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The Energy-Momentum Tensor near a Black Hole*

M. S. Fawcett

Department of Mathematics, University of Otago, Dunedin, New Zealand

Abstract. The energy-momentum tensor for a conformally invariant scalar
field near a Schwarzschild black hole in thermal equilibrium with radiation is
found by a combination of analytical and numerical techniques. Calculations
are performed in the Euclidean section of the spacetime, and divergences
isolated using the heat kernel expansion. It is found that the results agree well
with those of Candelas [1], but that there are significant differences from the
Gaussian approximation of Page [2].

1. Introduction

This paper describes the calculation of the expectation value of the energy-
momentum tensor, to one loop, for a conformally coupled scalar field near a
Schwarzschild black hole in the Hartle-Hawking "vacuum" state - i.e. for a black
hole in (unstable) equilibrium with a bath of thermal radiation. Much preliminary
work has been done on this problem, and there is a large literature on black hole
radiance and the quantum properties of black hole spacetimes, and on quantum
field theory in more general curved spacetimes. The original work on black hole
radiance was done by Hawking [3] and Hartle and Hawking [4]. Boulware [5],
Unruh [6], and Wald [7] further discuss black hole emission and different possible
vacuum states. Davies et al. [8], Christensen and Fulling [9], and Candelas [1]
discuss the energy-momentum tensor of a scalar field near a black hole. Gibbons
and Perry [10] discuss the thermal properties of black holes, and thermal Green
functions. There are of course many other papers, references to which can be found
in the reviews, e.g. by Gibbons [11, 12], De Witt [13, 14], and the recent book by
Birrell and Davies [15]. These reviews also discuss methods of regularising the
expressions for physical quantities in a general spacetime.

The calculation of <Tμv> could have been done years ago - the delay has
probably been due to the (perhaps very reasonable) reluctance of people to get
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involved in numerical calculations. The wave equation in Schwarzschild spacetime
is separable but not soluble exactly - one ordinary differential equation requires
numerical solution. Once numerical work is required, one must recast the whole
problem into a form suitable for numerical evaluation. Thus the methods I use are
slightly different from those that generally occur in discussions of black hole
quantum theory.

The calculation is done assuming a fixed static background metric, in the
presence of which fluctuations of the scalar field are quantised. The back-reaction
of the scalar field on the geometry is ignored. Discussions of the usefulness and
consistency of doing quantum field theory in a curved spacetime can be found in
e.g. Gibbons [12] or Birrell and Davies [15]. My calculations refer to a black hole
in thermal equilibrium with radiation. To obtain the results for a black hole
radiating into empty space (i.e. in the Unruh vacuum) it would be necessary to
subtract the contribution due to incoming thermal radiation. This calculation has
not yet been done. This will yield an energy-momentum tensor that can be used to
discuss the evolution of the horizon of a black hole as it evaporates, by using it as a
source in Einstein's equations. The assumption of a static background field in
calculating <Tμv> for this purpose turns out to be valid provided the hole is much
bigger than Planck mass (see e.g. Birrell and Davies [15]). Thus the final fate of an
evaporating black hole will not be revealed in this way, though the evolution of the
horizon is still of physical interest.

2. Preliminaries

Christensen and Fulling [9] showed that the general solution to the conservation
equation VvT* = 0 in Schwarzschild spacetime contains two arbitrary constants
and one arbitrary function, which they take to be the component T$. In addition
they assume knowledge of the trace 7^, which is given by the trace anomaly. If we
require that the energy-momentum tensor be regular on both horizons (past and
future) then both the arbitrary constants in the general solution must be zero. This
condition applies to the Hartle-Hawking vacuum state. The expressions
Christensen and Fulling obtain in this case are:

1 / 2M\~1 r

= -, 1
r \ r I 2M

77=7^-77-27^, (2.1)

(I am of course using units in which G = c = h=l, and Boltzmann's constant k will
also be set to 1.) For a conformally invariant field the trace is given by the
anomaly:

~ ' K-. (2.2)

The off-diagonal elements of Tμ

v are zero for a hole in equilibrium.
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Calculations in the Hartle-Hawking state are conveniently performed in the
Euclidean section of the Schwarzschild spacetime, obtained by rotating the time
coordinate t by π/2 in the complex plane. The line element is then:

[ [ ] \ (2.3)
where τ = — it.

The singularity in this metric at r = 2M is merely a coordinate singularity if the
coordinate τ is identified with period 8πM. Thus quantities defined on the
Euclidean section of the Schwarzschild spacetime will be periodic in imaginary
time. It is a characteristic of thermal Green functions that they are periodic in
imaginary time with period β=l/T(see Gibbons and Perry [10], who also show
that the Green function defined on the Euclidean section of a static spacetime, with
the boundary condition of dying away for large separation of its arguments, is the
analytic continuation of the usual Feynman propagator, i.e. it has the correct
singularity structure). Thus the thermal nature of the Hartle-Hawking state is
expressed through the periodicity in τ, the temperature being given by

β 8πM'

3. Heat Kernel Formalism and Regularisation

The Euclidean action for a massless scalar field with arbitrary coupling to the
scalar curvature is:

S = ̂ d*x)fg(g»ΎμφVvφ + ξRφ2). (3.1)

The conformally invariant theory is obtained by setting ξ = ~. The Green function
is the solution of (3.2) which dies away for large separation of the points and is
regular on the horizon :

( - D + ξR) G(x, x') = δ(x9 x'), (3.2)

where Π=gμvVμVv.
The energy-momentum tensor is calculated by taking the regularised coinci-

dence limits of the Green function and its derivatives. To isolate the divergences I
use the heat kernel method, a Euclidean version of the De Witt-Schwinger proper
time formalism. The Green function is expressed as:

00

G(x,xf)= \ K(x9x'9u)du9 (3.3)
o

where the heat kernel K(x, x\ u) is the solution of

dK(x9x'9u)
(3.4)

with the boundary condition K(x, x\ 0) = δ(x, xf). Here K will be periodic in
imaginary time τ and will die away for large separations of x and x in spatial
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directions. Also K has a representation in terms of the eigenvalues and eigenfunc-
tions of the operator —\3 + ξR:

Σ)ΦJίx')e-λ u, (3.5)
α

where

{-Π + ξR)Φa = λaφa. (3.6)

The sum over α includes an integral over any continuous parameter.
The divergences in coincidence limits of the Green function and its derivatives

come from the behaviour of K(x, x', u) for small values of u. This behaviour can be
investigated through a representation of K based on the WKB approximation (see
e.g. Christensen [16]):

where σ(x,x') = ̂  square of geodetic interval between x and xr

When x is near x' and u is small, A can be expanded as an asymptotic series in
u:

00

Λ(x,x',u) = Σ aifax'W (3-8)
ί = 0

Christensen [16] gives the coincidence limits of the first few coefficients and their
derivatives, found by substituting equation (3.7) into (3.4) and obtaining re-
currence relations for the av For Schwarzschild one finds:

αo(x, x) = 1,

^RO", μRβκτv=^gμv^r9 (3.9)

1 4 M2

R R ΰ κ τ i

The energy-momentum tensor obtained by varying the action Eq. (3.1) with
respect to the metric is:

T Ξ L ^

(3.10)
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The last term is zero because the background metric is a vacuum solution of
Einstein's equations, so I will drop this term. The energy-momentum tensor above
is conserved, and if ξ=^ is traceless, because of the field equations:

ί ^ 0. (3.11)

The expectation value of the operator version of this energy-momentum tensor
is given in terms of the heat kernel by:

(Tμv} =
0

,Vy, + 2ξgμvΠ}K(x,x',u)-]x = x, regularised. (3.12)

The divergent terms in this integral can be isolated using the representation
equation (3.7) and the expansion equation (3.8). In removing the divergences it is
necessary to ensure that <Tμv> is conserved. One finds then that the trace of <Tμv>
is not zero for a conformally invariant field (i.e. ζ = j;). This is the famous trace
anomaly.

The resultant conserved, finite energy-momentum tensor is:

<Γμ ϊ>=Jrfu[{FμF v,+igμ vΠ'}K(x,x',tt)] x = J C,
0

>-ξVV(φ2}, (3.13)

where I have used

Also,

(φ2}=]du\κ(x,x,u)-—ί-J (3.14)

0 L
 1 0 π u J

is of some physical interest in its own right, in a discussion of spontaneous
symmetry breaking near a black hole (Fawcett and Whiting [17]).

Using the representation equation (3.5) of K in terms of the eigenfunctions of
the wave operator, we find:

[ l ^ ( 3 . 1 5 )

The first term in the expression for {Tμv} is:

Σ 2 K Λ (3.16)
0 Lα
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Equation (3.13) implies that the trace of {Tμv} is given by

(Tp=(3ξ-ί)Π<φ2}+jl^a2, (3.17)

which is -7-7^2 when ξ = ̂ .

4. Detailed Expressions for <2^v>

To evaluate the expressions for <Tμv> it is necessary to find the eigenfunctions of
the operator (— Π + ξR) which in Euclidean Schwarzschild spacetime is (JR = O):

_ 2 M \ ~ X a 2 l d [ / _ 3

r j dτ ror\ or

1 1 d I . d\ 1 d2

~7ή^θIθ[SmθIθ) ~ r2ύn2θW ( 4 Λ )

The equation — Dφa = λaφa is separable:

Φa = Φnlmp = W YJΘ, φ)Rnlp(ή , (4.2)

where
1 / ?τr \

n = 0,±l ,±2, . . .

with normalisation

ί |Tj 2 dτ = l . (4.3)
0

The Ylm(θ, φ) are the usual spherical harmonic normalised so that:

S\Ylm(θ,φ)\2dΩ=ί. (4.4)
4π

The radial functions Rnlp{r) satisfy:

The parameter p labels radial eigenvalues - it would be discrete if the black hole
were enclosed in a spherical box with some boundary condition imposed, or
continuous for a hole in an infinite volume.

Using Eq. (3.5) we obtain for the coincidence limit of the heat kernel:

I 00

K(x,x,u)=-τ—z Σ dn Σ (2l+l)ΣRniP

QXP(~KιP

u) > (4-6)

where d0 = 1, dn = 2 if n^ 1 and I have used

I i

V \γ | 2 = (2/+1). (4.7)
m=-ι 4π
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If the black hole is in a spherical box at radius r0 then the radial functions
should be normalised by:

] R2

nlpr
2dr=ϊ. (4.8)

2M

We are interested in the case r0 = oo, when the parameter p will become continuous
and the sum replaced by an integral. To obtain the appropriate expression we need
to change the normalisation of the radial functions and, using an asymptotic form
of the eigenvalues, take the limit r0-»oo.

First we remove all explicit dependence of R on M by introducing a new
γ

coordinate x = , and a new eigenvalue λ = (2M)2λ:
2M

dx ) \ x2 4 x-1) ι

Using the logarithmic coordinate x* = x + ln(x — 1) and letting ynlp = xRnlp, we get:

dx * 2
( 4 1 0 )

For large x*, the solutions ynlp will oscillate with approximately constant
amplitude. We choose this amplitude to be 1. Then, using the asymptotic form of
the eigenvalues:

pπ~\λ x* + Θ(lnx%). (4.11)
\ 4/

r* / r \
where x^ = ——, r$ = ro + 2M In — - — 1 L it is easy to show that

u). (4.12)

The lower limit on the integral arises because there are no normalisable
n2

eigenfunctions if λ < —-. The full expression for the coincidence limit of the heat

kernel is then:

where the order of the sums and integral has been changed.
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We can now write down <φ2> in terms of the radial functions ynl:

1 I 1
(4.14)

where u =
16π2

(2M)2 β2

00 _ 1

u and I have used j λe~Judλ= —^.

In a similar way we can obtain an expression for (SYθφ)2 + ̂ gθθφ\I]φy required
for the Tθ0 component of the energy-momentum tensor. Because of the θ derivative
we need the result:

i

Σ
m= -I

dY

w
1

(4.15)

We find:

πx
(4.16)

Then (Tθθ} is found from Eq. (3.13), and the other components of <Tμv> using the
results of Christensen and Fulling, Eq. (2.1).

It is tempting in Eqs. (4.14) and (4.16) to change the orders of the I and u
integrations and perform that over ΰ immediately. However, the resultant 1
integrations are not guaranteed to converge, and in fact neither of them does.
However, it is permissible to put a lower bound on the ΰ integration, change the
order of the integrals, and then take the limit as the lower bound tends to zero. For
example,

<Φ2>= it 1 (4.17)

5. Numerical Methods

There are several steps in the numerical evaluation of the expressions derived
above. I shall not go into great detail, but will briefly describe the methods used.
Programmes were written in the language Algol 68, compiled with a local compiler
at Cambridge University, and run on an IBM 370/165 machine.

The first numerical problem is that of finding the normalised eigenfunctions
y(x). The numerical integration of Eq. (4.10) was carried out using the Numerov
method (Lambert [18]), which is designed for second order ordinary differential
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equations with no first derivative term. It requires two initial values, which were
provided by the regular series solution of Eq. (4.9) about the point x = 1 (x* = — oo)
corresponding to the horizon. Integration was begun at a large negative value of
x* and carried out in x* coordinates to a large positive value. Normalisation was
accomplished by matching the numerical solution to a WKB approximate
solution at a sufficiently large radius.

One can see from Eq. (4.14) and (4.16) that the integrands in these expressions
require two sums to be evaluated. The sum over n is not a problem as it is over a
finite range - n is constrained to be less than 2 j/X The sum over /, however has no
upper limit. It turns out that for given fixed values of x, n and λ there is a value of /
above which contributions to the sum decrease rapidly. This / is given approxi-
mately by that value at which the function in square brackets on the right side of
Eq. (4.10) changes sign at the given x, i.e.

4 x - 1
(5.1)

Thus the sum over / can be cut off when the contributions become sufficiently
small, at some / above the critical value. Because the critical value rises with x 2 and
I, there are restrictions on how large these quantities can be taken - the computer
time needed becomes prohibitive. In fact I was able to calculate <7^v> out to a
radius of only x* = 2 or r* = 4M. The integrand was calculated out to about λ = 20.

The integrands in both integrals are oscillating functions of | / I with periods

that depend on x, so it is natural to integrate with respect to ]/X Apart from the

exponential factor, that for <φ2> has an envelope that becomes constant at large

| / I , while the envelope of the integrand in the expression for {(Vθφ)2 +^gθθφΌφ}

grows as λ for large ]/I Thus if ΰ is set to zero, neither integral converges.
For the integral needed for <{VΘφ)2 +^gθθφ\3φ} an additional integration with

respect to ΰ was performed first, so that the envelope of the oscillating integrand

90 1,

TΓ2T4

-9 -8 -7 -6 -5 -l> -3 -2 -1

Fig. 1. for a massless conformally invariant field
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Fig. 3. <7/) for a massless conformally invariant field

became constant for large j/ΐ. Then after the integration with respect to j / I , a
derivative with respect to ΰ was taken.

The integrals are best done numerically by integrating over periods to obtain
an oscillating sum. This can then be subjected to an Euler transformation (see e.g.
Ralston and Rabinowitz [19]) which is designed to speed the convergence of
oscillating sums. One finds that the transformed sums converge even when ΰ = 0,
hence the limit may be taken immediately. The convergence is rapid, so knowing
the integrand only for 1 < 20 gives sufficient accuracy.

6. Results

The components of the energy-momentum tensor for a conformally invariant field
are shown in Figs. 1-3. The components have the same values in the Euclidean
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and Lorentzian sections, but the coordinate ί is pathological at r = 2M in the
physical metric. In the well-behaved Kruskal coordinate system,

\ l / 2

2M
- 1 Jr-t)l4rM

the components are:

/ r
v= — -

\2M

1 / 2
(6.1)

2M6
-ί/2M (6.2)

The functions

(6.3)

are shown in Figs. 4 and 5. (The notation is chosen to be consistent with Candelas
[1] and Page [2].)

The component (7^) gives the negative of the energy density, ρ = — <7/>. Thus
the energy density is negative near the horizon, out to a radius of about r = 3.5M,
after which it is positive. A negative energy density near the horizon is not
surprising as it is necessary to violate the weak energy condition in order to get
around Hawking's theorem that the area of a black hole can only increase
(Hawking and Ellis [20]). We obviously expect the area of the horizon to go down
as a hole radiates.
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The transverse pressures <7J) and <T^> are also negative over a range of radii
from about 2.25M to 4M, while the radial pressure {ΊJ} is always positive.

Candelas [1] has done some calculations with which my results may be
T2

compared. He calculated <φ 2 ) exactly on the horizon, obtaining a value of-—. My

numerical result agrees with this to about one part in 104. He also calculates
(effectively)

7^(2M) = 10.29 — T 4 ,

and (6.4)

Λ(2M) = 37.71 * - T \

which are to be compared with my results:

TΘ

Θ(2M)= 10.49 ^ T 4 ,

(6.5)

4(2M) = 37.53 ^ T 4 .

The differences are within my expected errors.
Calculations have also been done by Page [2] using the Gaussian approxima-

tion of Bekenstein and Parker [21] to the path integral formula for the Green
function. Page obtains a result for <φ2> that is identical to a conjecture of
Whiting's (Fawcett and Whiting [17]), and is in excellent agreement with my
numerical results for all radii. The greatest difference occurs near r = 3M, where
one might expect a contribution to the propagator from indirect geodesies - Page's
approximation includes only direct geodesies.

It is perhaps surprising that there are dramatic differences between Page's
results and mine for (Tμv}. Page's ρ= — <7^> has a maximum value nearer the
horizon, but is otherwise not too different from mine. The radial pressure <7J> is
very similar to the numerical result. However, the transverse pressure <(T )̂ = <C f̂>
is dramatically different. The Gaussian approximation quantity is always positive
and shows no hint of the dip in the numerical result. It is assumed again that the
difference is due to geodesies close to r = 3M, though attempts to calculate the
effects of these have not been very successful.

Further Calculations

The most obvious application of a knowledge of <Tμv> is in an investigation of the
evolution of the horizon of a black hole as it evaporates. This requires <Γμv> in the
Unruh vacuum, i.e. for a black hole radiating into empty space. To obtain this from
the Hartle-Hawking < Tμv> it is necessary to subtract the contribution from incoming
thermal radiation. This calculation has not yet been done, though it presents no great
difficulties in principle. The evolution of the horizon would then also need to be
investigated numerically. It is hoped that these calculations will be done in the not too
distant future.
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