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Abstract. The small time asymptotics of the kernel of e tH is defined and
d2 K

derived for H=-—^ + -̂  on IR1. Lemmas on singular asymptotics in the sense
dx2 x2

of distributions are formulated and used. The results are applied to derive an
index formula on IRλ

1. Introduction

In this and a few subsequent papers I intend to discuss the heat equation with

coefficients containing singularities of the kind exemplified by — ̂  . I shall study
x

some general properties and asymptotic behavior with an eye toward applications
in spectral theory and in quantum theory. From the point of view of the latter, one
only needs to concentrate on Euclidean space, but our discussion will eventually
be extended to arbitrary manifolds in a straightforward way.

My motivation for this study originated in an earlier attempt to compute
quantum corrections to classical solutions in Euclidean Yang-Mills theory [1]. In
a steepest descent approximation scheme one has to calculate the determinant of a
second order expansion operator about the extremum of the exponential in a
function space integral. The operator in question is a second order differential
operator on IR4 and the determinant is defined by the derivative of the analytic
continuation of the zeta function

ldssλ-ίΊr(e-sH-e-sH^ (1.1)
o

to λ = 0 according to the formula

lndetH=-C'(0). (1.2)
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Here H0 is a fixed operator used, roughly speaking, to normalize the determinant.
The heat equation enters the picture at this point and in our work we unavoidably
had to deal with the case of singular coefficients.

In the case where H is an elliptic operator with smooth coefficients on a
compact manifold without boundary it is known that the heat equation exhibits
some convenient and attractive features [2]. For example, if H is a second order
operator which is also self-adjoint on a suitable domain (the second Sobolev
space), it is known that e~slί is an infinitely smoothing operator for Res>0 and
the kernel e~sH(x, y) of e~sH as an integral operator, is smooth as a function of x
and y for Res>0. Further, as s-»0 + one obtains an asymptotic expansion of the
diagonal x = y of the form

e~sH(x, x) ~ s~d'2(a0(X) + a ̂ xj s +...), (1.3)

where the ak(x) are functions of the coefficients of the differential operator
H and their derivatives evaluated at the point x. Here d is the dimension
of the manifold. This asymptotic expansion is responsible for a lot of useful
applications of the heat equation to spectral theory.

One can see from this asymptotic expansion that the situation is going to be
drastically different for operators whose coefficients are allowed a certain singular
behavior. For example, if H is again an elliptic (according to the highest order
term) self-adjoint second order differential operator whose zeroth order coefficient
has singularities like l/|x|2 near some point on the manifold, it follows from the
fact that ak(x) are polynomials of increasing order as /c-^oo in the derivatives of the
coefficients of H that ak(x) ~ l/|x|" fc near the singular point where nk increases with fc.
This renders the asymptotic expansion useless (or almost useless) when one tries to
compute a quantity like \e~slί(x, x)dx over the manifold.

It was conjectured in [1] that e~sli(x,x) has in a situation of this kind an
asymptotic expansion in the sense of distributions containing terms with a
different s-behavior from what appears in (1.3), for example, terms with different
powers of s and perhaps Ins. The presence of a Ins term was actually demonstrated
there by making use of some previous calculations on the model at hand. The
present work will prove that conjecture and it will also introduce calculational
schemes that are general and quite manageable at least for the first few orders.

In the present paper we discuss the operators

d2 K
κ dx x

where K ̂  3/4 as differential operators on the real line R They deserve special
treatment, not as illuminating examples, but rather as fundamental operators that
will be used to generate the general theory. In Sect. 2, I shall discuss (1.4) as an
operator in the Hubert space L2(IR+) or L2(R). In Sect. 3, I shall describe the
behavior of the kernel e~slίκ(x, y) as a function of x and y away from and on the
diagonal x = y. In Sect. 5, I use a theorem of Sect 4 to prove an asymptotic
expansion in the sense of distributions of the form

Lfc'
fc=0

ck(κ)uks
k-l/2 + £ dk(φk sk, (1.5)
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where ck(κ\ dk(κ) are real functions of K ̂  3/4, uk and wfc are distributions, wfc being
a combination of Dirac distributions and their derivatives. The coefficients will
also be computed there as compact algebraic expressions in K and k by using
formulas for traces like

Ίrxk(e~sHκ -leading behavior), (1.6)

where x is treated on a multiplication operator by x and "leading behavior" is a
combination of operators that have kernels which cancel e~sHκ(x,x), when
evaluated on the diagonal, to order |x|-1 as |x|->oo. It is shown that (1.6) isolates
the δ(k} term in (1.5). The prototype of a formula for a trace like (1.6) is the striking
identity

(1.7)

where HQ= — —-^. In Sect. 7, I discuss the trace formula (1.7), which was
cix

originally derived using the properties of Bessel functions.
In Sect. 6, 1 apply the results to the derivation of an index formula on the line.

Some results from the next paper in the series are used there, to the effect that the
asymptotic expansion of the heat kernel as s^O for operators having the same
leading behavior as (1.4) agrees with that of (1.5) to order s°.

2. The Operators Hκ on L2(R)

Because of the singularity at x = 0, one begins by defining Hκ as an operator on
C^(IR\{0}), the smooth functions with compact support away from 0. If τc^3/4,
this definition uniquely determines a self-adjoint operator on L2(IR), precisely:

Proposition (2.1). The operator Hκ on CQ QR+\{0}) defined by

d2φ(x) , K

dx x

is essentially self-adjoint if K ̂  3/4.

Proof [3]. The equation —φ"(x)-\—^Φ(χ} = ̂  nas ^ne ^wo linearly independent

solutions φ±(x) = xa+, α+ = —=— . If κ^3/4, we have α+^3/2 and

α_ ^ —1/2. Thus φ+ is not square integrable near oo and φ_ is not L2 near 0,
ΊS

which means that —^ is in the limit point case near both 0 and infinity. This implies

that Hκ is essentially self-adjoint on C^(IR+\{0}) by Weyl's criterion (see [3,
Theorem X.7]).

For the construction of functions of the operator Hκ we need to characterize
the domain of the closed operator. The following proposition is not the strongest
possible result but is sufficient for the present purposes (see also [3, Proposition
X.2]).
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Proposition (2.2). Let κ^.3/4. Let φeL2(IR+) be in the domain of the closure of the
operator Hκ defined on C^(IR+\{0}). Extend φ to IR_ by φ|E =0. Then we have
0eHHlR)={veL2(lR)|(l + fe2)1/2v(fe)eL2(R)}, φ' is absolutely continuous on (0, oo)
and lim φ(x) = 0. (ψ is the Fourier transform of ψ.)

x^O

Proof. Since Hκ is essentially self-adjoint on C^(IR+\{0}) the closure is self-
adjoint. Thus φeDκiϊ and only if there exists a vector Hκφ such that

for each τ/?eCJ)(IR+\{0}). Thus the second derivative of φ in the sense of
distributions is a distribution, say M, such that \u(ψ)\ ^ C \\ip\\ 2, locally. This means

that -j-^Φ is locally L2, and it follows by Sobolev's lemma that φ belongs to C1.
K

Therefore φ1 is absolutely continuous and —φ"λ — ̂ φeL2(^+). Now we have for

2 + κ J = (φ,Hκφ)^\\φ\\ \\Hκφ\\,sothat \\φ'\\2£\\Φ\\ \\Hκ\\

and <l \\Hκφ\\. Since any φeD can be approximated from C^(IR\{0}) in

the norm || ||2 + \\HK-1|2, we see that l-φl <oo and φeH\JK) for all φeD. It

follows that φ is continuous on IR, so that 0(0) = lim φ(x) = 0.
X-+Q

Henceforth we assume /c^3/4 and let Hκ denote a closed operator. The
spectrum of the operator Hκ is a subset of 1R+. Consider now the solutions of the
differential equation

. 2 , 2 , - | r = 0 x>0, (2.1)
dx2 x2 \

where z<£R_. It is then clear that ip cannot be in L2(R+) and if ipeL2 near 0
(respectively, near oo) we must have limι/;(x) = 0 /respectively, limφ(x) = (Λ.

With the substitution ψ = χί/2ψ we get BessePs equation for ψ:

dx

so that the solutions of (2.1) are given in terms of the so-called modified Bessel

functions /v and Kv as (Re |/z >0) [4].

2

We shall describe the necessary properties of /„ and Kv below. Here

(2.3)



Heat Equation with Singular Coefficients. I 361

We assume at this point and in the following that v is not an integer. First we note
(see below) that i/ ^x)— >•() as x-»oo and ιp2(x)-»0 as x-»0. Since ψt and ιp2 are
solutions of the differential equations (2.1) their Wronskian must be a constant:

This is obtained by evaluating the left-hand side asymptotically as χ-»0 from (2.2).
Form the function of two variables :

G2(x, 30 = 4= [θ(x ~ 3>)V>iMv>2(3>) + θ(y - x)φ1(y)ψ2(x)] , (2.4)
yz

where θ(x) = l, x^O and θ(x) = 0, x<0. Gz satisfies

j ((z + Hκ)φ)(x)Gx(x, y)ψ(y)dxdy = f 0(x)φ(x)<ix ,

where φeC^O, oo), φeC^(0, oo), as can be seen from the differential equation
satisfied by ψί and ψ2. Thus for z^IR_, Gz(x, y) is the kernel of an integral operator
representing the bounded operator (Hκ + z)~l.

Let us describe the behavior of Gz(x, y) more precisely as a function of x and y.
We need to know some of the properties of the modified Bessel functions which
have been studied exhaustively in the literature. As a consequence of their
definition which is contained in (2.2), we have the leading order

K ~ v
as ρ-»0 (2.5)

.

On the other hand it is known that as ρ->oo one obtains

(2.6)

The entire asymptotic expansion, as ρ->oo, is given by

(4v2-l)(4v2-9)(4v2-25)

-j'
(2.7)

ί 4v2-l (4v2-l)(4v2-9)~

from which we obtain a useful asymptotic expansion of the product as ρ->oo:

, 1 ί 1 4v 2-l 1 3 (4v2-1^'2

(2ρ)2 2 4 (2ρ)4
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If we write Gz(x, y) in terms of the Bessel functions

Gz(x, y) = (xy)1/2[_θ(x - y)Kv( ]/?x)/v( ]Λy) + θ(y - x)Kv( ]/~zy)Iv( ]Ax)] , (2.9)

we can prove the following properties (Re ]/z>0):
a) Gz(x, y) is continuous as a function of two variables.
b) Gz(x,j;) is smooth for 0<x<y or 0<j;<x.

c) Gz(x,y)~l}/~z] xv+ίl2y1/2Kv(}/^y) as χ-+0; Gz(x,y)~πί

Ίv(]/zy)e~Vzx as χ-»oo.
d) Gz(x,y) = lί(z,x,y) + zvxv+ίl2l2(z,x,y\ where /1 and 12 are analytic in z,x,y

for x in a neighborhood of 0.
x 1

e) Gz(x,x)~ — as x->0; Gz(x,x)~ — = as χ-»oo.
v l/z

f) Gz(x, x)^/^, x, x) + zvx2 v + 1/2(z,x), where / x and 12 are analytic in x and z
for x in a neighborhood of 0.

g) (Hκ + z)Gz(x, y) = (5 ,̂ the Dirac distribution at the point y with respect to the
variable x, in the sense of distributions.

The last property repeats the definition of Gz as the Green's function for Hκ,
i.e., the kernel of (Hκ + z)~^ as an integral operator. To indicate the dependence of
Gz on K we shall write sometimes Gz(x, y /c).

We conclude this section by an easy extension to operators on the entire real
line R

Let Hκ_>κ+ be the operator defined by

ax x

^W'^x) if
rfx2

for φeC^(IR\{0}). We have

Proposition (2.3). Hκ_ κ + is essentially self-adjoint on C^(IR\{0}) if κ± ^3/4. The
domain of the closed operator is D~ ®D, where D~ is D reflected through the origin.
The Green's function is given by

+ θ(-x)θ(-y) Gz(-x9-y , κ _ ) .

The proof is straightforward.

3. The Heat Kernel Function for Hκ

a) Definition of the Heat Kernel

Let H be a self-adjoint operator on a Hubert space with a discrete or continuous
spectrum which is a subset of the positive real axis. By the spectral theorem, e~slί

can be defined as a bounded operator on the Hubert space if Res>0; if z<£IR_,
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z)"1 is also defined as a bounded operator and we have the relation via an
inverse Laplace transform :

e-**=i2L<f*(H + zΓ*, (3.1)J 2πι

where the contour of integration is indicated in the figure

Fig. 1

For an operator on L2(R) where (H + z) 1 is an integral operator such as Gz of the
previous section, we can write (3.1) as a relation between the kernels. Thus

e-sH«(x,y)=^ie
s*Gz(X,y,K). (3.2)

One can study the heat kernel from the already known properties of Gz(x, y κ\
Using the expression (2.9) we may write

112 f 7 esz\_θ(x - y)Kv( |/z~x)/v( ]/z~ y)

ϊ]. (3.3)

Lemma (3.1). We can write Kv( J/zx)/v( ]/zy) = x Vyvg1(zx2)g2(zy2)-\~zvxvyv-g2(zx2)
g2(zy2), where g^zx2) and g2(xy2) are analytic functions of their arguments
(depending on v) jor v not an integer.

Proof. From the definition of Iv in (2.2), we see that /v(]/zx)oc(|/zx)v^2(zx2),
where g2 is entire and remains entire if v is replaced by — v (in which case we write
it as g^. The lemma follows.

If we now apply the lemma to (3.3) we see that the g^g2 term vanishes for
x,3/>0 by analyticity: the exponential esz allows us to close the contour at — oo, if
Res>0, and obtain 0 by Cauchy's theorem. Thus we can write

e~sHκ(x, y) = (xyΫ12 j ̂  esz(xyYz^g(zx2}g(zy2), (3.4)

where g ( = g2) is an entire function of its argument. Thus

Proposition (3.2). e~sHκ(x, y) is C°° as a function of the two variables x and y for
if Res>0.

b) Behavior of the Heat Kernel off the Diagonal
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Proposition (3.3). For fixed y e~sHκ(x,y) is Ck for x in a neighborhood of 0
including 0 if fe<v + ̂ , v = (κ + ̂ )112, and

as x->0. As x—>oo, w

e κ(x,y)~c e x S '^T72>

where c depends on y, K.

Proof. The differentiability property at x = 0 follows from Lemma (3.1). The
asymptotic estimates follow from the corresponding estimates for the Bessel
functions given in the previous section. For the estimate near x = 0 we keep in
mind that Lemma (3.1) effectively says that the I _ v term in the definition of Kv by
(2.2) is dropped when writing down the heat kernel. Finally, I remark that one can
integrate the asymptotic estimates for the Bessel functions to obtain the leading
behavior of e~sHκ(x,y) because they are essentially Taylor expansions about ρ = 0

as ρ->0 and about 0 in - as ρ-»oo.
Q

As we shall not need the behavior of e~sίlκ(x,y) off the diagonal for small 5,
I defer the precise statement and proof of the exponential decay as s-»0 to the next
paper.

c) Behavior on the Diagonal

The crucial property of e~sHκ(x, y) that makes a treatment by the classical
asymptotic expansion (1.3) of the heat operator impossible is a scaling property in
the s, x, y variables, which is stated in the following theorem. In the next section, it
is explained how scaling of this kind necessitates an asymptotic expansion in the
sense of distribution. On the other hand it is this exact scaling that makes Hκ a
fundamental operator more tractable than other operators with similar singular
behavior.

Theorem (3.4). We have for K ̂  3/4

_ of j , N — 1 / 9 — f t ' ^
e sllκ(x,y) = s 1/2e Hκ

Proof. Make a change of variable z->s~1z in (3.3).

The ultimate objective of this paper is to derive an asymptotic expansion for
e~slίκ(x,x) as s->0. Consider therefore the function:

The asymptotic behavior for fixed x>0 as s->0 is completely equivalent to the
behavior for fixed s as x-κx). A similar duality holds between s->oo and x->0. It
suffices therefore to look at the function e~Hκ(w, w) for w^O.
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Proposition (3.5). e~Hκ(w,w) is analytic in w for w>0. It is Ck for fc<2v+l,
v = (κ + ̂ )1/2 for w in a neighborhood of 0. Asymptotically,

2v+ί-c(κ) as w-»0,

w—>oo.

Proof. Analyticity follows from the analyticity of /v and Kv. Differentiability and
the asymptotic behavior as w->0 follow from (3.4). The asymptotic expansion as

w-»oo follows by term-by-term integration of (2.8) (where ρ is replaced by j/zw),

remembering that the latter is the Taylor series in - about 0.
Q

The proof of Proposition (3.5) tells us how to work out the asymptotic
expansion as w-»oo to all orders. This expansion together with the rest of the
information contained in Proposition (3.5) and the scaling property of Theorem
(3.4) is all we need to prove the term-by-term s-behavior of e~sliκ(x,x) as s->0. The
coefficients in the expansion require more detailed information about the heat
kernel and they will be derived in Sect. 5.

4. Singular Asymptotics of Functions on the Real Line

In this section I study the asymptotics of a function of two real variables, /(x, s), as
/ 5 \

s-»0+ in the sense of distributions if f ( x , s ) is of the form F (— d » where F(y) is C°°
\x /

/ s \
in a neighborhood of y = 0. It is then clear that the asymptotic expansion of F I — ̂  I

\x /
as s->0 for xφO, which is just a Taylor series, becomes singular when extended to
x = Q. Theorem (3.4) and Proposition (3.5) show that e~slίκ(x,x) can be written as
s~1/2/(x,s) where / is a function of the kind just described for x^O. I prefer to
consider functions /((x, s) with x ranging over the entire real line with /(x, 5) = 0 for
x < 0. The asymptotics will be studied in D'(IR). In other words we do not want our
test functions to have support away from zero even though / is a function on the
half-line. In this way we shall be able to apply the one-dimensional results to
higher dimensions by using spherical coordinates. It will also be possible to treat
the operator Hκ κ+ (see the end of Sect. 2), which are unsymmetric about the
origin, because by Proposition (2.3) we can write e~ s H κ-'κ+(x,x) = s~1/2[/_( — x,s)
+ /+(x,s)], where f± are again functions of the kind treated in this section.

The present results will later be generalized in different directions. First, to
functions /(x, s) with singular asymptotic behavior but not necessarily of the exact

form F 1—2 . Second, to functions of x in higher dimensional space, which will be
\x /

treated, as mentioned by using the half-line results. An easy generalization to
/ s \

functions / of the form χ(x)F I — 2 1 , where χ is C°°, will be worked out at the end of
\χ /
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this section. The general expressions for the asymptotic coefficients and a detailed
derivation are given in the appendix to the paper because they are not needed for
my present or later purposes.

Theorem (4.1). Let f ( x , s ) be a family of functions of xeIR with s>0 and suppose

that /(x,s) = 0 for x<0 and f ( x 9 s ) = F -̂  for x>0, where F(y) is C°°, y^O.

Assume further that oo
F(y)~ Σ Fuyk as y-^0,

F(y)^B<oo as y—»oo.

Consider the distribution fs defined in the canonical way by the functions /(x, s) of x
in D'(IR). We then have in D'(IR) as s^0 +

OO on m

Λ ~ Zj Un

// <50 denotes the Dirac distribution at 0, we have:
a) um is a linear combination of the 2mth distribution derivative of Inx and the

distribution δ(

0

2m~υ z/ m>0.
ι/0 is a distribution of order 0 with singsuppw0 = {0}.
b) wm is a constant times (5(

0

2m-1).
c) vm is a constant times ^(

0

2m"2).
Finally, we have for each m that wm = 0 i f and only if Fm = 0 and supp um = {0} if

and only if Fm = 0.

Proof. One could perhaps argue abstractly but since my approach is oriented
toward calculations, I give a proof that also derives formulas for the w's, w's, and
t 's. Consider the asymptotic expansion of F(y) as j^^O. We can write

F(y)=mΣ Fky
k+RJy) (4 i)

fe = 0

for some fixed m, where Rm(y) is the remainder after m terms. The assumptions on
F imply that

\y-(m-ί}Rm(y)\^c(m) as j,-*oo,

\y-(m-1}Rm(y)\^yc'(m} as y-+0.
I s \

If we then look at the function x2(m~1}f(x,s\ where /(x,s) = F —^ is rewritten in
\x /

terms of the expansion (4.1) we see that each term in the resulting representation is

smooth. By (4.2) the term x2(m~1)Rm -̂  , for fixed s, is bounded by a constant as
-j \x i

x^O and by —^ as x-»oo. Now to study /s(x) = /(x,s) asymptotically in D'(1R) as
x

s->0 + , we have to find an expansion in s of

Jώc#x)/(x,s) (4.3)

for each φeC%QK).
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At this point, make the simplifying assumption

V(X-*+D (4.4)

for some constant bk, k = 0, 1, . . . . The condition (4.4) will ensure that boundary terms
in the integration by parts below and in the appendix vanish at x = 0. Inequality
(4.4) will also ensure convergence of the integrals at the different stages in the proof.
At the end of the proof in the appendix, however, it will be shown that the results
of the theorem remain unchanged even without (4.4) or any other condition on
the derivatives of /(x, s) near x = 0.

Assuming (4.4), rewrite (4.3) as
1 00

S))= - Inx dx

d 2m~2

(χ2(m-ί}φ(χ)f(χ,s))

By the remarks above one can see that the sum in the last expression can be
differentiated term-by-term. The part involving the summation will give the part of
uk which is the 2/cth distribution derivative of Inx for 0^/c^m— 1. One then shows
that what would have been the remainder, Rm, yields a sum of Dirac distributions
and their derivatives plus a new remainder of order sm"1/2. In this manner one
obtains the asymptotics through order s™"1, but the details that are given in the
appendix are necessary for the more precise statement of theorem.

OO

Example. Let f(x,s) = e~χ2/s for — oo <x< oo. Now j dxφ(x}f(x,s) can be found
— oo

asymptotically by a Taylor expansion of φ if φeC^(IR). Thus

Thus

Λ = 0
/ceven

In this case only the u-terms given in Theorem (4.1) are present and the result is
evidently consistent with the conclusion of the theorem. It can also be verified that
the formulas given in the appendix yield the same exact constants for the
coefficients of the asymptotic terms.

A more complicated example is worked out in the appendix using Theorem
(4.1).

As promised, I give an easy extension of Theorem (4.1):
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Theorem (4.2). Let f ( x , s) = χ(x}F (̂  J , where χe C°°(R). Let fse D'(IR) be defined by
\X J

00

fs(φ)= J f(x,s)φ(x)dx. Then, if F satisfies the same conditions as in Theorem (4.1),
o

Λ~ Σ "»«"+ Σ wmsmins+ Σ ^s"-1/2.

a) w0eD'(IR), of order 0, singsuppι/0 = {0}.
b) For m>l, wmeD'(IR), of order 2m, singsuppwm = {0}.
c) wm is a linear combination of (5(

0

Λ), fe^2m— 1.
d) ι;m is a linear combination of <5(

0

k), /c ̂  2m — 2.

Proof. The asymptotic expansion is the same as in Theorem (4.1) with wm, wm, t;m

replaced by χ wm, χ wm, χ um. The theorem follows from the structure of the M'S,
w's, and u's of Theorem (4.1).

Remarks. The condition on F(y) as y— »oo in Theorem (4.1) can be relaxed
significantly. One needs to assume, instead of \F(y)\^B as .y-»oo,

F <oo.

i.e. integrability instead of boundedness. The proof of the theorem is exactly the
same.

It is striking in Theorem (4.1) that no restriction is needed on the derivatives of

F I — 2 ) as x-»0. From the proof of the theroem it appears at first that condition
\x j

(4.4) is necessary. In the appendix to this paper, it is shown how this condition is
dispensed with.

Consider for example the function

(4.5)

We have, clearly,

and not o(x 2k), so that (4.4) is violated. Nevertheless we still obtain the kind of
asymptotic expansion described in Theorem (4.1). Equation (4.5) essentially
appears in a recent paper by Uhlmann [6] on a mathematical derivation of some
classical phenomena in conical refraction, where the author has independently
derived an asymptotic expansion in the sense of distributions by methods similar
to those of the present paper. Lemma (3.10) of [6] can also be proved by using
Theorem (4.1) of this work.

5. Asymptotics of e~sHκ(x,x); the Trace Formulas

Theorem (3.4) and Proposition (3.5) show that s1/2e~sHκ(x,x) is of the type of
function f ( x , s ) considered in Theorem (4.1). We obtain therefore
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Theorem (5.κ). Let Hκ be the operator defined by Proposition (2.1) on L2(1R+). Then
we have an asymptotic expansion in D'(IR) (distribution in x) as s-»0+ of the form

vms ,
m = 0 m = 1 w = 0

where um, wm, vm have the same general properties as are described in a)-c) of
Theorem (4.1).

Since the present paper is restricted to dimension one, I shall demonstrate the
computability of the coefficients in such an expansion by a real one-dimensional
problem, i.e. one extending over IR, and defer the study on the half-line. One
obtains :

Theorem (5.κ,κ). Let Hκ κ be as defined at the end of Sect. 2. We have asymptoti-
cally as s->0

m = 0 m = 0

/ d \2m

where um is the distribution defined by um(φ) = $dxΊnχ{ — \ φ.

Proof. By the symmetry of Hκ κ under the transformation x-» — x on the real line,
we can conclude that e~sHκ>κ(x,x) = s 1 / 2 ( f ( x , s ) + f( — x, s)), where / is some
function satisfying the conditions of Theorem (4.1). Thus the terms in the
asymptotic expansion of /(x,s) that are odd under χ-» — x will not appear in the
expansion of e~slίκ> φc, x). The odd terms are precisely the ones containing (5(

0

2m~ 1}.
It follows that only the terms indicated in the theorem are present. For the precise
form of um we have to resort to the formulas in the appendix.

The coefficients cm(κ) are proportional to the asymptotic coefficients in the
expansion of Proposition (3.5) for large w and are easy to compute. It is striking
and important that the dm(κ) can also be computed. It is striking because the
formulas in the appendix for them proved totally fruitless. And it is important
because they also give the leading behavior of the kernels of more general
operators.

Theorem (5.κ,κ') The coefficients dm(κ) in Theorem (5.κ,κ) are given by

where v = (

Proof. The theorem will follow from Lemma (5.1) and Proposition (5.2) below.

Lemma (5.1). Let Fk be the coefficients in the asymptotic expansion

as

k=o \w/
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Then the coefficients dm(κ) are given by

J dx x2m e-sH«--(x,x)-s-1'2 Σ F,
(2m)!

Proposition (5.2) (the trace formulas).

s,k
<dk(κ)ίΓ.

/m , i \ |

ί dx x2m<rsH^ϋί x)-s1/2 V F —I = m 2 m V

J αjc •* e \χ>χ) * L rk 2
-oo

particular,

where H0 is the operator — —^ with domain if 2(IR).
β.X

Proof of the Lemma (5.1). Consider the function / defined by

X 2\m S
The function ( — /(x, 5) is a function of -̂  alone and satisfies

S / A-

— \ f(x,s)~-Fm as -̂ ,

~c—~ as -7~>υ.
x x

Thus is satisfies the hypotheses of Theorem (4.1). Furthermore, if we write

~~2 aS ~~2 "

we have G0 = 0. Theorem (4.1) then implies that, for

oo ίχ2\m

- oo \ 5 /

so that

GO

— oo

Now choose χeC^(lR) with χ = 1 in a neighborhood of 0, and write

The left-hand side is exactly the quantity we wish to estimate to order sm. Consider
each term on the right-hand side. The term

c\ c- 1 / 2 /ς Λ\
S)S P.4J
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is 0(sm) by the discussion above. Now we can show that the coefficient of the
sm-asymptotic term is precisely (2m)\dm(x). In fact, write (5.4) as

$dx(χ(x)x2m)e~sH(x,x)— Σ Fk s~ll2\dxχ(x}x2(m~k)sk

CO 00

~ Σ dk(κ)δW»χ(X)}sk+ £ ck(κ)uk(χ)sk-ίl2

k = 0 f c = 0
m

by Theorem (5.τc, κ\ and we can see by inspection that the coefficient of sm is
d^κ)δ(2m\x2mχ(x)) = (2m)\dm(κ). We then have for (5.4)

For the second term in (5.3), note that (5.2) suggests that it is 0(sm+1/2), since
(1 — χ(0)) = 0. This is not exactly rigorous, since 1 — χ(x) is not of compact support.
But (5.1) implies that given d>0, we have for x ^d,

for some constant C. Since 1 — χ(x) = 0 in |x|<d for some d>0, we have for the
second term in (5.3)

so that this term gives no contribution to 0(sm) and the lemma is proved.

Proof of the Proposition (5.2). One has to use special properties of the Bessel
functions.

First we represent e~slίκ>κ(x,x) in terms of Bessel functions (see the end of
Sect. 2) :

and make use of the following integral representation of the product of modified
Bessel functions [4] :

where Jv is the Bessel function of order v. The term Fk —^J in the asymptotic

expansion of e~sHκ>κ(x,x) as x-+co is given by the /cth order term in the binomial
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ί2

expansion of (ί2-fb2)"(v+1/2) (where b= ]/z) in (5.5) in powers of—:

0sz J v^-Γ" L) i Δ \ ( τ f J y V ^ ι *μ; J v~ "t-2^ / * N

1 2πi *

After substitution in the quantity we want to compute we perform the x,t,z
integration in that order. For the x integration we use the formula [4]

? Λ
j^xμjv(x)-- v

0

For the ^-integration, we use

The contour integration then becomes trivial and yields the result.

6. The Index of Some Differential Operators on IR

Consider the following first order differential operator defined on [C^(IR\{0})]M

C [L2(R)]M (a direct sum of M copies of L2), M an integer :

(6.1)

where A(x) is an hermitian M x M C00 matrix of functions satisfying

lim -^(x) = >l±, (6.2)

where A+ are non-singular matrices of finite numbers. Assume further that the
eigenvalues of the hermitian matrix ,4(0) are outside the interval ( — -|,|). The
significance of this condition is seen when we form the operators

, d2 A(x)2 + A(x) A'(x)
I ~ T — I .

LJ J^i 7 2 ' 2 '
dx2 x2 x

(6.3)
+ _ d2 A(x)2-A(x) A(x)

LL — - =• -\ ^ I ,
dx x x

defined for functions CQ on IR\{0}. The approximations of these operators by their
leading behavior near x = 0, i.e., the operators

d2
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can be written in diagonal form in the representation that makes ,4(0) diagonal :

(6.4 ,

where A fc are the eigenvalues of ,4(0). By virtue of the condition above, Λ^±λ f c^f ,
so that the operators (6.4) are self-adjoint on the domain

M
I! 1 II
1—2^1 < o o f . (6.5)

We obtain by comparison:

Theorem (6.1). Let L be defined by (6.1) and all the conditions above. Then the
operators (6.3) are essentially self-adjoint on the domain [C^(IR\{0})]M and the
domain of their closure is (6.5). Further, the closed operators so defined are
Fredholm.

Proof. The proof uses an easy perturbation argument by the Kato-Rellich
theorem in the following version [3] : if H0, H are symmetric unbounded operators
and DcD(H)πD(HQ} such that for some a< 1,

\\(H-H0)φ\\^a{\\Hφ\\ + \\H0φ\\} + b\\φ\\ for all φeD,

then H is essentially self-adjoint on D if and only if H0 is, and in that case the self-
adjoint extensions of H and H0 are defined on the same domain.

Now let H be L+ L or LL+, as given by (6.3), and let H0 be H+ or H_, given by
(6.4), respectively. Take £ = [C^(IR\{0})]M. It is easy to see that in either case

£

H — H0 = B(x)+ — , where c is constant and B(x) is C°° and bounded. It is then
.x

clear that H and H0 satisfy the condition of the Kato-Rellich theorem and the
statements about the domains of the operators (6.3) follow.

That L+L and LL+ are Fredholm follows from the fact that they are bounded
below by Hermitian operators that are identical to L+L and LL+ outside a
compact set and have no singularity at the origin. The condition (6.2) implies via a
theorem of Seeley [5] that these lower bound operators are Fredholm. This proves
the theorem.

It now follows by simple arguments that (6.1) is a closable operator and the
closure is Fredholm under all the conditions above.

We can therefore try to compute the index of L in (6.1). I use a technique
developed in [5] for computing the index of operators on open manifolds in terms
of the resolvent or the heat operator (see also Appendix B of [1]). The basic result
is the following proposition :

Proposition (6.2). Let L be a first order elliptic differential operator on the Hilbert
M

space 0L2(IR"):

, (6.6)

where δt(x\ Φ(x) are M x M matrices of smooth functions. Let <5ί? Φ denote
multiplication operators by δl(x), Φ(x). Suppose z<£IR_, and let (LL+ + z}~1(x,y),



374 C. J. Callias

z ) ~ 1 ( x , y ) denote the kernel functions of the indicated integral operators.
Then, for

~ 1 - (DD+ + zΓ *)(x, y) = + Jfc, y) + Az(x9 y) , (6.7)

where tr denotes trace over the matrix indices, Jl

z(x, y) is the kernel of the integral
operator

and Az(x, y) is the kernel of an integral operator on L2(R") that can be represented
as the trace of commutators of multiplication operators by smooth functions and
the integral operators D(D + D + zΓ1 and D + (DD+ H-z)"1.

The multiplication operators in the last statement are basically δl and Φ. The
theorem is a local one and it is derived by using the differential equations satisfied
by the resolvents. It can therefore be extended to operators with singularities such
as are studied in this section. Equation (6.7) will then be valid for x and y away
from the singularity. The following two lemmas show how the singular points can
be included in the range of validity.

Lemma (6.1). Let Lί=i- — h i — A(x) be an operator of the form (6.1), where A^x)
CIX X

= A(x) for \x\^R and Aί(x) = A(0) for \x\^r, 0<r<#. Then index L = index Lv

Proof. We can write Lί=L + B(x)9 where B(x) = i-(A1(x)-A(x)) is C°° and of
x

compact support. We can then show that B, the multiplication operator by B(x), is
compact relative to L1 in other words that the operator B : D(L1)-^[L2(IR)]M is a
compact operator, where D(LX) is equipped with the norm \\Ll \\ + || ||. It will then
follow, by basic index theory [7], that Li and L1—B = L have the same index.

To prove the compactness property, note first that B is compact relative to i —
(IX

with domain H^R) by the Rellich lemma [8]. This is equivalent to saying that

bounded sets in D\i—) |with norm
dx

d I! ,
' ΓΊΓax

are mapped to precompact sets

by B. But note that we have the inequality, valid for

f\Ύ Ύ \ \Ύ'' f\Ύ^ Ύ} l ^ ' l (]Ύ^ Y 2

IX-Λ' || \ (/tΛ> / \ I ttA- -Λ-

a2

dx2
ψ + C (ψ, ψ)

where C is an upper bound for the function
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Since C^(IR\{0}) is dense in D(L^\ it follows that, for all \p^D(L^\

7 I! 2

— J ^C-(||L l V | | + | | v l l )
ax II

for some constant C. Thus a bounded set in D(L1) is bounded with respect to the

norm of Dl z — I and is therefore mapped to a precompact set under B. It follows

that B is L1 -compact, hence the lemma.

Lemma (6.2). Let Ll be as in Lemma (6.1). Given a fixed ί>0, we have
exp(- tL+

1L1)(x,y) = 0(xv), as x^O for fixed y, and Qxp(-tL+

1L1)(x,x) = 0(x2v) as
x^ O for some v^l . Similar estimates hold for exp(— ίL1L|).

Proof. The heat kernel in the case of both exp(— tL\L^) and exp(— tL1L^} can be
represented by using (3.2) and (2.4), which are generally true for a second order
differential operator on IR (with first order term equal to 0) and not just for the
special operator of (2.1). Now in the neighborhood of x = 0 the ψ^x), Ψ2(

χ) of (2.4)
will still be linear combinations of the modified Bessel function of (2.2). Because
Ψ2(x) has to be L2 near 0, it should only contain terms involving the Jv Bessel
functions. For linear independence of ιpί and ψ2, ιpί must contain j£v's. For x,y in
the neighborhood of 0 we will still have a representation of the form (3.4). This
proves the required estimates as in Propositions (3.3) and (3.5).

We would like to evaluate (6.7) on the diagonal but the resolvents become
usually singular there, so it is more convenient to work with heat operators. A
direct complex integration of (6.7) along the contour of Sect. 3 then yields

-^tr(e-*L+L-e-*LL+)(x,y)=1-(j^

+ $^-.eszAz(x,y). (6.8)
2πι

It is then argued (Appendix B of [1]) that the last term goes to zero as x-+y
because it is now represented as the matrix trace of commutators of multiplication
operators with the integral operators e~sL + L and e~sLL+ which are smooth on the
diagonal. This argument will work in the present case as well for the operator (6.1),
because the heat kernels will behave sufficiently well even at the singularity,
according to Lemma (6.2). Equation (6.7) therefore gives for x = y:

Λ t r * ) " (6 9)

More remarks are in order. It is argued in [5] that the Az term in (6.8) goes to
zero as x-+y in dimension 1, basically because the singular parts of the two
resolvents cancel. This does not apply here because of the additional non-
differentiability at x = 0. On the other hand we could not have divided (6.7) by z to
obtain an equation for the trace of the difference of the heat operators rather than
for its derivative with respect to 5 as in (6.9), because the heat operators in the
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expression for \Az-—.esz would be replaced by operators of the type

f d z sz 1 1 1 1 -sL + L— sz -- — ---
2πi zz + L+L L+L L+ L

e

which are much more singular than e~sL+L.
Now the right-hand side of (6.9) has been computed in [5] [see, e.g., (3.14) of

that work]. We then obtain by making use of those results

+ 6 10)
*M)

where A+ are given by (6.2). Now it is also shown in [5] that the limit as s->oo ol
the trace that appears on the left hand side of (6.10) is precisely the index of L if L is
Fredholm. Thus, integrate (6.10) with respect to 5 from 0 to oo. Now let L be an
operator that looks exactly like L everywhere except that A(x) in (6.1) is deformed
to vanish like x as x— »0. By the results of [5] again [Eq. (3.14)] the right hand side

of (6.10) is equal to — — Ύr(e~sL + L — e~sLL+}. Since L is a smooth operator on odd
US

dimensional space, the latter trace is 0 in the limit s->0-K We obtain, therefore,

index L- index L+ lim Tr(έΓsL + L-έΓsLL + ). (6.11)
s^0 +

If we anticipate the results of the next paper again, we see that we can evaluate the
limit on the right hand side by approximating L by its leading behavior near the
singularity. This statement asserts the validity, in a special case, of a natural
generalization of the fact, well-known for the case of smooth coefficients, that the
asymptotics of e~sH(x,x) and e~sH'(x,x) will agree up to a given order sk if the
derivatives of the coefficients of H and H' at x agree up to some order m (depending on
fe). Thus we need the coefficient of s° in the asymptotic expansion of

as s-»0+ where H± are given by (6.4). Using the representation (6 A') and
Theorem (5.κ,κ') for w = 0, we obtain for this coefficient

each λk ̂  3/2 or :g — 1/2, by assumption. If λk ̂  3/2 the quantity in brackets is
\λk + ̂  —\λk — ̂  =1. If λk^ — 1/2 the same expression gives —λk — ̂  — (^ — λk)= — l.
Thus the limit on the right hand side of (6.11) is precisely the signature of the
matrix ,4(0), sign ,4(0), i.e., the number of positive minus the number of negative
eigenvalues. We summarize :

Theorem (6.3) [Index theorem for (6.1)]. Let L be defined and satisfy all the
properties as described in the beginning of this section. Let L be obtained from L by
deformation in a neighborhood of 0 to a smooth lower order term in (6.1). Then L, L
are closable and their closures are Fredholm and

index (L)-i

+ tτA(Q)\A(Q)\-1.
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7. Discussion of the Trace Formula [9]

It would be very interesting to understand the origin and significance of the trace
formulas of Proposition (5.2). In particular, it would be desirable to understand
why the traces have a power dependence on s (the m* trace is proportional to sm)
and why the dependence on v is again polynomial. The first question is easy to
answer by using the fact that the heat kernel can be expressed in the form given by
Theorem (3.4). I also give a derivation of a partial answer to this question that
points to a generalization of the trace formula to operators of the more general
form of Sect. 6. I cannot see any illuminating answer to the second question.

Consider operators of the type (6.1) with M=l and let A(x) be the constant
v — \. We then obtain from (6.3)

dx2 \ 4!x2

*2 ' ... 1\ 1

dx2 ' \v ' 4] x2

for v ̂  3/2. Let H(v) denote the operator Hκ κ with K = v2 — \. The results of [5], as
explained in the previous section yield

d
Js

because the A± of Eq. (6.2) are now 0. This shows that

ds

where H0= ^ *s a periodic function of v with period 1. There is obviously

quite a gap between this statement and the conclusion of Proposition (5.2) that it is
actually zero.

If v is an integer, the Bessel functions appropriate to the problem are of half-
integer order. They are then expressed in terms of elementary functions and as a
check one can verify the first few trace formulas (for small v and small m) explicitly.

Appendix. Derivation of Singular Asymptotics on the Half-Line

I give more details about the derivation of Theorem (4.1) in this appendix as well
as formulas for the distribution coefficients of the different terms in the asymptotic
expansion.

Start with the assumption in the theorem of Sect. 4 and write, as already
indicated in the sketch-of-proof of the theorem given there

m~l s\k

± +R
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In the term with the summation it will be enough to point out the term of
highest order:

I co ^2m-3

Next we show that the term containing Rm can be written as a sum of derivatives of
the Dirac distribution at 0 evaluated for the test function φ plus a remainder which
is of order sm~1/2. We rewrite the term in (A.I) containing Rm as

2m~4/2m-4\ / 3 \ 2 m - 4 - f c

. Σ , WWM br
kto \ k ] \dxj

Now write

( A.4)

and substitute in (A. 3). The first term in (A.4) will give a contribution that cannot
be reduced any further in terms of φ. After rescaling x by x^xs112 it will yield the
Ins terms, among others, in the expansion of Theorem (4.1). We note that the
second term in (A.4) vanishes for x = 0 like x and, therefore, it is possible to do an

integration by parts in (A. 3) because the — singularity from the ln.x will be

cancelled. To isolate the remainder, one then only needs the following lemma :

Lemma (A.I). Let φεC%(1K). Then

where cs[φ] is bounded in s.

Proof. Use integration by parts, repeated p times until the differentiation is
transferred to φ(x) in the integral. Because the integral extends over the half-line,
we pick up some boundary terms at the origin, which give the sum on the right-
hand side of the equation in the lemma. What is left is proportional to

which is estimated by

sup\φ^(x)\ $dxx2(m~l) Rm(-2
0

By a single rescaling x^x-s112, the last integral is seen to be proportional to
5m~1 / 2, which proves the lemma.

Thus we have shown that we have isolated terms through orders s"1"1 -Ins in
the expansion, with a remainder of order sm~1 / 2. We do this for each m and then
pick out the highest order terms, i.e., the terms of orders sm~1, sm~3/2 and sm~1 -Ins.
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We can then write down the distribution coefficients for each m in the expansion of
Theorem (4.1):

^=-(2έϊ)τfel TOln*]

(2m-2)! m\dx

(2m-1)1

1 1

(A.5)

1

(2m-2)!

2m-2 oo 32

δoίdζ lnζ—ϊ
j_2m\?

where the derivatives
δΓι

T~ ln:x'3x
are understood in the sense of

distributions.
Before proceeding to the general case where the condition (4.4) is not satisfied

by F(y), it will be shown that the formulas above for um, vm, wm can be cast into a

form that does not explicitly involve the derivatives of F —^ in the neighborhood
\x I

of x = 0. We see by inspection that we need to deal with the following two integrals
in the formulas for u and vm:

2m (A.6)

(A.7)

(F enters the right-hand side through Rm+1). In view of (4.4), differentiation of F in
Rm+1 does not make the integrand too singular and (A.6) and (A.7) converge
nicely near C = 0. Now start with (A.6), cut-off the integral at ζ = ε and integrate by
parts:

L1>m[F]= lim I dζlnζ dζ
r2

"=

1

1^2

ε->0

(A.8)
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where we define L1>ε>m[F], and the last step uses the definition (4.1) for Rm+1(y)
and the condition (4.4). Similarly, we can write for (A.7)

(A.9)

f
, ε-»0

where

Finally define the "cutoff distributions uε >m, t;ε w by replacing Z^ m[F], L2 m[F]
appearing in (A.5) by L1>β)m[F], L2 ? ε m[F], and θ(χ) by θ(x-ε).

We are now ready to work out the proof for the case where (4.4) is removed.
First write

00 f s\ °° / s\
JώcF -̂  φ(x)=lim f dxF -̂  U(x),
0 \X I ε^° ε \X /

and apply exactly the same integrations by parts, including those of Lemma (A.I),
to obtain

where Φ(ζ) is linear in ψ(ζ) and bounded as a function of ζ; Bs ε contains all the
boundary terms at ζ = ε resulting from the various integrations by parts. The terms
in brackets will give the asymptotic terms to order s™"1 In s. The next term is the
remainder obtained by applying the proof of Lemma (A.I). It is readily seen that
all the terms on the right hand side of (A. 10), which is an exact identity, have a
limit as ε->0, except perhaps for the Bs ε term. But the left-hand side of (A. 10) also
has a limit as ε-»0, so that Bs ε does as well. In fact, although Bs ε is a complicated
combination of many terms, many of them apparently singular as ε—»0, a lengthy
calculation reveals that all the singular parts cancel out nicely, so that

Finally, we still obtain

Thus the asymptotic expansion is proved again and the coefficients are given by
(A. 5) if we effect the replacements
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/. Examples

As an illustration of some of the details of the proof above, the case m = 1 can be
worked out easily assuming the conditions (4.4). Write

ψ(x)

ιp(x)= — J dx\nxd2

x

l j dxlnxd2ιp(x)— J dxlnxdx
o o

(A.11)

The last term is now written as

xzK- + 3xV;(0)j'ίίxlnxcUx2.R2 -̂

(A. 12)

The last two terms here can be written, after integration by parts, as

-a. R2\-2 \X2 \ - l d X

x2R- + Sdx\δ.

= 5Jtφ(0)(-F1 s)+

2 2
\A

(A.13)

where the integrated term has been evaluated and Φ(x), defined here in the obvious
way, is bounded. Write the last term in (A. 13) as

-Q2(s)=

Then

v 2/?A ΓVo ^
= s3/2 Jdx (A. 14)
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The integral in (A. 14) comverges because

< const as x

as x—>oo.

Thus there exists a c>0 such that |ρ2(s)|:gc s;"'!||Φ||00. We still need to simplity
the first two terms in (A. 12). We have

J dxlnxd*\x2R2 -1 =s1/2 J </xln(xs1/2)δ2

o L \χ n o
V 2 x 2

= s1 / 2L2 j l[F]+-s1 / 2lnsa ; <

= s1/2L2>1[F] + 0

(A. 15)

The 0(x) for x^O follows from

where b^ 61 are defined in (4.4).

\dx\nxdx\x2R2 4
J Λ ^ I -ι^^

Similarly we find

— 5 j

+ -slns j
^ Π

H—slns F]^

(A.16)
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Substituting (A.13), (A.15), (A. 16) back into (A. 12) and then (A. 12) into (A.11) we
obtain

J dxF[-2\ψ(x) = F0 f
0 \X / 0

CO

F0 $
o

- s1/2ψ(0)L2> i [f] + 3xy(0)s Ins + ρ2(s)

+ ρ2(s). (A. 17)

Since ρ2(
5) satisfies the estimate (A. 14), we have verified our asymptotic expansion

to 0(5 In s). It can be seen that the coefficients agree with (A. 5). In particular, the
i

coefficient of F19xδ0 in the s-asymptotic term should be, according to (A.5), j dtlnt

= [tlnt-t]}=0=-l, which agrees with (A. 17). °

2. A particular Example of Asymptotics to all Orders

Consider the following concrete instance for /(x, s) :

1+
x

To apply (A. 5) we need to compute Fm and Rm+ ^y) for each w = 0, 1, .... Note that

The remainder after m + 1 terms is also easy to write down :
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Now we can evaluate L1(IM, L2>m defined by (A.6) and (A.7):

1
00 d ίMt2}

= — f jjΠnf r^ml 1 /^ /

= [--ln(M2-

On the other hand,

1 d2 i

-lnM4^ + ...+lnMJ

52 / 1

-0.

Finally, apart from this particular example, we note as a general result :

Lemma (A.2). J at In ί(l - ί)
2m -1

2m-2 _

2m- -1 f c?ι k'

I found that this is true by deriving Theorem (4.1) in a completely different way
(see subsequent papers). It can be checked for a few small values of m. I have been
unable to find a direct elementary proof!

We can now write down the full asymptotic expansion for (A. 18):

.(2m-2)! 2

1 1

By letting s -»sΛ or s -+sλ 1 we can differentiate this asymptotic expansion with
respect to λ to obtain one for

l+

where p —z) is a given polynomial of degree ^n—
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