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Abstract. The construction of principal bundles over a four dimensional torus is
considered. The class of groups considered is SU(n)/ZΛ, and for this class the
Pontrjagin class has even integer values.

1. Introduction

This paper considers principal fibre bundles over a four-dimensional torus.
Physically a four-dimensional torus corresponds to space-time being a kind of
Euclidean box with periodic boundary conditions. Fibre bundles enter when one
considers non-Abelian gauge fields inside this box. This physical picture has been
considered by a number of people, cf., for example, [1] and references cited therein.

In [1] it is argued that the gauge groups SU(rc)/Zπ, w = 2,3,...are physically
important (Zn stands for the centre of the group SU(n), hence for each n, Zn is
isomorphic to the nth roots of unity). The topology of space-time is S1 x S1 x
S1 x S1, where S1 is a unit circle. We shall denote space-time by T4. Underlying the
non-Abelian gauge field is a fibre bundle and so we are led to the construction of all
SU(n)/Zn bundles over T4. We describe, in what follows, a method for carrying out
this construction. In Sect 2 we treat the case n = 2, and in Sect. 3 the case n > 2. An
important mathematical tool in the calculations will be the generalised cohomology
theory known as K-theory.

2. The n = 2 Case

When n = 2 there is the well known result, of a kind typical for Lie groups of low
dimension, that SU(2)/Z2 ~ SO(3). Thus we wish to construct all SO(3)-bundles
over T4. In contrast to the case where the base space is a sphere Sk the calculation is
not completely straightforward. It turns out to be most easily accomplished by
resorting to a well known mathematical tool of bundle theory known as ^-theory.
X-theory is a kind of generalised cohomology theory defined for vector bundles. For
an introduction to X-theory, cf. the works cited in [2]. The K-theory for T4

considers all vector bundles E over T4 and assembles them together into
equivalence classes—two bundles E and F are equivalent if the addition of a trivial
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bundle Ij to each of them renders them isomorphic [2]: E φI J ' ~ F © Ik. Although the
K-theory over T4 considers all vector bundles over T4 of all possible ranks, we shall
nevertheless be able to pin down those bundles with SO(3) as their structure group
and identify their corresponding principal bundles. We shall use the notation of
Husemoller [2]. Since SO(3) is an orthogonal group, the corresponding K-theory
is denoted by KO—the so-called reduced real K-theory [2]. In general KO(M) for
some M forms a ring, with multiplication and addition provided by tensor pro-
duct and direct sum respectively. If M = T4, then KO(T4) forms a group G and a
certain subgroup H of G provides us with the SO(3)-bundles we seek.

Before constructing H we need some general results about the construction of
bundles. If one wishes to construct G-bundles over a compact manifold M, then one
needs a space BG known as the classifying space for bundles with group G. This space
BG is the base space of a certain bundle WG called a universal G-bundle. Then for a
map/

f:M^BG, (2.1)

f*WG is a bundle over M known as the pull-back of WG by/. All G-bundles over M
arise as/* WG for some/ also if/and g are homotopic maps the/* WG and g* WG are
isomorphic. Thus all G-bundles over M are given [2] by all homotopy classes of
maps/:M-»£G by [M,£G]. Now we choose G = SO(3) and M = T4 so that we
wish to know [T4, £SO(3)]. Next we may use a result of James et al [3] to characterise
[T4, J3SO(3)] in terms of KO(T4}. To this end we calculate KO(T4). This calculation
presents some difficulties which may be circumvented by replacing T4 by X where X
is a space of the same homotopy type as T4 so that KO(T4) = KO(X). Such a space X
is a given by [4]

X = S4v(S3vS3v... vS3)v(S2vS2... vS2)o(Slv... vS1), (2.2)

4-times 6-times 4-times

where AvB denotes the disjoint union of A and B with base points identified.
(Alternatively, instead of introducing X, one may calculate KO(T4) via the
properties of KO ~P(T4\ where KO ~p = KO(SPM) and SPM is the P-fold suspension
of M.) We then have

KO(X) = KO(T4) = KO(S4) 0 KO(S3) © KO(S2) © X0CS1). (2.3)

4-times 6-times 4-times

The right-hand side of 2.3 is well known [2] so that we obtain

KO(T4) = Z®(Z2\ (2.4)

10-times

where Z2 denotes the group of integers modulo 2. Next we utilise Theorem 1.6 of [3]
which says that the map

IT4, Ssoo)] - C^4> SSQ] = KO(T4) (2.5)
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is injective, and that under this map the elements of [T4

9BSO(3)'] correspond to a
subgroup H of KO(T4): namely those elements of KO(T4) with vanishing 4th-
Stiefel- Whitney class W4. (In 2.5 Bso is the classifying space for all principal SO(n)
bundles and SO denotes the infinite special orthogonal group.) The subgroup H is
then given by

H = 2Z®(Z2). (2.6)

6-times

We can now describe the various SO(3)-bundles over Γ4. To do this requires the
notion of an induced or pullback bundle: if / is a map from T4 to M and E is a
bundle over M, then /*£, the pullback bundle, is a bundle over T4. The six Z2

summands in H correspond to the following pullbacks. Project first from T4 to Γ2

(the 2-torus). This can clearly be done in six possible ways. Denote the six projections
by π l s . . . π 6 :

i = l , . . . 6 (2.7)

Now consider the Hopf bundle S3 over S2 and a map/:T2-»S2; if we denote the
Hopf bundle by ξ, then/*£ is the pullback of ξ to T2 and (foπ^ξ is the pullback to
T4. These six bundles contain the twist ημv referred to by 't Hooft [1]. They also have
zero Pontrjagin number p^. This is because

H4(S2 Z) - 0 so that p^ξ) = 0 and

= 0, (2.8)

so the bundles over T4 have vanishing p1 also. These bundles (/°πf)*ξ are SO(3)-
bundles by virtue of the embedding of U(l ), the group of ξ, in SO(3); they correspond
to the generators of the six Z2 summands in H. Further U(l )-bundles may be formed
as we shall see below shortly. The summand 2Z in H is generated by pulling back a
certain bundle ζ over S4 to T4 under a map g:T4-> S4. The bundle ζ has total space
CP3 and base space HP1, where HP1 stands for one dimensional quaternionic
project! ve space, and in fact HP1 ~ S4. The fibration is as follows: CP3 has four
homogeneous coordinates [z l5...z4], a quaternion q may be regarded as being
given by a pair of complex numbers α, b so that q = a + bj. The projection p of the
bundle ( projects [zl5...z4] onto \_zl + z2j,z3 + z4j], which is an element of HP1.
The pullback g*ζ is an SO(3)-bundle over T4. Further pί (g*ζ) is always even. This is
because in general we have

Pl(ζ)moά2 = W2(ζ\ (2.9)

where W2(ζ)eH2(S4Z/2) is the second Stiefel-Whitney class of £. Since
H2(S4:Z/2} = 0, then p^Qis even. Now if the mapg:T4-»S4 has degree /c, we have

(2.10)
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so that /^fe^O is also even, in fact p±(ζ) = 2, and thus p1(^*C) = 2k. We have now
identified the bundles that correspond to the generators of//. The operations of®
and 0 which provide KO(T4) with its ring structure provide a source of further
bundles.

In general we define ξ{ = (foπ^ξ and ξ. = (foπ^*ξ; the tensor product ξ.® ξ.
remains a U(l)-bundle and will have Pontrjagin number given by, (cf. appendix)

P ι ( ξ i ® ξ j ) = Csμvaβv>»V«9 (2.11)

where the integer ημv is the twist of ξ.® ξ. and C = £, so that p^^ ® ξj) is an even
integer. Now if we set ζij = ζ.®ζ. and form τ = ζij®g*ζ, then we have, since
//4(T4;Z) contains no elements of order 2,

= 2k + CεμvΛβη
μvriΛβ. (2.12)

Compare this with Eq. (1.1) of ref. 5, cf. also Van Baal [6], where the definition of pl

used in ref. 5 is corrected

3. The n > 2 Case

When n > 2 the group to be considered is SU(«)/ZΠ, which we write as PU(n). Here
PU(n) is the projective unitary group, if G is any group with centre Z then PG = G/Z
note that PU(n) = PSU(n). The essentials of our problem will again be reduced to the
calculation over spheres Sl via 2.2; now G-bundles over Sl are classified by the
homotopy group ni,1(G\ i.e. we have an isomorphism

[^BGU^DS'-SG]. (3.1)

If G = SU(n), then it is important to know that

but that

π1(PU(/ι))=Z I I;π1(SU(n))=0. (3.2)

We shall refer to a PU(rc)-bundle as a projective bundle. Projective bundles may be
obtained from U(n)-bundles by a procedure that we now describe, however
inequivalent Unbundles may give rise to the same projective bundle: If £ is a U(n)-
bundle over a manifold M, then it gives rise to a projective bundle PE by use of the
natural projection p: U(n)->PU(n). If, however, L is a U(l)-bundle, or line bundle,
then £®L is another U(n)-bundle; in general inequivalent to E, but certainly
P(E® L) = PE. A converse also holds, i.e. if PE and PF are equivalent projective
bundles, then there exists a line bundle L such that

£-F®L. (3.3)

There is therefore a one to one correspondence between projective bundles PE and
equivalence classes of U(n)-bundles, the equivalence relation is denoted by ~ and
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the equivalence class given by:

E~FoE = F®L (3.4)

for some line bundle L. To calculate projective bundles PE over M one can therefore
first calculate all U(π)-bundles over M, and then divide these up into equivalence
classes according to (3.4), one then has all the projective bundles PE. We have a
specific situation: namely n > 2 and M = T4. It is then known that the U(π)-bundles
are found by calculating KU(T4), the reduced complex X-theory of T4; since n > 2,
we are in what is known as the stable range and two vector bundles of rank n are
isomorphic if and only if they are equivalent in KU(T4). In other words

ίT\BU(n)-]^KU(T4\ n>2. (3.5)

The calculation of KU(T4) is done by exactly similar methods to those used in Sect.
2 and the result is

= KU(S4)@KU(S3) ®KU(S2)
4-times 6-times 4-times

= ZΘZΘ...Z. (3.6)
7-times

In the right-hand side of (3.6), one copy of Z comes from the fact that KU(S4) = Z,
the other six come from the fact that KU(S2) = Z, KU(S3) and KUiS^ being zero.
The description of the Unbundles over T4 requires first the giving of the bundles
over S2 and S4 that correspond to the generators of KU(S2) and KU(S4). We denote
these bundles by ξ and ζ respectively, ξ is determined by a map

αrS^Ufr) (3.7)

and C by a map

β:S3-+υ(n). (3.8)

In factαeπ^Uίw)) = Zandβeπ3(U(rc)) = Zso that only the homotopy classes of α
and β matter. The integers, a and b say, that label the homotopy class of α and β
respectively are chosen to be unity and are given by

& = f C 2 ( C ) , (3.9)
s4

where CA and C2 denote Chern classes. To construct Unbundles over T4 we
simply need to pull-back ξ and ζ to T4, i.e. to construct the bundles (f°n$*ζ and g*ζ.

Finally we need to construct PU(rc)-bundles over T4. This is done by giving Pξ
and PC: let p be the projection p : U(n) -> PU(n), then the maps

(3.10)

where αp = p° α and βp = p°β define the projective bundles Pξ and Pζ which are then
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pulled back to (fon^Pξ and g*Pζ respectively to give projective bundles over Γ4.
Evidently α^Gπ^PU^)) = Zn and /?peπ3(PU(n)) = Z. Thus the six kinds of bundles
(f°πi)*Pζ are classified by a twist ημv defined modulo n and the bundles g*Pζ are
classified by an integer. The twist ημv is defined modulo n because αeπ^U^)) = Z
and αpeπ1(PU(n)) = Zrι, for example, because of this fact, two homotopically
inequivalent α, α': S1 -» U(n) may become homotopically equivalent when composed
with p, i.e. we may have α φ α' but αp ~ αp.

In fact since topologically U(«) - U(l) x SU(w), then π^Uίn)) - 7^(11(1)), since
π1(SU(n)) = 0, so that in (3.10) the map αeπ^Uίn)) is actually determined by an
element α' ofπ1(U(l)) = π1(S')and degα', the degree of α', is unity. This means that ξ
is again the Hopf bundle of Sect. 2. As a consequence we may again construct the
PU(rc)-bundle τ where

τ = ζij®g*Pζ9 (3.11)

and ζij = ξi® ξj and ξ t = (foπ^Pξ, ξj = ( f ' ° π j ) * P ξ . Even though τ was originally
derived from Unbundles whose characteristic classes are Chern classes, τ may be
regarded as having a Pontrjagin class /^(τ). This point, also made independently by
Van Baal [6], is that PU(w) is isomorphic to a subgroup G of SO(n2 — 1), indeed any
compact Lie group is isomorphic to a subgroup of O(n) for some n. The isomorphism
in the case of PU(n) is provided by simply taking the adjoint representation of U(n),
the map defining the adjoint representation has, by definition, kernel equal to the
centre of U(n) so that the desired isomorphism PU(n) ̂  AdU(n) follows. This being
so, a PU(n)-bundle may be regarded as an SO(n2 — l)-bundle whose structure group
reduces to G, its appropriate characteristic class can then be taken to be a Pontrjagin
class.

A general Abelian configuration is given by taking a sum of (n — l)-bundles (0

which we denote by ζ(a\ a=l,...n—l. The resulting bundle, ζ say, has group
SO(2) x ... x SO(2), ((n— l)-times), which corresponds to the maximal Abelian
subalgebra for AdU(rc) c SO(n2 — 1), n > 2. For ζ we have

These η($ differ from those of ref. 6 due to a difference in the normalisation of the
subalgebra. With the normalisation of ref. 6 we indeed find

— — εμvΛβημvriΛβ+k9 (3.13)

where ημv is the twist defined modulo n and k is an even integer. The splitting
principle [2] guarantees that a general value of p{ may be obtained with such
Abelian configurations in agreement with refs. 1 and 6, and pA is also always even
[6].
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Appendix

Let the bundle ξi have twist ημv and ξ . have twist ηaβ as U(l)-bundles. Then we have

-,zπ

(A.I)

where F' and F 7 are curvature defined on 2-dimensional tori. The Pontrjagin class
Pι(ξι® ξj) is given by [2]

Pl(ίfβ> « = {Cl&® ί,)}2 = {c&j + Cl({,)}2, (A

eft,.) + cJ^qK,.) + c^OqKi) + cl(ξj) = 2c1(ξί)c1(£J λ

where we have used the facts that c\(ξ^ = c*(ξj) = 0 and q ( ξ j c ^ ξ j ) = c^ξ^c^ξ^
which follow from naturality and U(l)-valuedness respectively.
Thus

Pί (ξ& ξj) = --^ J (π*Fθ Λ (πyFO, (A.3)
^ZTΓJ T4

where πfF1' and π/F-7' are the pullbacks of the curvatures F1' and ¥j to T4. The right-

hand side of (A.3) is evidently proportional to εμvaβημvηaβ. If one takes a specific case
where ημv = η12 ηaβ = ̂ 34, one finds easily that this constant is £, so we have

r>

P i ( t i ® t j ) = 4^1^10* (A.4)

as desired, and this formula holds for general ημv, ηΛβ defined modulo n..
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