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Abstract. We investigate the state on the C*-algebra of Pauli spins on a one-
dimensional lattice (infinitely extended in both directions) which gives rise to the
thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model
(with nearest neighbour interaction). It is shown that the representation of the
Pauli spin algebra associated with the state is factorial above and at the known
critical temperature, while it has a two-dimensional center below the critical
temperature. As a technical tool, we derive a general criterion for a state of the
Pauli spin algebra corresponding to a Fock state of the Fermion algebra to be
primary. We also show that restrictions of two quasifree states of the Fermion
algebra to its even part are equivalent if and only if the projection operators Eί

and E2 (on the direct sum of two copies of the basic Hubert space) satisfy the
following two conditions: (1) El — E2 is in the Hubert-Schmidt class, (2) E± Λ (1
— E2) has an even dimension, where the even-oddness of dim £1 Λ (1 — E2) is
called Z2-index of E1 and E2 and is continuous in E1 and E2 relative to the norm
topology.

1. Main Results

We consider the two-dimensional Ising model with the Hamiltonian (with the free
boundary condition)

/ L-l M L M-ί

HLM(ξ)=-( Σ Σ W,+u+ Σ Σ Wu
\i=-Lj=-M i=-Lj=-M

where ξtj = ± 1 is the (classical) spin at the lattice site (z'J)eZ2, and Jί and J2 are
positive constants. We are interested in the thermodynamic limit (L,M-> oo) of the
Gibbs ensemble average

βHLM(ξ\ (1.2)
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where the sum is over all configurations ξ = {ξ^ }, β ^0, and F is a function of
ξij,\i\ rg /, |;| ^m for some /^ Land m^M.

There is the following transfer matrix method [9] of expressing it in terms of a
state on the C*-algebra $ίp generated by Pauli spin matrices σ(

x\ σ{

y

l\ σ(

z

i} on sites ieZ
of the one-dimensional lattice Z.

By identifying a function oίξ. = ± 1 and ζ( = ± 1 as the (ξj9ξfi matrix element of

a linear combination of 2 x 2 matrices 1, σ(

x

j) = I ), σ(

y

j} = I ) and

σϋ) _ we have ^e identification

ι Σ

M ^ Γ T M-l

xexp K* X σω exp
j=-Λί

(1.4)

where KJ = βJl(j= 1,2),

Kf = (l/2)log{cothK1}, (1.5)

and £=(£U' = (£j). Then

2 j=-M J

= (TL

MΩM9FβMThΩM)/ZLM, (1.8)

where FβMEWp. (For example, if F = γ[ Ft with Ff = F ί(ξ ί >_O T...ξ ίJ, then

FβM=TM

lF_lTMF_l+1...TMFlTM

l with >. = FM"m)-Ό.)

The L->oo limit selects the unique unit eigenvector ΏM = ΩM(£) (£>M(£)>0)
belonging to the largest eigenvalue of TM.

In M-+OO limit, FβM is known to converge to an element Fβ of S2ίp (it is

α^ ί(F_/)...αf(F_1)F0α
M

ί(F1)...αM

ίί(F ί) for α]f(x) = TM

lxTl

M, which converges for
all integers /, see [2]), whilst the limit of the vector state by ΩM

φβ(d)= lim (ΩM,αί2M) (1.10)
M-^oo
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will be explicitly given in Sect. 2, so that

φβ(Fβ)= lim lim<F>L M . (1.11)
M —>• co L-» oo

Our main result is the following:

Theorem 1. The cyclic representation of 21F associated with φβ is factorial ί/0^
β ^ βc, whilst it is non-factorial with 2-dimensional center (for the weak closure) if
β > βc, where βc is the unique value of β > 0 for which K^ — K2-

The two-dimensional Ising model with nearest neighbour interactions was
shown to have a phase transition in [13]. There is a critical (inverse) temperature βc

such that the spontaneous magnetisation m* = 0 for β < βc, and m* =J= 0 for β > βc.
Moreover for β < /?c, a unique equilibrium state exists, whilst for β > βc, there are
exactly two distinct extremal equilibrium states [1, 5]. Schultz, Mattis and Lieb
[15] reformulated the Onsager-Kaufman transfer matrix treatment [7, 8] using a
Fermion algebra 2IF. Now the even subalgebras of 21F and 21F are canonically
isomorphic, even though the algebras 21F and 2ίF'themselves are not (for the system
infinitely extended to all directions), and so one has a correspondence between even
states on the Pauli spin algebra 21F and even states on the Fermion algebra 21F. For a
two dimensional lattice, infinitely extended in all directions, the Gibbs state in the
thermodynamic limit induces a pure (hence primary) Fock state on the Fermion
algebra 21F [14,11,16]. In [11] Lewis and Sisson discussed how the phase transition
manifests itself by a jump in the index of a Fredholm operator associated with the
Fock state. Subsequently, Lewis and Winnink [12] showed that the phase transition
also reveals itself in the restricted state on the Fermion algebra 2IF([1, oo)) of a half-
line (regarded as a subalgebra of 2ίF). The restricted state is a non-Fock quasi-free
state. It is primary for β < βc9 and non-primary for β > βc. Again this involves the
computation of an index (mod 2) of a Fredholm operator. For a half lattice, the Pauli
spin algebra 2ίp([l, oo)) is canonically isomorphic to 21F([1, oo)), and Kuik in [10]
showed that (for periodic boundary conditions) the thermodynamic limit of the
Gibbs state induces precisely the above restricted state on 2ίF([l, oo)). Hence for a
half lattice, the manifestation of the phase transition is apparent.

In the present case of a two dimensional lattice, infinitely extended to all
directions (in contrast to a half lattice), the state for the Fermion algebra is pure
(Fock state) for all β, but our Theorem 1 shows that the phase transition manifests
itself in the state for the Pauli spin algebra, which is primary for 0 ̂  β g βc and non-
primary for β > βc.

2. Correspondence of Pauli and Fermion Algebras

Following [4], we consider the C*-algebra 21F (the Fermion algebra) generated by
annihilation and creation operators ci and cf (z'eZ) satisfying the canonical
anticommutation relations (CAR's):

[ci,cj]+ =[c*,c*]+ =0,[ci9c*]+ =^.1. (2.1)



492 H. Araki and D. E. Evans

Defining the automorphism Θ_ of $1F satisfying

Θ- c. if i-C
(2.2)

we construct the crossed product Φ = 2ίF x Θ _ Z2, which is generated by <2IF, and
TeΦί satisfying

T2 = 1, T* = T, (2.3)

Ta=Θ_(a)T (aeMF). (2.4)

The Pauli spin algebra 21F can be identified with a C*-subalgebra of 21 generated by

σ^ = 2c*c,-l, (2.5)

(2.6)σ<Λ = ΓS/c, + cΫ), σ</> = TSji(Cj - cf),

0 .

Π*?'
1

j
Π σ«

if j > l ,

if 7=1,

if j< l .

Let Θ be the automorphism of tyi satisfying

θ(cj=-ci9 Θ(T)=T.

We have

Θ(σ(

z

j}) = σ(

z

j\Θ(σ(

x

j}) = - σ(J\Θ(σ(

y

j}) = -

The Fermi on algebra tyίF is split into even and odd parts:

:Θ(a) = ± a}.

Accordingly

σ, σ' = ±

By the relation (2.5) and

n(i)n(i+l) _(„ _ (.*σxσx —\cι 6;

TM is given, up to a positive coefficient, by

where

T'M =

_!/-(£/*
"

17* -

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



C*-Algebra Approach to the Ising Model 493

(Uf)k = Λ+1,(t/*Λ = Λ-Λ/ = (Λ)ε/2(Z)), (2 17)

and we have used the following notation of [3]:

f = (fj),g = (g (2.18)

mn

for an orthonormal basis {en} of

2©/ 2;/. = 0.=0 if \j\> M\. (2.20)

We note that Hj ( j = l , 2 ) satisfy

where Γ( ) = f and £M(/ι)* =
/

Hf=Hj9 ΓHj + HjΓ = Q, (2.21)

M(/ι)* = £M(Γ/ί).

Let HM be the unique selfadjoint operator satisfying

e2HM

 = eKtHίeiKrH" eκ2n» ? (2.22)

where Hf is the restriction of if. to /2({ - M,. . . ,M }). Due to trσ^'} = trσ^} = 0, we
have det eHM = 1. Since the right-hand side of (2.22) is analytic in Kf and K2, so is H
for all real K? and K2. By repeated use of (8.48) in [3] (also see the definition (8.23)),
we have

e(BM,HV] = T'M9 (2.23)

where the possible sign + 1 multiplying T'M (according to the use of (8.48)) is -f- 1
because it is + 1 for K* = K2 = 0, and both sides of (2.23) are real analytic in K^ and
K2.

3. The State φβ

Let E*!!9 EQ and E™ be the spectral projection of HM for ( - oo ,0), {0} and (0, oo). Due
to (2.21), ΓE^Γ = E^, [Γ,E0]=0. Let {ev} be a complete orthonormal basis of
E™ tf M, satisfying HMev = λvev(λv > 0), and set bv = B(ev). Due to B(h)* = B(Γh) and

[B(hJ*9B(h2) ]+=(hMl, (3.1)

{bv} satisfy CAR's among themselves. (Note that {Γev} is an orthonormal basis of
E*UjfrM satisfying HMΓev = - λvΓev.) Furthermore

(BM,HMBM) = Σλv(bvbΐ - b?bv) = £AV(1 - 2b*bv). (3.2)
V

Therefore the eigensubspace of (BM,HMBM) belonging to the largest eigenvalue
consists of vectors Ω (in /2({1, — 1}2M + 1)) satisfying bvΩ =0 for all v and has the
dimension 2dim£?.
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For finite K^ , all matrix elements O{^*(^M^^BM) are strictly positive and hence the
same is true for TM. By the Perron-Frobenius theorem, the largest eigenvalue of TM

is non-degenerate as is claimed in Sect. 1.
In the finite dimensional case, one can view the Pauli algebra $ί PM generated by

σ(

x

j), σ(

v

j), σ(l\ \j\ ̂  M as the Fermion algebra generated by c>. and cf related to σ's by
-M -M

(2.5) - (2.7) (c's replaced by c's) with the difference that T = Π σij) = Π (2<¥* " *)•
j = o j = o

Still we obtain the same expression for TM, and hence we conclude that the largest
eigenvalue of (BM,HMBM) must be non-degenerate, which implies E% = 0 and

l-EM = E™ = ΓEMΓ. (3.3)

We now see that the vector state φ^(a) = (ΩM,aΩM) of 2ί +M has the property that

h)*BM(h)) = Q if heE™3fM. (3.4)

Any state φ on $ί P

+

M has a (unique) extension to a <9-invariant state φ on the Fermion
algebra MFM (generated by cj and cf, \j\ ̂  M) by φ(a) = φ(a+), a±=(a± Θ(a))/2,
aetyίFM. The extended state φ must be the Fock state, for which bv and fc* act as
annihilation and creation operators due to (3.4). Such a state has been denoted as φp

in [3] with P = E™ satisfying property (3.3) for a "basis projection."
In the limit of M -> oo, UM and (17*)M (restrictions of 17 and Ϊ7* to the subspace

Jf M, which are no longer unitary) tend strongly to U and 17*. Hence Hf tends to

Hj(j = 1, 2) and HM to H defined by

e2H = eK2H2e2KΪH,eK2H2^ ^* = ft (3^)

Due to the property ΓJFf Γ = - H7 , H also satisfies ΓHΓ = - H.
We need the following result:

Lemma 3.1. H does not have a point spectrum at 0.
Before going into its proof, we describe its consequence. Since H does not have

the point spectrum at 0, Lemma 3.3 at the end of the section implies

lim£^ = £±, (3.6)
M-+OO *

where E_ and E+ are spectral projections of H for ( — oo,0) and (0,oo). This means
that the limit of φ^ as M -» oo is the restriction of the Fock state φE on WF to

^-^.The automorphism Θ on $ίPM can be implemented by a unitary operator
M

U(Θ)= Y[ σ(

z

j}. By Θ-invariance of HM, ΩM is 17(0) invariant and hence
j= -M

(ΩM,aΩM} = 0 if Θ(a)= -a, a^^PM. Therefore φβ is also Θ-invariant and is
determined by its restriction to Wp

+ , i.e. φβ(a) = φβ(a+\ a+ =(a+ 0(a))/2e^lp

+ for
any ae$lp. Therefore we obtain the following

Lemma 3.2. φβ is the unique Θ-invariant extension, to 2ίp, of a state φ£ on tyίp

+ = tyίF

+ ,
where φ^ is the restriction, to tyίF

+,ofthe Fock state φE_ on WF andE_ is the spectral
projection of H (given by (3.5)) for ( — oo,0).
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We now prove Lemma 3.1. The unitary operator U has the spectral decom-
2π

position U = J eiθdEu(Θ) with a simple Lebesgue spectral measure on [0, 2π], as is
o

well-known from the theory of Fourier series. Thus H = j H(θ)dEv(θ) with θ-
dependent 2 x 2 matrix H(θ), given by

2H(θ)=-γ(θ)V(θ), (3.7a)

V z sin 9(0) -cos

where γ(θ) ̂  0 is determined by

cosh2K*cosh2K2 - sinh2K*sinh2K2cos# - coshy(#), (3.8)

and δ(θ) = 9(θ) - θ is determined by

- sinh2K* cosh2£2cosθ)9 (3.9a)

(3.9b)

(See [14, 11, 16].) The right-hand side of (3.8) is not 1 except for discrete values of θ
satisfying cos0 = 1 (and only if Kf = K2) due to

|sinh2K*sinh2K 2cosfl | + 1 ̂  sinh2K*sinh2K2 + 1

Thus δ(θ) is well-defined (modulo 2π) by (3.9) for all θ if K* £ K2 and for all θ φ 0
(modulo 2π) if Kf = K2. (If Kf - K2, γ(θ) = 0 for θ = 0 and any value of 9(0) leads to
the same H (0).) Since the matrix part of (3.7) is selfadjoint unitary, H(θ) does not have
an eigenvalue 0.

Lemma 3. 3. Let lim An — A, En and E be the spectral projections of An and A for an
(infinite or finite) interval (b, a) either including or not including the eigenprojections of
a and/or b. If a and b are not eigenvalues of A, then

limEn=E. (3.11)

Proof. It is enough to treat the case of b = - oo, a finite because the case of α = oo, b
finite will follow by considering — An -> — A and the case of α and b finite will follow
by taking the product of projections for the two infinite cases.

For any given vector ψ and ε > 0, there exists Φ belonging to the A-spectral
subspace for the complement of the interval (a — δ, a + δ) for some δ > 0 and
satisfying || ψ - Φ \\ < ε. Since En is uniformly bounded, it is enough to prove

HmEnΦ = EΦ (3.12)

for such Φ.
However, on the A-spectral subspace for the complement of the interval (a — δ,

a + <5), we can apply Theorem 2 of [6] to the characteristic function of the interval
(α, b) (the endpoints a and/or b included or not included according to the definition
of En) and obtain (3.12).
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4. A General Criterion for Triviality of Center

In this section, we develop a method of deciding whether φβ is factorial from a
property of the projection E_.

We consider the following general situation. Let $ί be a unital C*-algebra with
two automorphisms α and β satisfying

α

2 =/? 2 = l, ocβ = βa, (4.1)

and with a unitary element U satisfying

α(l7)=-l7. (4.2)

Let $1 be the crossed product of 2ί by β action of Z2, which is generated by $ί and
TeSI satisfying

T2 = 1, T* = T, Ta = β(a)T (αes2I). (4.3)

Let

(α) = ± α}. (4.4)

Let

93 = 2l+ + Γ9l_. (4.5)

It is a C*-subalgebra of $. (Note that 2X± are ^-invariant.) We extend α and β to $
by

ά(α + Tfe) - α(α) + Tα(fe), (4.6)

β(a+Tb) = β(a)+Tβ(b), (4.7)

where α, 6e2ϊ. For an α-invariant state φ of $X, there corresponds a unique ά
invariant state φ® of 93 which is an extension of the restriction of φ to 21 + .

In our application SI = 9IF, α = ®, β = Θ_, » = «p, φ93 = <^ and 17 - 2'1/2

(̂  -f / f ) for any fixed /. Our claim in the above general situation is the following:

Theorem 2. Assume that φ is an ^-invariant pure state of*Ά. Then φ® is not pure if and
only if

(1) φ and φoβ are equivalent and
(2) φ+ = φ\tyί+ °β are not equivalent.

If φ8 is not pure, it is a mixture of two non- equivalent pure states.
The proof is divided into several lemmas.

Lemma 4.1. Ifφ is ^-invariant ana pure, then φ+ is pure.

Proof. Let p = (l+α)/2. Then φ+-+φ = φ+°p and φ^>φ+=φ\tyi+ yield a
bijective affine map between states φ+ of $I+ and α-invariant states φ of $1. Hence
φ+ is pure if and only if φ is an extremal α-invariant state. In particular, if φ is α-
invariant and pure, then φ+ is pure.

Lemma 4.2. If an u-invariant state φ ofW is pure, then φ+ and φ_ = φ+ oAd(7 are
disjoint. (The disjointness refers to the associated cyclic representations 0/21+.)

(Note that UaU*eVl+ if αe$l+ due to α(E7)= - U.)
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Proof. Let jf^, nφ and ξφ be the (GNS) triplet of a Hubert space, a representation of
91 and a cyclic vector associated with φ. Due to α-invariance of φ,

άfφ = je+®je_, ^±=πφ(K±}ξφ. (4.8)

,πφ+aτulξφ can be identified with JT±,π± = (πφ |9I+)|Jf± and ξ+ - ξφ,

ξ- = nφ(ϋ)ξφ.^By Lemma 3.1, φ+ and hence φ_ = φ+ oAdl/ are pure. Therefore π±

are both irreducible. We now derive a contradiction assuming that they are
equivalent.

Since π± are irreducible, there exists a unitary W0eπ+(2l+)/ /, AdF^0 on π+(9ί+)
implementing Ad (7 on 9l + . Since π+ ~π_, there exists a unitary We 7^(91+)", Ad W
on 71^(91+) implementing Ad U on 91 +. Since (Ad W)W =W, W has to commute
with πφ(U). For <2E9ί_, flί/*e9I + , and

) = (Ad W)(πφ(aU*)πφ(U))

= πφ( { (Ad U)(a U*) } U) = πφ(( Ad ί/)α). (4.9)

Therefore Ad W coincides with Ad πφ(U) on πφ(9ί) and hence on π^(9l)". Since π^ is
irreducible, ̂  = c π^(C/) for some complex number c of modulus 1.

On the other hand, by α-invariance of φ, α can be extended to an isomorphism α of
πφ(9l)". By ^Eπφ(SI+)", we have α(WK)= W9 whilst α(C/)= - C7. This contradicts
with W = cπφ(U)9 W*W=l.

Lemma 4.3. Let φ be an ^-invariant pure state o/?l. The states φ+ = (p\W+ and
φ+ oβo Ad UofW+ are equivalent if and only if

(1) φ is equivalent to φ°β and
(2) φ+ is not equivalent to φ+°β.

Proof. If φ+ ~ φ+°β°AάU, then states φ=φ+°p and φ°β°λdU =
φ+°β°ΔάU°p of 91 are equivalent due to a result of Stratila and Voiculescu
(Sect. 2.7 of [17]). Since Ad U is inner on 91, we obtain φ~'φ°β. (Note that
[α, Ad U] = 0 due to α(U) = - U.)

Now assume that φ~φoβ. Since πφ\W+ =π+®π_ and π± are disjoint by
Lemmas 4.1 and 4.2, we have two alternatives:

( A ) π + ~ π + o β disjoint from π _ ~ π _ ° β ,
( B ) π + ^ π _ ° β disjoint from π__~π+°β.

The desired conclusion π+ ~π_cβ(~π+ΌβoAdU) holds in and only in case (B),
which is characterized by φ ~ φoβ and π+ disjoint from π+ oβ.

Lemma 4.4. Ifφ+ and φ+ o^oAd U are disjoint, then φ53 is pure.

Proof. Let Jf£,π£ and ̂  be the GNS triplet for the state φoβ. Let (4.10)

β(ba2))ξφ®πP(aa
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Then the restriction of πφ(93) to

(4.12)

(denoted π®) yields the cyclic representation of 93 associated with φ®.

Since π®|9ί + ~π+@π_°β and the assumption implies the disjointness of π +

and π_oβ (due to π _ o β = π+oAάUoβ = π+ oβoAdβ(U)~π + °β°Ad[/ because of

I7*j8(l/)e9l + , any Xeπ®(9l+)' is of the form

(4.13)

If χeπ»(9l)', X must commute with π®(Tί/), which connects J^ + with Ĵ _ and

hence Λ = μ. This proves that π® is irreducible.

Lemma 4.5. If φ+ is equivalent to φ+ ° β° Ad [/, f/ien φ93 is a non-trivial mixture
of two non-equivalent pure states.

Proof. Since π+ is irreducible and φ+~φ+oβoAd U, there exists a unitary

^eπ+ί^+y', Ad P^o on π + (?I+) implementing )8o Ad C7 on 81 + . By π+ ~π + °βoAd
17, there exists a unitary Weπ®(9l+)", such that Ad VF on π®(9l +) implements β o Ad

U on 9ί + . Since (Ad W)W =W9W has to commute with π®(Tl/)*. Let

(4.14)

For any α_eT^ί_, α_ =(a_TU)(TU)* and hence

= <((0o Ad !/)(*_)), (4.15)

because (βoMU)(TU)= β(UT) = β(U)T =TU. Therefore K is in the center
π®(93)'n 7^(93)". It is non-trivial because it connects f̂ + and jtf^. Thus φ® is not
pure.

Since the restriction of π® to 91 + is a sum of two equivalent irreducible

representations, π®(9l + )7 is isomorphic to the algebra of 2 x 2 matrices and π®(93)'
has to be its non-trivial proper *-subalgebra, which must be a two-dimensional

commutative algebra, coinciding with the center of π®(93)". Then φ* is a no n- trivial
mixture of two non-equivalent pure states.

5. Application of the General Criterion

For φβ discussed in Sect. 3, which is a Fock state φE, the state φβ°Θ_ is the Fock

state φθ_E_θ_, where

By a general criterion for two Fock states to be equivalent (for example, see Theorem

1 of [3]), the condition (1) of Theorem 2 is satisfied if and only if E_ — Θ_E_Θ_ is in
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the Hubert-Schmidt class. We have

|| E_ -Θ_E_Θ_\\^ = tr((l-E_)θ_E_θ_(l-E^

+ E_Θ_(1-EJΘ_E_) = \\E_Θ_(1-E_)\&S

+ \\(l-E_)θ_E_\\2

m=2\\E_θ_(l-E_)\\^ (5.2)

where the last equality is due to Γθ _Γ = #_ and ΓE_Γ = (1 - E_). By evaluating
this quantity in Sect. 6, we obtain the following:

Lemma 5.1. φE and φ θ _ E _ θ _ are equivalent if β =/= βc. They are not equivalent if
β=βc.

To deal with the second condition of Theorem 2, we introduce the following Z2

index between two basis projections E1 and E2 for which E1 — E2 is in the Hilbert-
Schmidt class:

σ(El9E2) = ( - If "̂  Λ( i-£ 2 ) > (53)

By Γ{E1 Λ (1 — E2)}Γ = (1 — EJ Λ E2, σ is symmetric in E± and E2. We prove the
following in Sect. 7:

Theorem 3. σ(E1,E2) is continuous in Eί and E2 with respect to the norm topology of
Fs.

The criterion for the equivalence of the restriction of Fock states to ^ί+ is given
by the following theorem to be proved in Sect. 7.

Theorem 4. The restrictions of Fock states φEι and φE2 of $IF to the even part tyF

+ are
equivalent if and only if

(i) EI — E2 is in the Hilbert-Schmidt class and
(ii) σ(Eί9E2)=L
We shall show the following result in Sect. 6 using this criterion.

Lemma 5.2. σ(£_, # _ £ _ # _ ) is 1 if β < βc and ~lifβ>βc.
Proof of this lemma in Sect. 6 consists of two parts, one proving the norm

continuity of E_ in the positive parameters X* and K2 as long as K f = £ K 2 .
Theorem 3 then implies the constancy of σ(E_,θ _E_Θ _) for K2<Kf and for
Kf < K2. Finally σ(£1?£2) = 1 is explicitly shown for K2 -0 and σ(£1?£2) - - 1
for K* = 0. (j8 < βc if and only if K2 < X*.)

Theorem 2, Theorem 4, Lemma 5.1 and Lemma 5.2 imply Theorem 1.

6. Equivalence of φβ and φβoθ_ (Proof of Lemma 5.1)

(1) Equivalence for X* 7^X 2

Denoting q± = (1 ± θ_)/2, we have

= 41im f i f |l-e

ί<β'-βί)-|-2tr(£_(θ1)£+(θ2))> (6.1)
Λ

 J ΊTΓ J ΊTΓ
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where E±(θ) = (1 ± V(θ))/2 are eigenprojections of (3.7b) belonging to eigenvalues
± 1 and

= (2 -

(6.2)

If Xf ^ K2, then y(θ) defined by (3.8) is a strictly positive, real analytic function of θ
with a period 2π due to the strict inequality in (3.10) for K f = £ K 2 . Therefore cos$(#)
and sin 9(θ) are real analytic functions of θ with a period 2π due to (3.9) and 9(θ) =
θ + δ(θ). Therefore the integrand of (6.1) is uniformly bounded even at ε =0 and
(6.1) is finite.
(2) Non-equivalence for Kf = K2 = K
For cosθ ψ 1 (i.e. θ φ 0 mod 2π), cos ,9(0) and sin 9(9) are real analytic in θ, and hence
the integrand of (6.1) is integrable except possibly near the point θi = Θ2 = Q.
As 0_>θ,y(θ)->+0 with

lim(y(0)/θ)2 = sinh22K. (6.3)
Θ-+0

Therefore <5(θ)-> ±π/2 (mod 2π) as θ-> ±0 by (3.9). Thus the contribution from
Θ1Θ2 > 0 in (6.1) in a neighbourhood of θί = Θ2 = 0 is finite while the contribution
from 0^ <0 is +00 due to

j J dθ2{(l-cos(θ1-Θ2))2^rsin2(θ1-θ2)}-1 = oo. (6.4)
0 -α

Therefore φβ and φ^Θ _ are disjoint at /? = /?c.
(3) We now compute the Z2 index. We consider Kf and K2 as parameters. For

K\ i^K2, φβ and φβ°Θ _ are equivalent.
Furthermore the continuity of £_ on the parameters Kf and K2 in the region

Kf ^ K2 can be seen as follows.
Let the functions δ, B, V and the projections E± for another parameter K[* and

K'2 be denoted by δ\ 9\ V and E'± . Then

\\E_-E'_\\=sup\\(l-V(θ))-(l-V'(θ))\\β
θ

= 2-1sup\\V(θ)-V'(θ)\\. (6.5)
θ

For Kf 7^ K2, y(θ) is real analytic in £*, K2 and 0 by (3.8) and so are cosδ(θ) and
sinc>(#) due to y(θ) ̂  0. Hence V(θ) is uniformly continuous in Kf, K2 and θ over a
compact set. In particular, (6.5) tends to 0 as (Xi*5 K2) tends to (Kf, K2\ and hence
E_ is continuous in the parameter Kf and K2 relative to the norm topology except
for Kf=K2.

Hence, by Theorem 3, we have only to find the Z2-index for (A) K2 = 0, Xf > 0
and(B)/e* = 0, K2>0.

Case (A). From (3.8) and (3.9), we have γ(θ) = 2K*, δ(θ) = π-θ, 9(0) = π, V(θ) =
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(Or H = K*Hί by (3.5).) Therefore £_ =Θ_E_Θ_ and σ(£_, #_£_#_)

= 1 for K2 = 0 and hence for K^ > K2.

Case (B). We have H = K 2Ή 2 with the selfadjoint unitary H2 given by (2.16). By

E±=(l±H2)/29h = ('f )e(£_ Λ θ_(l - £_)Θ_)JΓ has to satisfy

2(1 - £_)Λ = (1 + H2)h = 0, (6.6)

2θ_(θ_E_θ_)h = (l- H2)θ_h = 0. (6.7)

To solve this simultaneous equation, let ( 1\ = h1=υh with y = 2~ 1 / 2

i ι\ V ί l'
. Since t;2 = 1 and

1 -l)

^ =-(?/* oϋ) (6*8)

we obtain

(6-9)

/! = - θ_0ι (6.10)

In particular, we have

(I/ + θ_UΘ_}gl = 09(U* + θ_ i/*0_)/! - 0. (6.11)

These equations mean that all components of gl except for the n = 1 component and
all components of/\ except for the n = 0 component vanish. Furthermore, the n = 1
component of gv and the n = 0 component of/i are equal. Conversely such/! and
0A satisfy (6.9) and (6.10). Therefore

dim(£_ Λ θ_(l - £-)#-) = 1- (6 12)

Hence σ ( E _ , θ _ E _ θ j = -Ifor K*<K2.

7. Equivalence Criterion for the Fock Representation of the Even Part MF

+

Proof of Theorem 4. Letφ 1 + andφ 2+ denote the restrictions of φEί and φE2 to ί̂ + .
If Φi + and φ2+ are equivalent, then φ£ι and φE2 must be equivalent due to a result of
Stratila and Voiculescu (Sect. 2.7 of [17]). In view of Theorem 1 of [3], this implies
that the condition (i) is a necessary condition.

We now assume that (i) holds. We follow the proof of Lemma 9.4 in [3]. There
exists a Bogoliubov transformation U which does not change £ .̂(1 — Eπ/2) (/ = 1, 2)
and changes E2Eπ/2 to E^Eκf2, where

Eπ/2 = {E, Λ (1 - £2)} + {(1 - EJ Λ £2}? (7.1)

namely

E'2 = U*E2 U = £2(1 - £π/2) + £,£π/2. (7.2)
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The Bogoliubov automorphism of $ίF induced by this U is inner and the
implementing unitary operator Q(U) belongs to 9l£, σ =+ or — according to
whether the Z2-index (5.3) is even or odd. Under the condition (i), there is another
Bogoliubov transformation R(E2/E1), which brings E'2 to E1

R(E'2/Ei)*E'2R(E'2/El) = E1, (7.3)

and which is implemented in the Fock representation π: associated with φEι by a
unitary operator Q(R(E'2/E1)) in π^SI^)". (In the proof of Lemma 9.4 of [3], it is
implemented by a limit of a complex multiple of unitary elements Q(gn\ in the
notation of Lemma 9.3, which is of a form π1(Qxpi(B,HB)/2) according to Sect. 8 of
[3] and belongs to π^SI+).) Therefore the cyclic representation π2 + associated with
φ2+ (which is the restriction of the cyclic representation π2 of 2F associated with φE2

to the subalgebra $1F

+ and to the subspace (WF

+ξ2), where ξ2 is the cyclic vector for
φE2) is equivalent to the representation π1 + or π1_ through the unitary operator
Q(R(E'2/El))πί(Q(U)) according to whether the Z2-index is + 1 or - 1, where π1 ±

are the restrictions of πjϊl + to the closure of π1(2I + )^1, ξί being the cyclic vector for
φEι. In view of Lemma 4.2, π2+ is equivalent to or disjoint from π1 + according to
whether the Z2-index is + 1 or — 1.

Proof of Theorem 3. £, Λ (1 — E2) is the eigenprojection oΐE1 — E2 belonging to the
eigenvalue 1. Let £° - E°2 be in the Hubert-Schmidt class and 4ε(>0) be the
distance of 1 from (Spec (£j — £2

))}\{1}. Then there exists a neighbourhood^ of

(£?, £§) such that for any (£ι » EJ&tf, Spec (E! - £2) c [ - 1, 1 - 3ε] u [1 - ε, 1].
Then

£ = (2πO"~1 J (Z-(El-E2)ΓldZ (7.4)
|Z- l | = 2ε

must be the spectral projection of E1 — E2 for the interval [1 — c, 1]. Since it is of
finite dimension for (E°, £^) and is continuous in the norm topology by (7.4), dim E is
finite and independent of (£ls E2)β/lΛ

Let (£1}£2)e ^Γ be a pair of basis projections (i.e. ΓEyΓ = 1 — E^), such that £1 —
£2 is in the Hubert-Schmidt class. Theorem 11 of [3] says that the von Neumann
algebra generated by E1 and £2, restricted to an eigensubspace of \Eί — E2\
belonging to an eigenvalue not equal to 0 or 1, is isomorphic to the algebra of all
4 x 4 matrices. This means that the multiplicity of such an eigenvalue of \E1 — E2\
must be a multiple of 4. Since Γ(Eί - E2)Γ = (1- EJ - (1 - E2) = - (E1 - E2)9 the

multiplicity of an eigenvalue of E1 — E2 belonging to an eigenvalue not equal to 0 or
± 1 must be even. Due to the constancy of the dimension of E, the multiplicity of the
eigenvalue 1 of El — E2 is even or odd according to whether the multiplicity of the
eigenvalue 1 of E® — E2 is even or odd. Namely we have the constancy of the Z2-
index σ(£ l 5£2) = σ(£?,£5) in N.
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