lattice), the state for the Fermion algebra is pure
(Fock state) for all §, but our Theorem 1 shows that the phase transition manifests
itself in the state for the Pauli spin algebra, which is primary for 0 < < . and non-
primary for > f3,.

2. Correspondence of Pauli and Fermion Algebras

Following [4], we consider the C*-algebra A" (the Fermion algebra) generated by
annihilation and creation operators ¢, and c¥ (ieZ) satisfying the canonical
anticommutation relations (CAR’s):

Lewey = [efefle =0.[epet]y = 0,1 2.1)



492 H. Araki and D. E. Evans

Defining the automorphism @ _ of A satisfying

c; if i1
@‘C‘:{—ci i izo 2.2)

we construct the crossed product 9 = A x , _Z,, which is generated by AF, and
Te9N satisfying

T*=1,T*=T, 2.3)
Ta=0 _(a)T (aeU"). (2.4
The Pauli spin algebra 27 can be identified with a C*-subalgebra of 9 generated by
o =2c¥c; -1, (2.5
cP=TS[c;+c}), o =TSi(c;—c}), (2.6)
jﬁ o if j>1,
k=1
§;=q1 if j=1, 2.7
ﬁ a® if j<lI.
k=0
Let © be the automorphism of 9 satisfying
. Oc)=—c;, OT)=T. (2.8)
We have
O =0,0(c) = —69,0(6))= —a{. (2.9)
The Fermion algebra U* is split into even and odd parts:
A = AL + AX AL = {aeA":0(a) = + a}. (2.10)
Accordingly
A=Y A, >A'=A; +A7, (2.11)
g,6' ==+
A, =AU, =TUo=+), (2.12)
AP =, , =W, AP =U__=TA". (2.13)
By the relation (2.5) and
00 = (¢;— ¢¥)(Cisy +CFy ), (2.14)

T,, 1s given, up to a positive coefficient, by
Ty = eKo/DBYHBY) gKIBY,H1BY) oK /(B H,BY) (2.15)
where

I/ —(U*+U) U*-U 10
= — H = N 2.16
H 2< U-U* U*+U)’ ! <o —1> (16
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U= fer1s(U* = fio i f =(f)el (D)), (2.17)

and we have used the following notation of [3]:

M
BY(h= ) (C}“fj+cjgj)<h=<§>,f=(f,-),g=(g,-)>, (2.18)

j=-

(BY,HBY) =Y B"(e,)(e,,He,)B"(e,)*, (2.19)

mn

for an orthonormal basis {e,} of

%M={<Jgf>elz@lz;fj=gj=0 if ]j[>M}. (2.20)
We note that H; (j = 1, 2) satisfy
H¥=H;, TI'H;+H; =0, (2.21)
where I’ (9 and BM(hy* = BM(I'h
g )= e ) om (h)* = B™(I'h).

Let HM be the unique selfadjoint operator satisfying
QUM = oK HY Q2KTHY oK HY (2.22)
where H}' is the restriction of H; to [, ({ — M,. -»M}). Due to tre{) = tra{” = 0, we
have det e” = 1. Since the right- hand side of (2. 22) is analyticin K¥ and K,,so is H

for all real K* and K,. By repeated use of (8.48) in [ 3] (also see the deﬁmtlon (8.23)),
we have

eB"HYBY) — T4 (2.23)

where the possible sign + 1 multiplying T, (according to the use of (8.48)) is + 1
becauseitis + 1for K¥ = K, = 0,and both sides of (2.23) are real analyticin K¥ and
K,.

3. The State ¢,

Let EM, E}f and E” be the spectral projection of H™ for (— 0,0), {0} and (0,00). Due
to (2.21), TE¥T =EY, [I',E,]=0. Let {e,} be a complete orthonormal basis of
EM oy, satisfying HMe, = A e (1, > 0), and set b, = B(e,). Due to B(h)* = B(I'h)and

[B(hy)*,B(hy)], = (hy,hy)1, (3.1)

{b,} satisfy CAR’s among themselves. (Note that {I'e,} is an orthonormal basis of
EMy,, satisfying HMTI'e, = — ] I'e,.) Furthermore
(BM,HMBM) =Y J (b ,b* — b*b,) 2/1 (1—2b*b). (3.2)

Therefore the eigensubspace of (BM,H¥BM) belonging to the largest eigenvalue
consists of vectors Q (in I*({1, — 1}2**1)) satisfying b,Q =0 for all v and has the
dimension 24imEg’,
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For finite K ¥, all matrix elements of eK1(8".#:8" are strictly positive and hence the
same is true for T,,. By the Perron—-Frobenius theorem, the largest eigenvalue of T,
is non-degenerate as is claimed in Sect. 1.

In the finite dimensional case, one can view the Pauli algebra A" generated by

a,a\), 6, |j| £ M as the Fermion algebra generated by ¢, and c¥ related to o’s by
-M

(2.5) ~ (2.7) (c¢’s replaced by ¢’s) with the difference that T = ]_I o) = ]_[ Qe —1).

j=
Still we obtain the same expression for Ty, and hence we conc]ude that the largest
eigenvalue of (BY,H¥BM) must be non-degenerate, which implies EY =0 and

1—-EM—EM—TEMT, (3.3)
We now see that the vector state ¢;(a) = (QY,aQ™) of AM has the property that
O HBM*BM(h) =0 if heEM % ,,. (3.4)

Anystate ¢ on UM has a (unique) extension to a @-invariant state ¢ on the Fermion
algebra W™ (generated by c; and c}, |j| £ M) by ¢(a) = ¢(a,), a, =(a £ 6(a))/2,
ac W™ The extended state ¢ must be the Fock state, for which b, and b* act as
annihilation and creation operators due to (3.4). Such a state has been denoted as ¢,
in [3] with P = EM satisfying property (3.3) for a “basis projection.”

In the limit of M — oo, UM and (U*)M (restrictions of U and U* to the subspace
Ay, Which are no longer unitary) tend strongly to U and U*. Hence H j” tends to
H(j=1,2)and H" to H defined by

e2H — eK2H262K‘{‘HleK2H2’ H* =H. (3‘5)

Due to the property I'H;I' = — H;, H also satisfies THI" = —
We need the following result:

Lemma 3.1. H does not have a point spectrum at 0.
Before going into its proof, we describe its consequence. Since H does not have
the point spectrum at 0, Lemma 3.3 at the end of the section implies

lim E¥=E,, (3.6)
M- o
where E_ and E, are spectral projections of H for (— 00,0) and (0,c0). This means
that the limit of ¢;; as M — co is the restriction of the Fock state ¢, on A” to
AL = AL,
The automorphism © on UM can be implemented by a unitary operator

Uu®e)= ]_[ o). By @-invariance of H™, Q™ is U(@) invariant and hence

(M, QM) = 0 if @(a)= —a, aeU™. Therefore ¢, is also @-invariant and is
determined by its restriction to % | ie. pa)=pya,), a, =(a+ O(a))/2eN%, for
any ae A, Therefore we obtain the following

Lemma 3 2. ¢, is the unique @-invariant extension, to 0", of astate ¢ ; on W, =AY,
where @ is the restriction, to W%, of the Fock state ¢ on W* and E _ is the spectral
projection of H (given by (3.5)) for (— 0,0).
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We now prove Lemma 3.1. The unitary operator U has the spectral decom-
2n

position U = [ e"®dE(0) with a simple Lebesgue spectral measure on [0, 27], as is

0
well-known from the theory of Fourier series. Thus H = [ H(6)dE(6) with -
dependent 2 x 2 matrix H(6), given by

2H(0) = —y(0)V(0), (3.7a)

Vo) = < cos(0) — isin9(9)))

~ \isin9(9) —cos9(9) (3.70)

where y(0) = 0 is determined by
cosh2K $cosh2K, — sinh2K #sinh2K , cosf = coshy(9), (3.8)
and §(0) = 3(0) — 0 is determined by
cos§(0) = (sinhy(6)) ~'(cosh2K #sinh2K, — sinh2K ¥cosh2K, cos), (3.9a)

sind(f) = (sinhp(9)) ~ sinh2K ¥sin. (3.9b)

(See [14, 11, 16].) The right-hand side of (3.8) is not 1 except for discrete values of 6
satisfying cosf =1 (and only if K¥ = K,) due to

|sinh2K¥sinh2K,cosf| + 1 <sinh2K¥sinh2K, + 1
< (sinh?2K# + 1)*(sinh?2K, + 1)"/? = cosh2K ¥ cosh2K,. (3.10)

Thus §(0) is well-defined (modulo 27) by (3.9) for all § if K* # K, and for all 0 0
(modulo 27)if K¥ = K,. (If K¥ = K,, 9(0) = 0 for § = 0 and any value of 9(0) leads to
the same H(0).) Since the matrix part of (3.7) is selfadjoint unitary, H(f) does not have
an eigenvalue 0.

Lemma 3.3. Let lim A, = A, E, and E be the spectral projections of A, and A for an
(infinite or finite) interval (b, a) either including or not including the eigenprojections of
a andfor b. If a and b are not eigenvalues of A, then
imE, =E. (3.11)
Proof. Itisenough to treat the case of b = — oo, a finite because the case of a = o0, b
finite will follow by considering — 4, — — A and the case of a and b finite will follow
by taking the product of projections for the two infinite cases.
For any given vector ¥ and ¢ > 0, there exists ¢ belonging to the A-spectral

subspace for the complement of the interval (a — 4, a+ J) for some 6 >0 and
satisfying || ¥ — @ | < ¢. Since E,, is uniformly bounded, it is enough to prove

limE,® = E® (3.12)

for such @.

However, on the A-spectral subspace for the complement of the interval (a — 6,
a+ §), we can apply Theorem 2 of [6] to the characteristic function of the interval
(a, b) (the endpoints a and/or b included or not included according to the definition
of E,) and obtain (3.12).
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4. A General Criterion for Triviality of Center

In this section, we develop a method of deciding whether ¢, is factorial from a
property of the projection E_.

We consider the following general situation. Let 2 be a unital C*-algebra with
two automorphisms o and S satisfying

o* =p*=1, af=pa, 4.1)
and with a unitary element U satisfying
aU)=—-U. 4.2

Let 9 be the crossed product of 9 by f action of Z,, which is generated by 2 and
Te satisfying

T?>=1, T*=T, Ta=pa)T (acN). 4.3)

Let
A, ={aeW:o(a)= +a}. 4.4

Let
B=A, +TA_. 4.5)

It is a C*-subalgebra of U. (Note that 9, are B-invariant.) We extend o and f8 to A

b
Y aa+ Tb) = ofa) + To(b), 4.6
Ba+ Th) = p(a) + TB(b), 4.7)

where a, be. For an g-invariant state ¢ of 2, there corresponds a unique &
invariant state @® of B which is an extension of the restriction of ¢ to 2, .

In our application A=A*, a=0, f=0_, B=U", ¢p®= ¢, and U=2""72
(c; + c¥) for any fixed i. Our claim in the above general situation is the following:

Theorem 2. Assume that ¢ is an a-invariant pure state of 0. Then ¢® is not pure if and
only if

(1) @ and @op are equivalent and

2) ¢, =o@|WU,of are not equivalent.
If ® is not pure, it is a mixture of two non-equivalent pure states.

The proof is divided into several lemmas.

Lemma 4.1. If ¢ is o-invariant and pure, then ¢ is pure,

Proof. Let p=(1+0a)/2. Then ¢, »p=¢,cp and gp—>¢, =¢|A, yield a
bijective affine map between states ¢, of A, and a-invariant states ¢ of 2A. Hence
@, is pure if and only if ¢ is an extremal a-invariant state. In particular, if ¢ is o-
invariant and pure, then ¢, is pure.

Lemma 4.2. If an o-invariant state ¢ of W is pure, then ¢ and ¢ _ = ¢, -AdU are
disjoint. (The disjointness refers to the associated cyclic representations of U, .)
(Note that UaU*eU | if aeA . due to o(U)= — U.)
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Proof. Let # ,,m,and £, be the (GNS) triplet of a Hilbert space, a representation of
A and a cyclic vector associated with ¢. Due to a-invariance of ¢,

Hy=H , @H_, K, (+)é (4.3)

Then# ,m, and{ canbeidentified with #,, 7, = (m,|U,)| A and &, = ¢,
E_=nm (U){ By Lemma 3. 1, ¢, and hence ¢ _ = ¢, -AdU are pure. Therefore 7,
are both 1rredu01ble We now derive a contradiction assuming that they are
equivalent.

Since n, are irreducible, there exists a unitary W,en , (U, )", AdW,onn (U,)
implementing Ad U on U, . Sincen, ~ n_, there exists a unitary Wen (U, )", Ad W
on n (A, ) implementing Ad U on A, . Since (Ad W)W = W, W has to commute
with 7 (U). For ae _, aU*eA ., and

(AdW)r (a) = (AdW)(r (aU*)m (U))
= {(AdW (aU*)}n (U)
n,({(Ad U) aU*)}U)=n ((AdU)a). 4.9)
Therefore Ad W coincides with Ad z,(U) on (2) and hence on 7, (2A)". Since 7, is
irreducible, W = ¢ n (U) for some complex number ¢ of modulus 1.
On the other hand, by a-invariance of ¢, « can be extended to an isomorphism & of
r,(A)". By Wemn,(2.)", we have a(W)= W, whilst o(U) = — U. This contradicts
with W =cn (U), W*W = L

Lemma 4.3. Let ¢ be an a-invariant pure state of W. The states ¢, = @|A, and
@ ofoAd U of A, are equivalent if and only if

(1) o is equivalent to @of and

(2) ¢ is not equivalent to ¢, < p.

Proof. If ¢, ~ ¢ °f°AdU, then states ¢ = ¢, °p and ¢@° peAdU =
¢,°BeAdUcp of A are equivalent due to a result of Stratila and Voiculescu
(Sect. 2.7 of [17]). Since Ad U is inner on A, we obtain ¢ ~ @°p. (Note that
[0,Ad U] =0 due to a(U)= —U.)

Now assume that ¢ ~ @of. Since m,|A, =n, ®n_ and n, are disjoint by
Lemmas 4.1 and 4.2, we have two alternatives:

(A) n, ~7m,of disjoint from n_~m_of,
(B) n, ~n_of disjoint from 7w_ ~m,of.

The desired conclusion 7, ~7n_cf(~n, -foAdU) holds in and only in case (B),
which is characterized by ¢ ~ ¢f and =, disjoint from 7, < f.

Lemmad4.4. If o, and ¢, -f-Ad U are disjoint, then ¢® is pure.
Proof. Let 7, n) and & be the GNS triplet for the state o f. Let (4.10)
Jf'w =H,® ,}fw,
i fa+ Th)[r (a)¢, ®nh(a,)Eh]
=n(aa; + f(ba,))é, @nl(aa, + f(ba,))Eh. (4.11)
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Then the restriction of 7 (B) to

HE=H @A (A =mbU L)) (4.12)

(denoted 72) yields the cyclic representation of B associated with ¢®.

Since nf;',’IQLr ~n, @®n_of and the assumption implies the disjointness of 7,
and n_of (due to n_of=mn,cAdUcf=mn,ofAdBU)~n,-f-AdU because of
U*B(U)eU,, any XenJ(A, ) is of the form

X=2,@u_, (4.13)

If Xenf(‘ll)’, X must commute with nf(TU), which connects # , with ## and
hence A= y. This proves that z}) is irreducible.

Lemma 4.5. If ¢, is equivalent to ¢, °f°Ad U, then ¢® is a non-trivial mixture
of two non-equivalent pure states.

Proof. Since n_ is irreducible and ¢, ~¢@,of-Ad U, there exists a unitary
Wyen . (U,)', Ad W,onr (U, )implementing foAdU on U, . By, ~7, ofoAd
U, there exists a unitary Wemnp(2, )", such that Ad W onz(2 , ) implements - Ad
U on A, Since (Ad W)W =W, W has to commute with 73(TU)*. Let

V =WnlTU)* 4.19)
Forany a_eTU_,a_=(a_TU)(TU)* and hence
(AdW)ra_) = {(Ad Win(a_ TU)}n(TU)*
= 13({(B-AdU)(a_TU)}(TU)*)
=n3((B-AdU)(a_)), (4.15)

because (f-AdU)TU)= BUT)=pU)T = TU. Therefore V is in the center
mo(B) Np(B)". It is non-trivial because it connects # , and #% . Thus ¢® is not
pure.

Since the restriction of n} to A, is a sum of two equivalent irreducible
representations, n?p’(‘llJr)’ is isomorphic to the algebra of 2 x 2 matrices and n;{’(%)’
has to be its non-trivial proper x-subalgebra, which must be a two-dimensional
commutative algebra, coinciding with the center of ni’(iB)". Then ¢® is a non-trivial
mixture of two non-equivalent pure states.

5. Application of the General Criterion

For ¢, discussed in Sect. 3, which is a Fock state ¢y, the state ;00 _ is the Fock
state ¢, _p_,_, Where

Izl
fi o Jso0.

By a general criterion for two Fock states to be equivalent (for example, see Theorem
1 of [3]), the condition (1) of Theorem 2 is satisfied if and only if E_ —6_E_0_isin

(9_f>j={_ (5.1)
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the Hilbert—Schmidt class. We have

|E_—0_E 0 |i=tr(1—E_)0_E_0_(1—E_)
+E_0_(1—-E)0_E)=|E_6_(1-E_)|fs
+IA=E)0_E_|is=2(E_0_(1—E_)|s. (5.2)

where the last equality is dueto I'0 _I'=0_ and I'E_I' =(1 — E_). By evaluating
this quantity in Sect. 6, we obtain the following:

Lemma5.1. ¢, and ¢, , , are equivalent if p+ p_. They are not equivalent if
B =B..

To deal with the second condition of Theorem 2, we introduce the following 7,
index between two basis projections E; and E, for which E; — E, is in the Hilbert—
Schmidt class:

G(E, E,) = (— 1)imEcA0-Ey) (5.3)

ByI'{E, AA—E,)}I'=(1—E,;) A E,, ¢ is symmetric in E, and E,. We prove the
following in Sect. 7:

Theorem 3. o(E,,E,) is continuous in E | and E, with respect to the norm topology of
E’s.

The criterion for the equivalence of the restriction of Fock states to 9, is given
by the following theorem to be proved in Sect. 7.

Theorem 4. The restrictions of Fock states @, and ¢, of W tothe even part ', are
equivalent if and only if

(i) E,—E, is in the Hilbert—Schmidt class and

(ii) o(E,E,) = 1.

We shall show the following result in Sect. 6 using this criterion.

Lemma5.2. o(E_,0_E_0_)islif f<f, and —1if B> B..

Proof of this lemma in Sect. 6 consists of two parts, one proving the norm
continuity of E_ in the positive parameters K¥ and K, as long as K¥#K,.
Theorem 3 then implies the constancy of o(E_,0 _E_0_) for K, < K§ and for
K# < K,. Finally o(E,, E,) =1 is explicitly shown for K, =0 and o(E,E,)= —1
for K¥ =0. (8 Z B, if and only if K, Z K¥.)

Theorem 2, Theorem 4, Lemma 5.1 and Lemma 5.2 imply Theorem 1.

6. Equivalence of ¢, and ¢ ;-0 _ (Proof of Lemma 5.1)
(1) Equivalence for K¥ # K,
Denoting g, =(1+0_)/2, we have
IE_0_(1—E_)|fs=411~E )q. E_|fs
T do, T .
=4tim [ S 3 di 00 2R (E_(0,)E ,(0,)) (6.1)

g0 —
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where E, (0) = (1 + V())/2 are eigenprojections of (3.7b) belonging to eigenvalues
+ 1 and

tr(E_(0)E(0,) = {2 - trV(0,)V(0,)}/4
= {1—cos(%(6,) — 9(0,))}/2. (6.2)

If K} +# K,, then y(6) defined by (3.8) is a strictly positive, real analytic function of 0
with a period 27 due to the strict inequality in (3.10) for K§ # K,. Therefore cos 3(6)
and sin 9(0) are real analytic functions of § with a period 2z due to (3.9) and 3(9) =
0 + 6(0). Therefore the integrand of (6.1) is uniformly bounded even at ¢ =0 and
(6.1) is finite.

(2) Non-equivalence for K¥ =K, =K

For cosf # 1 (i.e. 6 # 0 mod 2x), cos 3(0) and sin 9(0) are real analytic in §, and hence
the integrand of (6.1) is integrable except possibly near the point 6, =6, =0.
As 6 -0,y(0) > + 0 with

lim(y(6)/6)* = sinh?2K. (6.3)
-0
Therefore 6(6) - + n/2 (mod 2x) as 6 — + 0 by (3.9). Thus the contribution from
6,0, >0 in (6.1) in a neighbourhood of 6, = 0, =0 is finite while the contribution
from 0,0, <0 is + oo due to

a 0
[d6, | do,{(1 —cos(8, — 0,))* +sin?*(§;, —0,)} ' = oo. (6.4)
0 —a
Therefore ¢, and @, @ _ are disjoint at f = §,.
(3) We now compute the 7, index. We consider K ¥ and K, as parameters. For
K} #K,, ¢z and ¢,;06 _ are equivalent.
Furthermore the continuity of E_ on the parameters K § and K, in the region
K%+ K, can be seen as follows.
Let the functions ¢, 9, V and the projections E, for another parameter K{* and
K’, be denoted by é', 9, V' and E',. Then

IE. —E_| = SL;pll(l = V(@) -@-=v()l/2

=2" ‘SI;P 1Ve) = V()] (6.5)

For K¥ #+ K,, y(0) is real analytic in K¥, K, and 6 by (3.8) and so are cosJ(f) and
sind(0) due to y(6) + 0. Hence V(9) is uniformly continuous in K§, K, and § over a
compact set. In particular, (6.5) tends to 0 as (K{*, K) tends to (K%, K,), and hence
E _ is continuous in the parameter K3 and K, relative to the norm topology except
for K¥ =K,.

Hence, by Theorem 3, we have only to find the Z,-index for (A) K, =0, K} >0
and (B) K¥=0, K, > 0.

Case (A). From (3.8) and (3.9), we have y(0) =2K¥, 6(0)=n —0, 30)==, V(0) =
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-1 0
< 0 1). (Or H=K%H, by (3.5).) Therefore E_=0_E_0_and o(E_,0 _E_6_)

=1 for K, =0 and hence for K¥ > K.

Case (B). We have H = K,H, with the selfadjoint unitary H, given by (2.16). By
E,.=(1+H,/2,h =<§>G(E- A0_(1 —E_)0_)X has to satisfy

21—E_Yh=(1+Hy)h=0, (6.6)
20_(0_E_0 )h=(1—H,)0_h=0. (6.7)
fi

To solve this simultaneous equation, let (g
1

)Eh1=vh with v=2"112
<1 1>. Since v?> =1 and

1 -1
0 U
DH20__<U* 0), (6.8)
we obtain
Ug,=f,U*fi=41, (6.9)
Uf_g,=—0_f,U*0_f,=—0_g,. (6.10)

In particular, we have
U+06_U0)g,=0,Ux+0_U*§_)f, =0. (6.11)

These equations mean that all components of g, except for the n = 1component and
all components of | except for the n = 0 component vanish. Furthermore, the n = 1
component of g, and the n =0 component of f; are equal. Conversely such f; and
g, satisfy (6.9) and (6.10). Therefore

dm(E_ An6_(1—-E_)0_)=1. (6.12)
Hence ¢(E_,0 _E_0_)= —1 for K} <K,.

7. Equivalence Criterion for the Fock Representation of the Even Part 2%

Proof of Theorem 4. Let ¢, , and @, , denote the restrictions of ¢y, and ¢y to A%.
Ifp,, and ¢, areequivalent, then ¢ and ¢, must be equivalent due to a result of
Stratila and Voiculescu (Sect. 2.7 of [17]). In view of Theorem 1 of [3], this implies
that the condition (i) is a necessary condition.

We now assume that (i) holds. We follow the proof of Lemma 9.4 in [3]. There
exists a Bogoliubov transformation U which does not change E(1—E,,)(j =1, 2)
and changes E,E,_, to E,E, ,, where

Enp={E, A =E)} +{(1 - E\) A E,}, (7.1)
namely

Ey=U*E,U=E,(1~E, ) +EE,,. (72)
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The Bogoliubov automorphism of AF induced by this U is inner and the
implementing unitary operator Q(U) belongs to Af, o= + or — according to
whether the Z,-index (5.3) is even or odd. Under the condition (i), there is another
Bogoliubov transformation R(E}/E,), which brings E} to E,

R(E3/E\)*E45R(ES/E,) = E,, (7.3)

and which is implemented in the Fock representation 7, associated with ¢ by a
unitary operator Q(R(E}/E,)) in (A% ). (In the proof of Lemma 9.4 of [3], it is
implemented by a limit of a complex multiple of unitary elements Q(g,), in the
notation of Lemma 9.3, which is of a form 7, (expi(B,HB)/2) according to Sect. 8 of
[3] and belongs to 7, (A% ).) Therefore the cyclic representation r, , associated with
@, . (which is the restriction of the cyclic representation 7, of A* associated with ¢
to the subalgebra A% and to the subspace (AX ¢,), where &, is the cyclic vector for
¢g,) 1s equivalent to the representation r,, or r, _ through the unitary operator
Q(R(E4/E ), (Q(U)) according to whether the Z,-index is + 1 or — 1, where 7, ,
are the restrictions of 7, | to the closure of r, (A% )¢, &, being the cyclic vector for
¢g,. In view of Lemma 4.2, n, , is equivalent to or disjoint from r, , according to
whether the Z,-index is +1 or — 1.

Proof of Theorem 3. E; A (1 — E,)is the eigenprojection of E, — E, belonging to the
eigenvalue 1. Let EY — EY be in the Hilbert-Schmidt class and 4¢ (>0) be the
distance of 1 from {Spec (E — E9)}\{1}. Then there exists a neighbourhood 4" of
(E?, E?) such that for any (E,, E,)e/", Spec (E; —E,)c [ —1,1—=3e]U[l —¢, 1].
Then

E=Qn)™' | (Z—(E,—E,) 'dZ (7.4)
jZ-1|=2¢
must be the spectral projection of E, — E, for the interval [1 — ¢, 1]. Since it is of
finite dimension for (E?, E9) and is continuous in the norm topology by (7.4), dim E is
finite and independent of (E,, E,)e /.
Let (E,,E,)e 4" be a pair of basis projections (i.e. 'E;l’ =1 — E;), such that E;, —
E, is in the Hilbert—Schmidt class. Theorem 11 of [3] says that the von Neumann
algebra generated by E; and E,, restricted to an eigensubspace of |E, — E,|
belonging to an eigenvalue not equal to 0 or 1, is isomorphic to the algebra of all
4 x 4 matrices. This means that the multiplicity of such an eigenvalue of [E; — E,|
must be a multiple of 4. Since I'(E, — E,) =(1—E,)—(1—E,)= —(E; — E,), the
multiplicity of an eigenvalue of E; — E, belonging to an eigenvalue not equal to O or
+ 1 must be even. Due to the constancy of the dimension of E, the multiplicity of the
eigenvalue 1 of E, — E, is even or odd according to whether the multiplicity of the
eigenvalue 1 of EY — E? is even or odd. Namely we have the constancy of the Z,-
index o(E,,E,)=0o(E?,E9) in N.
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