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Abstract. We exhibit an example of a one-dimensional discrete Schrodinger
operator with almost periodic potential for which the steps of the density of
states do not belong to the frequency module. This example is suggested by the
K-theory [3].

Introduction

The problem of investigating the spectrum of quantum almost periodic hamil-
tonian operators has increased very recently in importance due to new infor-
mation obtained by several authors.

Among these progresses, the integrated density of states 9Ϊ(E) has been
interpreted in the algebraic framework [9, 3] : the trace of the spectral measure
associated with the random hamiltonian as an element of the canonically
associated von Neumann algebra [2]. If the energy belongs to the resolvent set,
where 9l(E) is locally constant, the density of states takes values in the K0-group
(precisely in its image by the trace) of the canonical C*-algebra constructed from
the quasi periodic hamiltonian.

In the case of a one-dimensional Schrodinger operator with an almost periodic
potential V, this group coincides with the frequency module of V [6, 3]. In this
short note, we exhibit an example of a one-dimensional Schrodinger operator with
a "discontinuous quasi-periodic" potential for which the K-group is different from
the frequency module, and we show that the values of 5R(£) at the steps are really
not in the frequency module.

To be precise we deal with a hamiltonian (Hx)xeτ acting on /2(Z) by

Hxψ(n) = ψ(n+ί) + ψ(n-ί)+V{x-nθ)ψ(n), (LI)

where Fe^(ΊΓ) and θ is an irrational number. The spectral density in this case is
defined by

5R(£)= lim ( 2 N + 1 ) " 1 card {eigenvalues of HJ ,H-NtN)<E}. (1.2)
N->-co
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It has been proven that 9l(E) exists it is independent of xe T = IR/Z, and it is a
continuous increasing function of E [9]. Moreover, it is locally constant on the
resolvent set of Hx, which in this case is independent of x.

If θ was rational, H would be periodic, and k = $l(E) could be interpreted as the
Bloch wave vector, whereas E = 9l~1(k) would give the dispersion law for the
energy as the function of the frequency. As it is well known a gap in the energy
would occur eventually if k belongs to the reciprocal lattice, which would be here
Z + ΘZ.

If now θ is irrational, the same kind of results occurs: the eventual gaps appear
only if 5rt(E)eZ + 0Zn[O,l]. This result could be heuristically obtained by a
perturbative argument following the line of the periodic situation. In the con-
tinuous analog of this model, the set Z + ΘZ is the frequency module of V, i.e. the
group of frequencies in 1R appearing in the Fourier expansion of V. Then, the
perturbative arguments can be sharpened to prove these results [6]. In [3] it has
been related to the i£-theory of the C*-algebra attached to H = (Hx)xeτ. In the
example (LI) this C*-algebra is 2ίθ first described in [8], and for which it has been
proven that [4,7]

Θ (1.3)

If now we replace V by a function on T which has some points of discontinuity,
the K-theory is no longer equal to TLΛ-QTL, because the hamiltonian (I.I) does not
belong to 9IΘ. In this paper we illustrate this fact by the case

V(x) = λχ]_θ,ί0](x), A>0, xeΊ, (1.4)

where χ7 denotes the characteristic function of /, and 0' satisfies the condition of
rational independence (R.I.):

1, θ, θ', are rationally independent numbers, satisfying

0<θ-ε<θf<θ<l (R.I.)

for a small enough ε (Sect. II).

Theorem I. Let θ9 θ' satisfy R.I., there exists a constant λ0 >0, depending on θ, such
that if λ>λ0, then the density of states 9Ϊ(E) of the almost periodic operator on /2(Έ)

(1.5)

admits steps for which it takes values of the form m + nθ + pθf with pφO.

The proof of this theorem will be done by hand without reference to the
C*-algebraic approach. Section II is devoted to some facts on number theory
Sect. Ill concerns the proof of the theorem.

II. Coding T by an Irrational Rotation

We need first to recall some well-known facts about the continued fraction
expansion of an irrational number [5].

Let 0 be an irrational number in ]0,1[. We then define a1 by
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where [x] denotes the biggest integer dominated by x. We put

gί==θ-i-aί (Π.2)

and we can define recursively a2,θ2,....
Now we make the assumption R.I. precise
1, 0, 0' are rationally independent and

θ-θθ1θ2<θf<θ. (R.I.)
(II.3)

In what follows we shall denote \_a,b\_ the set of points of Έ = ]R/Έ = SV between a
and b when we run along the circle in the anticlockwise direction.

Lemma II. 1. Let xbea point in [0,0'[. The smallest integer φ c ) φ θ such thatx
belongs to [0,0'[ is:

1) φ ) = α1 + l = ί ? 1 if
2) έ(x) = 2a1 + l=S2 if
3) φ ) = fll=/3 if

/ 1) Let us assume xelv Since 0>0' we get x + /0^[0,0'[ as far as
ί^ύat; for O<^0^α 1 0<l and

x + ifθ^θθi-ίθ-βO + Λ i β ^ l - ί β - θ ^ l ( π 4)

due to

α ^ + 0 0 ^ 1 . (II.5)

Since (everything is given modulo 1)

which proves

2) If xel2, we get in much the same way for l ^ / ^ α 1 since x<θθv

Thus / ( x ) ^ ! + 1. However since xel2

+ l)θ-l<θ. {11.9)

Therefore έ(x) + aί + l. In order to come back to the interval [0,0'[ we need to
rotate by at least αx0. For if aγ + 1 rg/5^2α1? we get

^ l . (11.10)

On the other hand, for ^ = 2a1 4-1, we obtain

- l < 0 ' ; (11.11)

thus

(11.12)
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3) At last iΐxel3 and 0 ^ / ^ - 1

θθ1 ^ x + /θ<θ / + ( α 1 - 1)0 = 0 ' - 0 + 1 - θ θ ί < 1 , (11.13)

whereas

O^x + aβ-ίKθ'-θθ^θ'. (11.14)

Thus

ίf(x) = α 1 . (11.15)

Definition II.2. Let v4 be a subset of TL. The density of A is the number (if it exists)

d(A)= lim (2iV+1)"1 c a r d a n [ - J V , ^ ] ) .
iV->oo

We get the following result:

Lemma II.3 (H. Weyl) [11]. Let I be an interval of T and θ be irrational in ]0,1[. If

JV(J) = {meZ; mθ(modl)e/}, (11.16)

the density of N(I) exists and is given by

W(Q)=\i\, (π.17)

(where | | denotes the Lebesgue measure).

An immediate consequence is:

Corollary II.4. For xeT, we put Ni(x) = {meZ;mθ-xeIi}. Then

i) d(Ni(x)) = \Ii\,

ii) Σ d(Ni(x)) = θ'.
i = l , 2 , 3

Corollary Π.5. //L^x) = {£eZ;3meN^x),m</<m}, where m denotes the smallest
integer such that m<m and mθ — xe[0,θ'\_, then:

i) d(Li(x)) = (^-l) |/ ί | ,

ii) Σ diUx)) = \-ff.
i = l , 2 , 3

Proof By Lemma II. 1, if m e Nt{x) then m — m = £{. Thus for each m e Nt(x) there are
£t — 1 points in L^x), which proves that

d(Lίx)) = V- l)d(Ni(x)) = (£i- 1)17,1 (11.18)

ii) follows from the fact that (Lί(x))i=:ί 2 3 is a partition of
Έ- M JVf(x), and of Corollary II.4, ii).

ί = l , 2 , 3

III. Computing the Density of States

We come back now to the random operator H(λ) = (Hx(λ))xeΎ defined by Eq. (1.5).
We see easily that Hx(λ) ̂  — 2i. We claim that H(λ) converges in the norm
resolvent sense if Λ,foo. For:
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Lemma III.l. Let H be a positive bounded operator on the Hilbert space ffl and P
be a projection. Then

i) R(oo) = UmiH + ί + λPy1 exists in the norm sense.

ii) ||Λ(oo)—A(Jtf+i+Ai>)-1 | |^A-1(l + ll^ + ll|l)2.
iii) jR(oo)P = P#(oo) = 0 and the restriction of R(oo) to the subspace (PJ^)1 is

Proof. We denote by R(λ) the operator (iϊ + t + λP)" 1 . Then R(λ) is decreasing
in λ. If X > λ, we have

λ' l/λ

\\R{λ)-R{λ')\\^\dσ\\R{σ)PR{σ)U I dx
p /1

-R[- (ΠΠ)

But we have, since R(λ) S %

P

x

This gives i) and ii).
From (III.2), if x-»0, we get

) = (l-P)JR(oo)(i-P).

Now let φ belong to Jf then for any λ^O:

If λ->oo we get together with (III.3)

which is the end of the Lemma.
Now if H is replaced by A = i ί 0 + 2, with

and P by ^ . ^ [ ( n β - x ) , we get

Corollary III.2. // Λ,|oo, HX(A) converges in the norm resolvent sense to the Laplace
operator ΛD — 2 = H^ with Dirichlet boundary condition on

The spectrum of H% is very simple, due to:

Lemma III.3. 1) The restriction of H^ to ^2(Z-N(x)) splits into

Hζ= θ <,mp (ΠL8)
meN(x)

where H^ab[ is the Laplace operator A —2 on the interval [α, b~] with zero boundary
conditions at {a} and {b}.

2) H^mrh[ is unitarily equivalent to Hf0 ^ if meN^x).
3) The spectrum of H® (restricted to Ϊ\z.-N(x))) is

S(oo)= IJ {2cos(feπ/Γ1);/c=l,2, ...Jt-1}.
i= 1,2,3
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Proof. 1) follows from the fact that Z-N(x) is partitioned into [j ]ra,m[;
meN{x)

since by Lemma III. 1, R(co) leaves ^2(Έ — N(x)) invariant and that the Laplace
operator has only nearest neighbours interaction, we get the decomposition (III.8).

2) Is elementary.
3) Comes from the explicit calculation of the spectrum of H®a b[:

°>b[) = {2cos(kπ(b-a)~i); k = l,2, . . . , f c - α - l } . (III.10)

We define now

nι.(£) = card{ke[ l ,4- l ] N ;2cos(kπ^r 1 )<E}. (III. 11)

The reduced density of states for H^ will be

9 U £ ) = lim (2iV+l)-1card{eigenvalues^D^ [ z_ i V ( ; c ) n (_ i V + ] V ) )<E}. (IIL12)
N-* ooN-* oo

The reduced density of states consists formally in taking the density of states of H%
when we extend it on ί2(N(x)) by the operator "equal" to + oo.

Proposition III.4. The reduced density of states is given by

and
O^SrUJE)^l-0\ (III. 13)

Proof Instead of picking the interval [ — N, iV] in (III. 12), we can pick any interval
of the form [m,m'^\ with m,rrieN(x) and m' — m—» + oo. Then, the number of
eigenvalues of HDt^2iΈ-N(x)nίm>mΊ) smaller than E, is equal to the number of such

eigenvalues for @ Hfm,, ̂ ,,[? which is equal to
m^m" <m
m"eN(x)

Σ nffldt, (III. 14)
i = l , 2 , 3

where (di)ί=1 2 3 counts the number of times an m" belonging to Nt(x) occurs in
\m,m'~\nN(x). If m! — m->oo the ratio d{(rn — m)~γ converges to the density of JV(x).
By Corollary II.4 and Lemma II. 1, one can easily compute this density which gives
(III. 13) if we take into account the identity

Θ01 = l - α 1 θ . (III. 15)

Proof of Theorem I. We denote by r the smallest distance between two eigenval-

ues of R(oo)= lim(Hx(/l) + 3)~1. By Lemma III.3, we get
Λtoo

r = lnΐ{\(E1 + 3)" 1 -(E2 + 3)" x | Ev£2eS(oo)u{oo}} (III. 16a)

because {0} is an eigenvalue of #(oo). By III.9 it is not difficult to find that

1 πr>2/25sin2 \^l(ax + I)(2fl1 + l)j = rm . (111.16b)

We recall that

4. (III. 17)
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Thus, due to the Lemma III.l, with H = Δ, and P = χ[0ΘΊ(nθ — x) we get

\\(Hx(λ) + 3)-ί-R(oo)\\^36λ-1. (111.18)

If λ0 is given by 36/IQ1 =rm/4, which means λo = 1800 {sin π[2{a1 +1)
•(2aί + 1 ) ] 1 } 2 the spectrum of R(λ) for A^A0 is certainly contained into the
disconnected intervals [zf — r/4, z + r/4] where zf belongs to the eigenvalues of
jR(oo). This choice of λ0 says that each of these intervals is disconnected from each
other. The number of them is equal to

due to the eigenvalue {0} for ,R(oo).
This implies the existence of 4a ί disconnected intervals containing the

spectrum of Hx{λ). Among them 4a1 — 1 are closed to the points of S(oo). The last
one is at a distance bigger than 2/36—3. Since the norm of Hx(λ) is dominated by
/I+ 2, it is certainly contained in [2/36 — 3,2 + 2]. Thus, there is a sequence
(£^=2/36-3)

El(λ)<Ef(λ)<E}+ x(2) ί = 1,...,4a, - 1 (111.20)

such that

σ(Hx(λ)) C 4 U"' lEl{λ)9 Ef(Xf] u[A/36-3,2 + 2] = S(λ). (111.21)
ί = l

Now if EφS(λ) the density of states ?lλ(£) of .fiΓ̂ /l) is locally constant and
independent of λ ̂  2 0 (see [3] and the Remark 3 below) therefore it is given by the
Proposition III.4, which is precisely of the form

(111.22)

In order to prove that the last term is effectively present, we remark that if

(111.23)

then

yiλ{E) = \-θf (111.24)

due to the Proposition III.4.

Remarks. 1) The other part of the spectrum of Hx(λ) has not been investigated
here. A nowhere dense spectrum is expected. If λ φ oo it is true that Hx(λ) has no
eigenvalue of infinite multiplicity. Thus E^-^9lλ(E) is a continuous increasing
function.

2) From heuristic considerations about the maximal length of an interval in
which the perturbation theory applies, Aubry finds that the eigenfunctions of
Hx(λ) should decrease exponentially with a Liapounov exponent of the order
exp — 4π/λ as far as λ>0 [10]. If the argument holds, the spectrum is expected to
be pure point at any λ, at least for most values of θ and ff.

3) The family H(λ) = (Hx(λ))xeτ belongs to the C*-algebra %Q θ, of operators
generated by U, the translation by 1, and the multiplication by χΓ(x — nθ) on £2TL.
All these operators have the form A = (Ax)xeJ with x^-^Λx norm-measurable and
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N1
Thus £ (n\Ax\rί) converges, as N->co to

ZiV + l n=-N

This is a trace on 2Iθβ,.
Let Ώlθθ, be the von Neumann algebra of the GNS representation of 9ϊβ0, given

by this trace, and let Pλ{E) be the eίgenprojection (in yRθθ>) of H(λ) on the energies
less than E. Then in [3] we prove that

If £<£Sp#(X), Pλ(E) belongs in fact to SHΘΘ, and since H(λ) is norm continuous
with respect to λ9 Pλ{E) is norm continuous in λ, and therefore its trace is constant
[12] as long as E does not meet the spectrum of H(λ).

4) If χj is approximated by a sequence Vn of continuous functions, Theorem 1
is no longer true. At first sight this seems surprising. Actually, the density of states
5R(w) is a continuous increasing function of E, and as TΊ-> OO it approaches uniformly
the limit even though no steps at the values rn + nθ + pθf (p φ 0) occur. There is no
contradiction.
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