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Abstract. The classical Kahler equation for an inhomogeneous differential
form is analysed in some detail with respect to the physical properties of its
Minkowski space solutions. Although the components of the field contain only
integer representations of the Lorentz group for a physical interpretation of the
quantum theory, we impose fermionic commutators. The electromagnetic
interactions are identical to those of a Dirac spinor field with an extra fourfold
degeneracy. Possibilities for the interpretation of the extra degrees of freedom
are discussed.

Introduction

This paper is concerned with a field system possessing certain remarkable
properties. Some of these properties will be analysed mathematically and an
attempt made to relate them to physical properties shared by fermions and bosons.
The dynamics of the field system to be considered was first postulated by Kahler
[1] in 1961 although there is some evidence to suggest that Darwin was aware of a
similar description [2] in 1928. Apart from one notable exception [3] these ideas
appear to have received little further attention. In view of the current enthusiasm
for multicomponent field systems describing bosons and fermions and because of
its natural formulation in arbitrary pseudo-Riemannian spaces, we feel that this
system deserves further investigation.

It is notable that the classical field theories underlying all modern descriptions
of the fundamental interactions between elementary particles can be formulated in
terms of differential forms on space-time i.e. tensors with antisymmetric com-
ponents. This reflects the property that they can be derived from an action
principle which may be globalised with the aid of differential forms. Internal
degrees of freedom associated with the particles may be incorporated by using
forms that take values in appropriate vector spaces, particularly Lie algebras.

When the Stern-Gerlach experiment was interpreted in terms of the intrinsic
spin of the electron, this degree of freedom was also coded into an internal state
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space known as spinor space. The relativistic Dirac equation related this notion to
the Lorentz group with the introduction of a 4-component spinor that carried a
reducible representation of SL(2, C), covering SO(3,1), the Lorentz invariance
group of the Minkowski metric describing flat space-time.

With the incorporation of gravitational interactions with other fields it became
necessary to sharpen the notion of a spinor considerably since the gravitational
effects according to Einstein were attributed to a non-flat space-time manifold.
Such a manifold is said to carry a spinor structure [4] if the bundle of orthonormal
frames with Lorentz structure group can be globally lifted into a bundle of spinor
frames carrying a structure group that covers the Lorentz group. The characteris-
tic properties of spinors under SO (3) rotations of 2π can then be given an
unambiguous meaning at any point of the manifold. However, the existence of a
spinor structure is a topological property that is not shared by all manifolds.

The transport of spinors is defined with respect to a spinor connection
naturally induced from a connection on the bundle of orthonormal frames. In a
theory of interacting fields it is most natural to regard the connection and metric
as among the set of independent dynamical degrees of freedom. It is well known
that theories involving gravitation and spinors constructed in this way lead to
geometries for space-time that have an economical description in terms of a
connection with torsion, and physically imply the existence of self-interactions
among the spinors. Thus the topology of the underlying manifold and the presence
of a spin(l,3) connection with torsion are significant features in the traditional
formulation of field theories involving interactions between fermions and gravity.

In the following we enquire to what extent the notion of "intrinsic spin" can
be accommodated without the notion of a spinor and the associated topological
constraints that arise in arbitrary gravitational fields. Since all the finite dimen-
sional representations of the Lorentz covering group are known, it could appear
fruitless to search for fermionic characteristics by limiting attention to the tensor
representations of the Lorentz group. Nonetheless by broadening the notion of a
physical field to include an inhomogeneous differential form (that is, a physical
field which is a sum of p-forms of different degree) as suggested by Kahler, one can
formulate a field equation [1] which shares many of the properties in Minkowski
space commonly ascribed to a spinor satisfying the Dirac equation.

In Sect. I we derive the Kahler equation from a simple action principle on an
arbitrary space-time manifold. The theory involves a complex inhomogeneous
differential form coupled to gravity using only the underlying space-time metric g
and coupled minimally to electromagnetism with the aid of the 1-form A. After
establishing a certain amount of technology required for our further analysis we
investigate in Sect. II the classical properties of the theory and point out the need
for a proper quantum interpretation. The stress-energy 3-forms are derived and
closed forms associated with electric current and energy-momentum conservation
are discussed in Minkowski space. Using a complete basis of solutions to the
equations in this space we present a straightforward quantisation in Sect. Ill that
enables an identification of the particle states associated with the second quantised
field. In order to better understand the nature of all the states described in these
solutions we analyse in Sect. IV a non-relativistic reduction to a Pauli-Schrδdinger
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equation in the presence of a magnetic field. In this way one can distinguish
between the angular momentum and "intrinsic spin" of the system.

We conclude by pointing out that although several interpretations are possible,
the equation itself possesses properties that may be of some significance when one
contemplates the inclusion of gravitational interactions. Although such effects
may be currently unobservable in 4-dimensions, higher dimensional versions of
this equation may offer a new method of incorporating internal fermionic degrees
of freedom in a natural geometric framework analogous to the Riemannian
description recently given [5] for non-abelian bosonic interactions. It is pointed
out that the Kahler equation also exhibits solutions that are interpretable, at least
classically, in terms of purely bosonic fields. That one equation, involving only the
metric properties of the underlying manifold, contains so much information in its
solutions is one of the prime motivations behind our study. Indeed the system
superficially resembles a superfield in which the anti-commuting basis elements are
constructed solely from the basis of the exterior algebra of the cotangent space of
the underlying space-time. It consequently contains a minimum of extraneous
structure, couples naturally to Einsteinian gravity with a metric-compatible
torsion-free connection and may not be without relevance to supersymmetric
interactions.

I. The Field Equation

The theory to be discussed is formulated in terms of differential forms on space-
time M and intrinsic operations constructed from the maps :

d:Λp(M)^Λp+1(M), (I.I)

*:Λp(M)^Λ4-p(M), (1.2)

ix\Λp(M)-+Λp~\M), XeTxM, (1.3)

where Λ(p\M] is the space of p-forms on M, d is the exterior, ίx the interior
derivative and * the Hodge map defined with respect to the pseudo-Riemannian
metric g of TXM, the tangent space at the point x of M. We define ix by

ίxa = a(X), (1.4)

and

ίx(%Λβ} = ixaΛβ-(*Λixβ for o^jSe/lHM), (1.5)

where Λ denotes the exterior product. Conventions differ somewhat on the precise
definitions of the Hodge map. If 7 is an arbitrary vector field on M then the
metric-dual 1-form Ϋ is defined by

(1.6)

For any oijeAi(M) we define * to satisfy

* ( α 1 Λ α 2 Λ . . . Λ α β ) = ϊδ . . . ϊ δ 2 ϊ 4 l *l (1.6)
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in terms of a choice of 4-form volume element e/L4(M), *1. From the definition
(1.6) one derives the useful relations:

*(Φ^A) = iλΦ, (1.7)

>ί, (1.8)
4

where AeA1(M\ ΦeA(M) = (J AP(M) and ί is a signature for g, taken to be
p = 0

Lorentzian here (t= — 1). We shall call elements of A(M\ E-forms on M. The real
space AX(M) is 16-dimensional and any complex- valued E-form Φ can be
expanded in terms of its complex homogeneous p-form constituents, φ :

4 (P}

*= Σ Φ>
p = 0 (P)

Φ =s,(Φ)= Σ Φf1'
(1) j = o

φ=S2(Φ)^^φjke^ek, (1.9)
(2) j<k

(3)

(4)

The e" are an arbitrary real basis for Λ*(M), and φjk e C. The homogeneous form
projectors Sp obey the rules : 4

1= Σ Sf, (1.10)
p=0

SpSq = δpί}Sp, (no sum), (1.11)

ixS^S^Jx, V Y , (1.12)

dSp = S p + 1 rf, (1.13)

*Sp = S 4 _ p *. (1.14)

Two further important maps are the main automorphism η and the main anti-
automorphism ξ on the exterior algebra of A(M) :

(1.15)

(1.16)

ξα=Σξ ( α, (1.18)

^ α = ( - l ) p α , (1.19)
(P) <i>)

ία=(- l ) [ f α , (1.20)
(p) (p)
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P\ P- is the integer part of -. Clearly ξ andwhere α,/?e/l(M), aeAp(M) and
(p)

commute with themselves and with Sp.
In addition to the exterior algebra over A(M) one can define the associative

Clifford algebra C(Λ\M\g) associated with g. If oc,βeA\M) then this Clifford
product is denoted (see Note added in proof) by xvβ and satisfies

(1.21)

We adopt the same notation η and ξ for the morphisms obeying

(1.22)

(1.23)

and (1.19), (1.20).
There is a natural isomorphism between C(A1(M\ g) and the exterior algebra

over Λ(M). If αeΛ1(M) then the algebras may be related by

α^αΛ+ίg, (1.24)

and the general case induced from v associativity and linearity. Thus for

β), (1.25)

since

Thus from the vector bundle Λ1(M) and the metric g one can work with an algebra
on A(M) involving the products Λ and v satisfying (1.25). Such an algebra is
distributive with respect to addition although it is not associative. It is known as
the Kahler- Atiyah algebra and will be used extensively below. We shall emphasise
the exterior Λ properties of the algebra when integrating differential forms over
the manifold and stress the Clifford product aspects to draw attention to the
"fermionic" content of the field dynamics. It is to be noted however that the
fundamental entities that enter into the forthcoming description are given in terms
of the space-time structure : its cotangent bundle and Lorentz metric. It may be
regarded as a purely pseudo-Riemannian formulation.

The space-time action for any field theory is to be expressed as the integral of a
4-form over the manifold. We consider the action density 4-form

A =ReS4 lηΦ* Λ *dΦ- ~ηΦ* Λ *Φ + /?Φ* Λ *(ieA Λ Φ)l, (1.26)

where Φ is a complex- valued E-form, Φ* its complex conjugate and A a real 1-form
to be associated with the electromagnetic 2-form F = dA. Here S4 is the 4-form
projector defined in (1.9). This action is locally U(l) invariant with

Φ-*eiλeΦ, (1.27)

A-+A-dλ, (1.28)
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for λεΛ°(M). The Hodge * implies a natural metric coupling to an arbitrary
gravitational field. If we introduce the U(l) co variant derivative D = d + ieA Λ and
write S^ = ReSp, then (1.26) may be written:

Λ = S' ηΦ* Λ *DΦ - ηΦ* Λ *Φ V . (1.29)

We work with dimensionless E-forms and μ and e are dimensionless real numbers.
The d and * preserve such a dimensionless structure. One can restore all physical
dimensions appropriately if equations are expressed in a local chart with
dimensionless space-time coordinates (τ, x1, x2, x3) and then transform to standard
coordinates fos^s^s3) which have the physical dimensions of time and length.
For this purpose one needs three standard dimensions, such as c, h and a reference
mass m0. The restoration of physical units follows from the transformations :

τ=^t, (1-30)
n

x*=^s*. (1.31)

If /t is regarded as a function of the E-form components Φ(JV), where (JV) is a multi-

index, then a vector field H/' = ]Γ ((5Φ(Λί)) - - on the space with local coordinates
(N) VΦ(N)

Φ(N) can be used to generate arbitrary diffeomorphisms. The field equation for Φ is
obtained by demanding that

&WΛ = Q, modd, (1.32)

for all such W, where 3?w denotes the Lie derivative with respect to the vector field
W. Since ££w commutes with d, *, and η

< * *
w Λ *Φ- -ηΦ* Λ *jSf^Φ

+ η&wΦ* Λ *(ieyl Λ Φ) + i^Φ* Λ *(eA Λ Jδf^Φ) i . (1.33)

Since S4(oc Λ *β) = S4(β Λ *α) for any pair of E-forms, the second term may be
written S'4(d^wΦ Λ *^Φ*) and dropping an exact form

modd,

(1.34)

Similarly the fourth term in (1.33) is S'A-η^wΦ* Λ *Φ , since S4η = S4, and the

last may be rewritten as

Λ &WΦ Λ *??Φ*) = S'4(ieη^wΦ / \ A / \ *ηΦ*)

= S'4( - ieηg>wΦ* ΛAΛ *ηΦ] . (1.35)
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Since W is arbitrary, the coefficient of η<£wΦ* yields the field equation

*dΦ — d*ηΦ — μ*Φ + i*(eA Λ Φ) — ίeA Λ *^Φ = 0. (1.36)

Applying the map 77* to (1.36) and using **= — η gives

- dΦ + δΦ + μΦ - ieA Λ Φ + i*(&4 Λ *Φ) = 0, (1.37)

where we have introduced the co-derivative

δ = *d*, (1.38)

which is, however, not a derivation. From (1.7) the last term in (1.37) may be re-
expressed as

i * (η * Φ Λ eA) = ieiλ * η * Φ = — zd^Φ. (1.39)

But from (1.24)

AvΦ = AΛΦ + iAΦ, (1.40)

thus the field equation becomes

dΦ-δΦ + ieAvΦ = μΦ. (1.41)

Introducing the further notations

/=d-δ, (1.42)

0 = #+ieAv9 (1.43)

(1.41) can be written

DΦ = μΦ. (1.44)

This is precisely the equation first studied by Kahler [1] and subsequently
discussed by Graf [3].

Some simple properties of the free field system (A = 0) follow by noting that
/2 = (d — δ)2 = A is the Laplace-Beltrami operator. Hence all free field solutions to
(1.44) obey

AΦ = μ2Φ. (1.45)

Since A preserves the degree of each differential form, the homogeneous com-
ponents of Φ also satisfy this equation. Further, solutions of the type

Φ=ψ+-dΨ, (1.46)

where Ψ is a complex E-form, exist provided

δΨ = 0. (1.47)

This follows by applying δ to (1.44) and noting δ2 = 0. Consequently from (1.45)

δdΨ=-μ2Ψ. (1.48)

For example if Ψ is a 0-form one recognises that (1.48) is the scalar Klein-Gordan
field equation while for Ψ a 1-form (1.47), (1.48) describe a massive Proca field.
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II. Classical Currents

In reference [1] Kahler noted that in Minkowski space (1.44) admitted solutions in
£

a Coulomb potential A=-dt that were in exact correspondence with those found

in the Dirac theory of the hydrogen atom. Subsequently Graf [3] identified
Minkowski space Dirac solutions with Kahlerian solutions lying in minimal left
ideals of the Clifford algebra C(Λl(M\g). The decomposition of C(Λl(M),g) into
minimal left ideals can be characterised by a set {PJ of minimal rank idempotent
projectors :

PίvPj = Pίδίj, (no sum), (II.2)

and in general there exist many sets corresponding to different decompositions. It
can be seen that the Kahler equation has Minkowski space solutions which lie in
minimal left ideals by noting that

where V is the Riemannian connection. Furthermore these minimal left ideals are
four dimensional and thus (1.44) may be decoupled into 4 sets of equations. In each
set the components of the minimal ideals are coupled in a way that is isomorphic
to the coupling between the four components of a spinor that satisfies the Dirac
equation.

At the classical level of analysis there is no problem with restricting the class of
solutions to a minimal left ideal and it appears remarkable that all the results of
the Dirac equation in an electromagnetic field then follow from (1.44). However,
the Dirac theory acquires proper cogency only when quantised, and one naturally
expects a complete basis of solutions to be relevant for the second quantisation of
(1.44). Furthermore in a space with an arbitrary gravitational field it is no longer
possible to decouple the equation into sets that involve members projected into
minimal ideals [3].

To prepare the ground for a physical interpretation of a complete set of
solutions to (1.44) we first examine some classical currents associated with Killing
symmetries of Minkowski space and the covariance of the theory under local U(l)
transformations.

From the identity

dS'3(ηΦ Λ*Ψ+Ψ/\ *ηΦ) = S'4(ηΦ Λ */ψ- η/ΦΛ*Ψ) (II.3)

involving any complex E-forms Φ and ψ it follows that if they also satisfy the
Kahler equation then the generic 3-form

j = S'3{ηΦ* Λ

is closed, that is
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The electromagnetic current 3-form, which is the coefficient of arbitrary A
variations of (1.26), is the closed 3-form

If g has Killing vectors Ki9 and J£KιF = Q, then if Φ is a solution to (1.44) so is &KίΦ.
Thus there exists a closed 3-form jκ. for each X.

These 3-forms may be related to the stress 3-forms, τfl, defined from the action A by

where Z generates arbitrary frame variations. For the action (1.26)

ι α Φ Λ * / 7 Φ * > , (II. 9)

where ia = iXa and {Xa} constitute a g-orthonormal frame. The τα constitute the
classical sources for the coupling of the system to Einsteinian gravitation via

J-) ( a b \ f~ι /TT 1 (\\

where the Rab are the curvature 2-forms. For any solution to (1.44)

jKι = - 2Ki

aτa + dS'2(Φ* Λ iKi * Φ + iκΦ Λ *??Φ*), (II. 11)

where X. = J£.αJfα.
For physical interpretation it is useful to perform a 3 4-1 decomposition of

forms on spacetime with respect to a time-like vector and an orthogonal subspace
tangent to a 3-manifold M3. In Minkowski space coordinates it is convenient to
write

g=-dτ®dτ + g (11.12)

in terms of the Euclidean metric g on TXM3. If * is the Hodge map defined with
respect to g then the three dimensional electric current J and charge density ρ are,
respectively, 2 and 0-forms on M satisfying

ίd_J = 09 (11.13)
dτ

jem = J Λ dτ+*ρ. (Π.14)

The total electric charge corresponding to any classical solution is

β= ί *β (Π.15)
M3

We obtain an expression for ρ by performing a 3 + 1 decomposition of the E-form
Φ by writing

(11.16)

with

, (11.17)
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where ε = ± 1 and α(ε) is an E-form on M satisfying

iAoc(ε) = 0. (11.18)
dτ

One might refer to α(ε) as a time dependent E-form on M3. Each Φ(ε) satisfies

φwυpε = φw, (11.19)

where

Pε = ±(l + iεdτ) (11.20)

is a right idempotent projector, since Φ(ε) = 2α(ε)

ι;Pfc. The charge density ρ may be
obtained from the definitions (II. 6) and (11.14) in terms of Clifford products,

ΦΰdτvΦ)9 (11.21)

where it is convenient to define

Φ = ξηΦ*. (11.22)

The bar operation on v products between E-forms obeys

^β = ξη(xvβ)* = $υ*. (IL23)

Noting that

* φ<£) = * α

(ε) Λ dτ + iε * ̂ α(ε) , (11.24)

use of (11.21) produces

*ρw=-εeSf

3(<x,(ε)*Λ *α(ε)). (11.25)

Since

S'3(α*Λ*α) = Σ Vα*)Λ*^α)' (IL26)
p = 0

and each term in the sum on the right is positive, we observe that solutions of the
form Φ(ε) satisfying (11.19) yield a charge density of definite sign specified by ε.

The closed energy-momentum 3-form is obtained by inserting the Killing
d

vector — in (Π.7),
dτ

j^ = S'JηΦ*Λ*g>^Φ + £'^ΦΛ*ηΦ*\. (11.27)
dτ \ dτ dτ )

This may be written in 3 + 1 form as

j f a _ = P Λ d τ + *H, (11.28)
dτ

where IP is the momentum 2-form which satisfies

09 (11.29)
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and H is the Hamiltonian density 0-form. The H may also be expressed in terms of
Clifford products,

(11.30)

Inserting the 3 + 1 decomposition of Φ, (11.17), into (11.30) produces

εS'3 |α
(ε)* Λ *iJ2Wε)^. (11.31)

For a solution Φ(ε) with definite frequency ω we have

, (11.32)

and thus for a given ε it is necessary to restrict the sign of ω to keep the
Hamiltonian positive definite. This feature has a counterpart in the classical Dirac
theory of the electron, where the resolution is afforded by introducing creation and
annihilation operators for all solutions and choosing an algebra for such operators
that is consistent with an arbitrary number of quanta associated with them being
described by a positive definite Hamiltonian. Using the appropriately ordered
version of the current density as an operator in a Fock space then specifies the
nature of the electrically charged quanta.

III. Projectors and Quantisation

In the preceding section it was noted that Minkowski space solutions to the
Kahler equation could be decomposed into minimal left ideals, which were
characterised by a set of idempotent projectors. In this section a complete set of
solutions will be sought, and as a prelude we will decompose an arbitrary E-form
into minimal left ideals. In the analysis of the energy and electric charge the
projectors Pε, defined in (11.20), proved useful. We will therefore seek projectors Pσ,
σ= ±1, such that

PavPσ, = Pσδσa,, (no sum), (III.2)

PσvPε = PεvPσ, (III.3)

for then PσvPε will project out minimal left ideals. A suitable choice is

If Φ is an arbitrary E-form we may write

*= Σ Σ φ(ε'σ)> (πι.5)
ε= ±1 σ= ±1

where

) p p
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We seek solutions to the free Kahler equation (A = 0) of the form

where /e/t°(M), v= ±1 and dφ(ε>σ) = δφ(ε>σ} = 0. Inserting (III.7) into (1.44) we see
that we have a solution provided

If

then it will satisfy the projector conditions

Σ Λ(/) = ι,
v = ± l

^v(/W(/) = Λ(/Rv, (no sum),

if

dfa df = g(df, df) =-μ2. (III. 10)

Choosing an / to satisfy this condition enables each φ(ε σ) to be subdivided into a
pair of sets labelled by the index v. We seek a further subdivision by means of
another left projector PΛ(s), λ= ±1, seΛ°(M), such that

Pλ(s)vPv(f) = Pv(f)vPλ(s), Vλ,v, (III. 11)

Λ(s)Λ (s) = ̂  Λ(s)» (no sum), (111.12)

Σ Λ(s) = l (ΠL13)
A - ±1

These conditions are met if

Pλ(s) = $(l+λdsvz), (111.14)

where ZΞΞ*! and ds is chosen to satisfy

g(ds9ds) = ί , (III. 15)

g(d},Ss) = Q. (III. 16)

Since d/ may be termed a momentum 1-form in the case of plane waves with
/ = ktx

l + £τ = k x + Eτ, we see that ^5 is a space-like 1-form orthogonal to df and
is expected to be related to a polarisation vector. Since Pλ(s)vPv(f) is an
idempotent left projector for each λ, v it splits the elements Φ(ε>σ) of each minimal
left ideal into four E-forms labelled by v and λ,

ΦM= Σ <£ Φ\l:%(s,f), (ΠI.17)
v- ±1 λ= + 1
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where the sixteen complex E-forms Φf^fs,/) satisfy the condition

φft ?)fe /) = Λ(/)Λ(4Φ|ev; ?)fe /)ΛΛ - (πi. is)
We may now Fourier expand an arbitrary solution of the Kahler equation into
plane waves,

* = Σ Σ Σ Σ Σ O k) *>&%*)**" > (iπ-19)
k ε σ v A

with / = k x + Eτ, E = | J/(k2 + μ2)|, and 5 is understood to satisfy (III. 15) and
(III. 16). The expansion (III. 19) may be inserted into (11.30) to compute the total
Hamiltonian. Noting that Pε = Pε, Pσ = Pσ and that S0(aυβ) = S0(βυa)9 we may use
the orthogonality properties of PεvPσ to obtain

H= j *H
M3

= -iί*ιsi|ΣΣ Σ Σ /vΈ(k^[:;?;(k)^riΊ(ko^^'-^
U,σ v ,λ v ' ,λ ' k,k'

Since

j * l^(v'^' - v'> - ^ί(v' - v)£(k)(2π)3/2ί(k' - vv'k) , (111.21)
M3

and E(vv'k) = E(k), then

3/2
Σ Σ Σ Σiv'^'
,σ v,λ v',λ' k

If we write φfv>^ as ̂ A^^vAXv;?) then we may use

Pv(k)17dτι;Pv,(vv/k)= - -E(k)δvv,Pv(k), (no sum), (111.23)

to arrive at

^ ε,σ v,λ k M

We may express the total charge, <2, in a similar way

Q r •"= J *£

^ ε,σ v, A k /^

It remains to choose a normalisation by fixing ^{^^'^(k)^^^'^}, although the
signs of these numbers are not at our disposal. However, reference to (11.25) shows
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that the sign of Q is determined by ε, and hence we may normalise such that

S'0{φ(

(l'
σ^(li)vφfv'

σ^(k)} = 3-̂ -—. (111.26)

Thus finally

H= - Σ Σ E^^W^^A^)^;?^)' (IIL27)
ε,σ v, A k

2 = - * Σ Σ Σ εi^ίk^'ίk) . (111.28)
ε,σ v, A k

In passing to the quantum theory the Fourier amplitudes bfv'^}(k) become
operators on some Fock space of states. At this stage we seek commutation
relations for these operators that will enable us to interpret (111.26) and (111.27) in
terms of number operators, so that acting on a Fock space state the Hamiltonian
has positive definite eigenvalues. This may be achieved if we set

= b"\ , (111.29)

)ΞJ35, (IΠ.30)

b[+ϊ$ = irλ, (111.32)

satisfying

[DJ(k), Dl?'(k')] + = <W'σ\A' (IΠ.33)

for
Dl = {bl,dl,B^Dl}, (111.34)

with all other anti-commutators zero. The ground state |0> is defined by

0. (111.35)

In terms of the number operator N(Π*) = Ώσ

λ* Ώσ

λ the quantum representations of
the operators H and Q in the second quantised version of the theory are then

H= Σ Σ£(k){^K(k)] + N[^(k)] + N[β^(k)] + NK,(k)]}, (111.36)
σ,λ k

Q = e Σ Σ {#»)] + NlD%kf] - N\_d"λ(k)-] - N[β$(fc)]} . (111.37)
σ,λ k

Of the sixteen field quanta half of them can be distinguished by their electric
charge. For v= + 1, states labelled by ε= ± 1 have positive charge while v= — 1
states labelled by ε = + 1 have negative charge and may be termed anti-particles.
We shall argue below that we can attribute to each quantum operator in the set
ΠA a "teft spin" with eigenvalues labelled by λ= ± 1 and a "right spin" labelled by
σ= +1. The choice of quantisation rules (111.33) declares the field quanta to be
fermions. In the next section we examine more closely the angular momentum
carried by field solutions and the way in which "intrinsic spin" of the system
manifests itself.
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IV. Angular Momentum and the Non-Relativistic Limit

The classical angular momentum currents are obtained from (II.7) where the
Killing vectors generate rotations. They may be written in 3 +1 form as

where the Kt are the Killing vectors generating the rotation group. We may find
the eigenvalues of angular momentum by means of the relation

^KΦ = ̂ KΦ + ̂  {dKvΦ - Φv dK}, (IV.2)

where K is a Killing vector, K its metric dual and V the torsion free metric
compatible connection. In Minkowski space we have

Kt

 = χj^-k~χk-^l^ i>J>& = 1,2,3 cyclic, (IV.3)

and we write the associated Killing forms

since the Clifford algebra of the σ is isomorphic to the familiar algebra of the Pauli
matrices. For rest states (k = 0) we may use (IV.2) in (II.7) to obtain the angular
momentum density

where

We may compute the angular momentum density in the x3 direction for each of
the Φj^j Using (III. 18), where we have chosen s = x3, gives

(dx1 Λ dx\Φ%% = iλvΦf;^ , (IV.7)

and

Φft&ίdx1 Λ dx2) = - i

Thus

Consequently there are three eigenvalues (1, — 1,0), the last being doubly de-
generate. (The normalisation of the eigenvalues is obtained by comparing with the
"orbital" angular momentum.) That rest states have integer eigenvalues for
angular momentum is of course entirely consistent with the Lorentz group
representation content of the E-form Φ. Furthermore it should be apparent why
for each v we refer to λ as labelling a left spin and σ a right spin. How then is the
intrinsic spin appropriate to half integer representations of the Lorentz group
masquerading in this theory ?

The existence of the closed 3-forms (II.7) followed directly from the existence of
Killing vectors. However, if Φ is a solution to the Kahler equation then so is Φyσ ί?
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where the σ were defined in (IV.4). To see this note that

d(Φυσϊ = ea

vVXa(Φvσϊ

= dΦvσ{ since F^σ^O. (IV. 10)

Thus Φvσi is a solution to the Kahler equation as a consequence of the interactions
occurring by left Clifford multiplication. So as well as the 3-forms in (II. 7), the
3-forms

Λ KΦ^ + ίM A *ηΦ*} (IV.ll)

are also closed. These conserved currents may be recognised as the "right spin"
contribution to the total angular momentum, and so we may define

which is a conserved current and, for rest states, has half-integral eigenvalues.
We recall that historically half integer intrinsic spin arose from an attempt to

explain the non-relativistic Stern-Gerlach experiment. A doubling of states
predicted by the Schrodinger equation was invoked and a magnetic interaction
based on the classical coupling of a magnetic moment to an external magnetic field
devised to reproduce the experimentally observed behaviour. The Schrodinger
wave-function for the free electron ceased to be a scalar under rotations and was
transformed as a two-component SU(2) spinor in order to maintain the covariance
of the Pauli-Schrodinger equation under rotations. Thus the transformation
properties arose as a dynamical consequence of observing how the degeneracy of
states could be resolved by an electromagnetic interaction. The existence of the
new spin degrees of freedom subsequently had a profound effect on the in-
terpretation of the periodic table. The intrinsic spin interpretation was confirmed
theoretically by the relativistic Dirac equation which predicted the non-relativistic
gyromagnetic ratio of the electron.

We have already pointed out that, in Minkowski space, the Kahler equation
can be decoupled into 4 identical Dirac equations corresponding to a decom-
position of the E-form Φ into a set of four minimal left ideals. (This is analogous to
decoupling the Pauli-Schrodinger equation into two identical Schrodinger equa-
tions in the absence of a magnetic field.) Either one restricts physical states to one
ideal, which is hard to defend in general on quantum mechanical grounds, or one
must expect a four-fold degeneracy in every state predicted by the Dirac theory.
Certainly this is confirmed in our analysis of the field quanta above.

To gain a clearer picture of this degeneracy it is worth investigating a non-
relativistic limit of (1.44) to a set of Pauli-Schrodinger equations in the presence of
a static magnetic field.

Using the decomposition (11.17) for the E-form Φ we may write the Kahler
equation in 3 +1 form as

iεηά(ε} = dα(ε) + /?δα(ε) - μα(ε) - ieAva
(ε} - eε Vηot^, (IV. 13)

where ά(ε)= ~α(ε), δ = *d* and d acts in Λ(MΛ
oτ

We have written the electromagnetic connection 1-form as

A = A+Vdτ. (IV.14)
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We adjust our datum for measuring energy levels by introducing

β^ = eίμτu(ε). (IV. 15)

The E-form β(ε) can be unambiguously decomposed into forms of even and odd
degree,

βto = βto + p?>. (IV .16)

Inserting this into (I V.I 3) gives, for c= + 1,

dβ(_+) + δjS(_+) - (/j5(

+

+) + μβ(^) = μβ(^ + ίeAβ^ + eVβ(^\ (IV. 17)

dβ(

+

+ } - δβ(

+

+ } + iβ(+ > - ie A^(_+ ) - e Vβ( + } . (IV. 1 8)

Similarly for ε = — 1 we obtain

άβ(~} + δβ(_~} + ijg^ = ieAvβ
(-}- eVβ(~} , (IV. 19)

d/?(

+~ } - δ^(

+~
 } - (iβ(- } + μβ(: ]) = μβ(: } + ieAvβ

(- } + e Vβ(Ξ } . (IV. 20)

The non-relativistic limit of the pair (I V.I 7) and (I V.I 8) is derived by dropping the
terms β(+} and eVβ(+} in (I V.I 7) and inserting the result into (I V.I 8) to obtain the
Pauli-Schrodinger equation for β(_+),

Treating (I V.I 9) and (IV.20) similarly produces

- #<-> = (d + δ - ie\) (d - δ - ieAO)p-> + eVβ(~} . (IV. 22)

We may write (IV.21) and (IV.22) together as

(IV.23)

where ί= d + η§. Dropping labels on the β's for clarity but remembering that they
satisfy εηβ= — β, we may expand the Clifford products in (IV.23),

~ V = Yμ {*2β

Now

= V2, (IV.25)

which is the Laplace-Beltrami operator on M3. Furthermore in terms of the
Riemannian connection V on M3,

, (IV.26)
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so Eq. (IV.23) can be written finally in the form

β. (IV.27)

One readily recognises in the non-relativistic Hamiltonian the magnetic-spin
interaction. Indeed jdA = dA + 776 A = B, where B is a magnetic field 2-form on M3

in the gauge δA = 0, so the magnetic interaction Hamiltonian is

H,= ^BV. (IV.28)

The simplest way to confirm the eigenvalues of this operator (which acts on the
non-relativistic E-form β via a Clifford product) is to adapt the projector Pλ to the
direction of the external magnetic field. Recall that β was derived from an α
defined by

7<x. (IV.29)

Let us write ds = s0dτ + s in terms of a 0-form s0 and 1-form s with i,-s = 0. Then
Γτ

imposing

Pλ(s)vΦ = Φ (IV.30)

gives

Λ(s0 * lvα — ίs*svη(x) = α. (IV.31)

For rest frame solutions s0 =0 and we may choose

*s=|j, (IV.32)

so that (IV.31) becomes

-iλε**-vηa = a, (IY.33)

and hence

β. (IV.34)

The non-relativistic E-forms satisfy εηβ= —β and so (IV.34) gives

iBυβ = λ\E\β. (IV.35)

Thus the left projector

(IV 36)

projects out rest-frame energy eigenstates. The energy levels labelled by λ = ± 1 are
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£
separated by — |B| precisely as observed in the Stern-Gerlach experiment. This

μ
justifies our nomenclature of referring to λ as a left-spin eigenvalue or magnetic
quantum number.

We have selected v = 1 by choosing the positive frequency solution to make the
non-relativistic reduction. Thus in this limit v = ± 1 distinguishes particles and
anti-particles and λ = ± 1 labels conventional "half integer intrinsic spin" elec-
tromagnetic interactions. However, for each state labelled by (v, λ) there is a 4-fold
degeneracy corresponding to the states with ε — +1, σ= +1. Thus unlike ordinary
non-relativistic rest electrons which are conventionally considered to carry 2-spin
degrees of freedom, rest particles described in this theory appear to carry 8 degrees
of freedom. A static magnetic field resolves the λ = +1 degeneracy with an
interaction indistinguishable from that observed experimentally for electrons if e
and μ are chosen appropriately. In Minkowski space the extra (ε, σ) degeneracy is
not affected by electromagnetism, since the Hamiltonian is block diagonal for any
A. Whatever particles are to be described by (1.44) they appear to simulate charged
fermions in their electromagnetic couplings and each electromagnetic state is
associated with four degrees of freedom (ε, σ) that we term right-spin.

V. The Interpretation of Right-Spin

A satisfactory interpretation of the Kahler equation requires a resolution of the
problem of right-spin. If Eq. (1.44) is to describe, say, electrons then how are we to
understand the fourfold degeneracy labelled by different values of ε, σ? If we
restrict the interactions to electromagnetism in Minkowski space then these states
are indistinguishable. We may then establish correspondence with the Dirac
theory by setting

However, in the presence of an arbitrary gravitational field the Kahler equation
does not admit solutions lying in one of the minimal left ideals, and we would
expect the fourfold degeneracy to be broken in any weak field limit, rendering (V.I)
unacceptable.

It is possible to modify the Kahler equation in such a way as to give a different
physical interpretation to the different ideals. Conceivably this could make a virtue
out of necessity and lead to a unified description of different basic fermions. For
example, we could modify the equation as follows :

. (V.2)

If

βe = i(l + iβ*l), (V.3)

then

QsvQs = QA* , (no sum) ε, ε' = ± 1 , (V.4)
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and so we may decompose Φ uniquely as

Φ= £ Φ ε, (V.5)
ε= + 1

where

φ*vQ& = Φε. (V.6)

Thus we may write (V.2) as

/Φ+=(μ + ίeA)vΦ
+ , (V.7)

jiφ~=0. (V.8)

(Incidentally, the equations will decouple in this way in an arbitrary gravitational
field.) Now Φ+ is a massive electrically charged field whereas Φ is massless and
neutral. The Qε project Φ into non-minimal left ideas and the Kahler equation
would have to be further modified if we wish to have different physical properties
for all four minimal ideals. This approach will be investigated in the future.

Appendix

In this appendix an explicit basis is chosen for the construction of a complete set
containing 16 plane- wave solutions for the free Kahler equation. We first select a
particular basis to span the real 8-dimensional space ΛX(M3). This can be
constructed in terms of the idempotent projectors :

(A.I)

(A.2)

σ = + l , ε = ± l ,

where we write simply e12 for e1 Λe2 = e1

υe
2 for an orthonormal basis {e1=dx1,

e2 = dx2, e3 =dx3} and note PσvPε = PευPσ A convenient complex basis for ΛX(M3)
is then αf(/= 1, 2, 3, 4), where

*\=e\P,, (A.3)

*2 = e31

υPσ, (A.4)

<%=e\Pβ, (A.5)

< = Pσ, (A.6)

so an arbitrary E-form on M can be expanded

Φ W = Σ Σ Σ Λί f f(*κ,Λ (A.?)
ε σ 1=1

in terms of 16 complex amplitudes A^εC. The basis above has the useful
orthonormality property :

^Γ. (A.8)
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It is not difficult to find a complete set of Minkowski space plane wave solutions to
(1.44) if we put to zero the electromagnetic interaction. With the ansatz

in terms of k = (^1 ?/c2,/c3) the Kahler equation is satisfied if

\

kjβj α(ε) = (μ - εωf/)α(ε) , (A. 10)

provided ω2 = k2 + μ2. In terms of the basis αf, (A. 10) is readily solved. A
particular complete set of basis solutions may be expressed in terms of:

μ.

where {ρ} is the set of labels <ε,σ, — L N{f are arbitrary normalisations and

kσ

±=k1±iσk2, (A. 13)

It may be noted that the subscript m= ±1 on the E-forms Γ^ρ} refers to the even
and odd nature of the degree of that form. Thus an arbitrary solution to (1.44) with
A = Q may be Fourier analysed in Minkowski space as:

Φ(*)=Σ Σ Σ Σ Σ W'W)e/<k"+<Dt), (A.16)

where

k ε = ± l σ = ± l ω _ m = ± 1

constitute a particular basis of 16 complex eigen-E-forms. They satisfy the
orthonormality relations:

I 2E

and hence the following normalisation suggests itself:

τΛϊ/2 (A.20)
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In the continuous limit ]Γ is replaced by an integral and the k space normalisation
k

completed as usual with

(A 21)

in terms of the Dirac distribution on k-space.
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