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Boundary Regularity for the Navier-Stokes Equations
in a Half-Space*
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Abstract. Weak solutions to the nonstationary Navier-Stokes equations in a
half-space are locally bounded at the boundary except for a closed set with
finite one-dimensional Hausdorff measure.

1. Introduction

The purpose of this paper is to show that weak solutions u to the nonstationary
Navier-Stokes equations in a half-space satisfy a regularity condition at the
boundary. This regularity condition says that, except for a closed singular set
whose one-dimensional Hausdorff measure is finite, u is locally bounded at the
boundary of the half-space. The precise statement of this result is contained in
Theorem 1.1 below.

In [1] it was proved that, at least in the case of a bounded domain, the interior
singularities of the vorticity of u are concentrated in a locally closed set whose one-
dimensional Hausdorff measure is finite. The vorticity of u can be replaced by u in
the preceding statement. Theorem 1.1 extends that research to the boundary of the
domain. It is interesting to note that the dimension does not jump up when we
reach the boundary.

Our half-space will be U={(xίix29x3)eR3 :x3>0}9 its boundary will be
denoted B(U\ and the set of positive times will be R+ ={t\t>0}. The weak
solution u is a function which is defined on U x R +. It is convenient to extend u by
zero, so that it becomes a function on R3 x R +. The spatial gradient of u (where we
do not include the partial derivative with respect to time) will be written Du.

Theorem 1.1. // w \R3^R3 is an L2 function, w(x) = 0 when xφU, and div(vv) = 0
then there exist u:R3 xR+-+R3 and ScB(U) x [0, oo) such that the following
conditions hold:

(1) w(x,ί) = 0 when xφU DueL2.
(2) u is a weak solution to the nonstationary Navier-Stokes equations of

incompressible fluid flow in U with viscosity = 1 and initial condition w.
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(3) S is a closed set.
(4) The one-dimensional Hausdorff measure of Sn(R3 x {t}) is a bounded

function of teR + .
(5) // (a, b)eB(U)xR + and (a, b)φS then there exists ε >0 such that u is bounded

on the set {(x9t): \x-a\2 + \t-b\2 <ε2}.

Condition (2) says that u satisfies properties (2), (3) of Theorem 1.2 of [1] (with
w° replaced by w). Condition (1) implies that u is zero on B(U) (in a weak sense).
This is the adherence condition at the boundary. The proof actually shows that the
one-dimensional Hausdorff measure of Sn(R3 x {t}) is at most C|| vv|| | ? where C is
a constant.

Definition 1.2. Most of our notation is taken from [1]. In particular, we will use the
notation I(f,A\ M(f,A\ B(x,r), K{x,t,r,s)9 D(t) introduced in Definition 2.1 of
[1]. If BCR, f is a function defined on R3 x B, and g is a function defined on R3,
then we set

(/*#) (x, t) = J f(y, i) g{x -y)dy.

2. Solutions to Linearized Equations

Definition 2.1. Let X be the Hubert space of all L2 functions / : R3->R3 with the
usual inner product (/, g) = j ft(x) g.(x) dx. Let W be the closed linear subspace of
X consisting of all weX such that w(x) = 0 for almost every xφU and div(w) = 0 [so
that (w,grad(#)) = 0 for every geC%(R3,R)']. The orthogonal projection ofZ onto
W will be called P. If f:R3-^R3 is any function we define the reflection
/ ' :R3^>R3 by means of the conditions

Γί(xvx2,x3) = fi(xvx2,-x3) if ie{ l ,2};/^(x 1 ,x 2 ,X3)=-/3(x 1 ,x 2 J -x 3 ) .

The function Γ :R3 xR-^R is defined by

Γ(x,t) = 0 if ί^O, Γ(x?ί) = (4πί)" 3 / 2exp(-|x| 2/(4ί)) if ί > 0 .

We will also write Γt(x) = Γ(x, i). The function J : K 3 ~ {()}-• K is given by
J ( x ) = - ( 4 π | x | ) " 1 .

Definition 2.2. We fix, once and for all, a smoothing function ΘECQ(R3,R) such
thatθ(x)^O,θ(x) = Oif |x |^l,θ(x) = θ(-x),and lie^ = 1. If ε > 0 then θε :R

3^R is
defined by Θ8(x) = fi-3θ(ε"1x).

Lemma 2.3. We have curl(/')= — (curl(/))' and hence curl (curl (/'))
= (curl(curl(/)))'. // div(/) = 0 then div(/') = 0.

Proof. This is a straightforward computation.

Lemma 2.4. Suppose ε>0, 5>0, r > 0 , )8e{l,2,3}, ίfte function f:R3-^R3 is

defined by
fβ(xvx2,x3) = θδ(xvx2,x3-r\fi(x) = 0 if

g= —curl(curl(/*J))5 α̂ zd F :R3 x [0, OO)->JR3 is gfii βn fcy
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Then F(x,0) = P(/ + /')(x) for almost every xeU, F3(x1,x2,O,ί) = O,
(DtF — AF)(x,t) = 0 if ί > 0 , div(i?) = 0, and the following inequalities are satisfied:

J + lxJ + lxa-rl + ί1/2)-3 if x 3^0,

+ \x2\ + \x3-r\ + t1/2y3 if x 3 ^ 0 ,

| ^C( |x 1 | + |x2 | + |x3-r | + i 1 / 2 ) - 4 */ X 3 ^ 0 .

Proo/. Define h:R3->R3 by h(x) = (g + g') (x) when xe L/, Λ(χ) = 0 when xφU. Since
g is a curl we conclude diw(g) = 0. Now Lemma 2.3 yields div(g + g') = 0.
Combining this with (g 3 + g'3) (xv x2,0) = 0 we find

(h, grad(p)) = I (g + g'Ux) DiP(x) dx = 0
u

for any peC^iR3, R). This implies he W. If we W then Lemma 2.3 gives us

(h, w) = J (gff + gfj.) (x) w,.(x) Jx = (fif + g\ w)

= (-(curl(curl((/ + /)*J))),w)

= ( - (curl (curl ((/ + / > J))) + grad(div(/ + / > J), w)

')*•/), w) = (/ + / » .

Hence f + f — his orthogonal to FF. All this implies /z = P(/ + /') and hence F(x,0)
= p(f + /') W f o r almost every xeU. Since F(x, t) = (g*Γt) (x) + (g*Qf (x) we obtain
i7

3(x1,x2,0, ί) = 0. The next two assertions follow from the fact (DtΓ— ΔΓ)(x, ί) = 0
when ί>0, div(gf) = O, and Lemma 2.3. The function g satisfies

\(g*Q (x l 9 x2, x3)| S C(\(xv x2, x 3 - r)\ + ί 1 / 2 )~ 3 ,

|fo*/>0β) (x l 9 x2, x3)| ^ C(|(x l9 x2 ? x 3 - r)| +1 1 / 2 )~ 3 ,

|D(fif*i3 (χ l 9 χ2, x3)| ^ C(|(x l5 x2 ? x 3 - r)\ + ί 1 / 2 ) " 4 .

Hence g' satisfies

ί 1 / 2 ) ' 3Ito '*^(x l 9 x 2 ,x 3 ) | ^ C(|(x1 ?x2, - x 3 - r)| +

\{g'*Γt*ΘJ (x1? x2, x3)| ύ C(|(x l9 x2 ? - x 3 - r)| + ί 1 / 2 Γ 3 ,

The three inequalities in the conclusion of the lemma follow from the above, the
fact that |(x1 ?x2, — x 3 — r) |^ | (x 1 ? x 2 ,x 3 — r)\ when x 3 ^ 0 , and |x1 | + |x2l + l ^ 3 — A
^C|(x l9x2,X3-r)|.

Lemma 2.5. If 0<dί^d2 and (ava2)eR2 then

j (|xx - α j + | x 2 - a2\ + d j " 3 (|xj + |x2 | + d 2 )~ 3 dxi dx2

= f (|x1| + |x2l + ̂ l ) " 3 ( ^ l - ^ l l + l : )C2-^
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Proof. This is straightforward.

Lemma 2.6. Suppose ε>0, δ>0, r > 0 , βe{l,2,3} and the function f is defined as in
Lemma 2.4. Then there is a solution

V: closure(LJ) x [0, oo)-^ 3

to the linearized Navier-Stokes equations

<tiv(V) = 09DtV-ΔV is a spatial gradient, V{xl9x2,09t) = 0 if ί > 0 , (2.1)

V(x,0) = P(f + f)(x) for almost every xeU

satisfying the inequalities

"r\ + tll2r3 if x 3 >

and

(2.2)
if x^2ε,0

J $\DV(x9t)\dxdt^Cs1/2 if s>0. (2.3)
0 U

Proof. We adopt the terminology of Lemma 2.4. Solonnikoff [2, pp. 243, 248]
proved that the system

drv(v) = O,Dtv — Δv is a spatial gradient,

v(xl9 x2,0, ί) = F(xv x2,0, ί) when ί > 0, v(x, 0) = 0

for a function v: closure(t/) x [0, oo)->JR3 is solved by
2 &

υi(a,b)= Σ J [ Ffx^x^Q^Gifa^-x^ a2-x29 a^b-^dx^x^t, (2.4)
j = l 0 Λ2

where Go : 17 x JR+ ->K satisfies the inequalities

I G ^ O I ^ Q r ^ ^ r ^ d x I + ί1/2)-3, when O ^ ^ l , (2.5)

(|x| -j-1 ) (x 3 -f-1 ) , (2 6)

when ZG{1,2, 3} and je {1,2}. Observe that j does not have to take the value 3
because Lemma 2.4 yields F3(xvx2,09t) = 0. The properties of v and Lemma 2.4
imply that the function V defined by

V(x, t) = F{x, t) - φc, ί) for x3 ^ 0, t ^ 0 (2.7)

satisfies (2.1). Now we fix ae U and b>0. If t satisfies

0<t<b and r + ί 1 / 2 ^ α 3 + ( b - ί ) 1 / 2 , (2.8)

then Lemma 2.4, (2.5) with λ = 09 and Lemma 2.5 yield

IJ F/xl9x2909t)GJa1-x19a2-x29a39b-t)dx1dx2

^ J CdxJ + |x2 | + r - h ί 1 / 2 ) ~ 3 ( b - ί ) ~ 1 / 2

Jα 1 -x 1 | + |α2-x2H-α3 + (b-ί)1/2Γ3dx1dx2

/

2 | + α3 + (6-ί)1/2)- /
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The assumption (2.8) implies

2ί|αJ + |α 2 | + fl3+(6-01/2)^|Λil + |α 2 | + fl3+(6-ί)1/2 + r + ί1/2

^ | α | + (fo-ί)1 / 2 + ί1/2 + r ^ | α | + 6 1 / 2 + r. (2.9)

Hence condition (2.8) gives us

I f Fj(xvx2,0,t)Gij(a1 -xl9a2-x29a3,b-1)dx1 dx2

\R2

^C(b-t)-1/2Γ1/2(\a\ + bί/2 + ry3. (2.10)

If, on the other hand, t satisfies

0<t<b and r + t1/2>a3 + (b-t)1/\ (2.11)

then the same arguments with λ = 1/2 yield

, (2.12)

and hence

If Fpc1,x2909t)GJa1-xva2-x2,a39b-t)dx1dx2

\R2

^ f CdxJ + lxJ

•(\aί-x1\ + \a2-

-3. (2.13)

Breaking up the integral of (2.4) into the cases (2.8), (2.11), and using (2.10), (2.13)
we obtain

b

${b-t)-ll2

o

f(fo-i)"3

o

When α 3 ^2ε, the above implies \(v*θε)(a,b)\^C(\a\ + b1/2 + r)~3. Combining this
with the estimate

(which is true because α 3 >0) and using Lemma 2.4 and (2.7) we obtain the two
estimates in (2.2).

Again we fix aeU and b>0. If condition (2.8) holds, then Lemma 2.4, (2.6),
Lemma 2.5, (2.9) [which is a consequence of (2.8)] and
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yield

If Fj(xl9x2909t)DGij{a1-xl9a2-x29a39b-t)dxιdx2

\R2

^C{\a1\ + \a2\ + a3

 / / /

If condition (2.11) holds, then Lemma 2.4, (2.6), Lemma 2.5, and (2.12) [which is a
consequence of (2.11)] yield

f Fj(xvx2?0,ί)DGiίa1 — xl9a2 — x29a3,b — t)dx1 dx2
R2

Λl/2\-l

Once again, consideration of the two cases (2.8), (2.11) and use of (2.4) gives us

b

(2.14)

Using (2.2) we obtain j | V(x9 b)\2 dx ̂  Cb " 3 / 2 for b > 0. Therefore the fundamental
u

energy estimate for the Navier-Stokes equations yields

J $\DV(xj)\2dxdt^Cb-3/2 for b>0. (2.15)
b ϋ

Now we fix b > 0 and define

3 ( | x 1 | + |

Then (2.14) yields

J \Dυ{x9b)\ dx^C\ x3 Wx^ + \x2\ + bll2)~3dxx rfx2 dx3

T

=c

SC J \oge{_{\{xvx2)\ ]/2 + bll2fb-3^(\(xvx2)\ ]/2 + bll2

R2

dx1 dx2

3
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In addition, (2.14) yields

J \Dv{x,b)\dx
U~(ΓuS)

^ ? ί Cχ-

fel/2

Using the above, we find j \Dυ{x,b)\dx^Cb'm. Since J \DF{x9b)\ dxSCb~1/2

is a consequence of Lemma 2.4, we can use (2.7) to conclude

1 / 2 . (2.16)

We also have

x,6)|rfx^[volume(S)]1 / 2 ' '

Combining this with (2.15), (2.16) we find

J S\DV(x,b)\dxdb£ \ Cb~1/2db+ \ Cb3/4($ \DV(x,b)\2dx)1 2 db
0 U 0 0 \U

oo tl~{

ί = 0
l/2

This concludes the proof of the lemma.

3. An Approximate Solution

In this section we fix a positive number ε.

Definition 3.1. If w is a function from an open subset of R into X and
(w(s + h) — w(s))/h converges in L2 as h approaches zero, then the limit will be
denoted Dtw{s). If / is a function with domain R3 then / will be given by
/(x 1,x 2,x 3) = /(x 1 ,x 2 ,x 3 —4ε). When the domain of / is a subset of R3 x R then
we will also write f(xvx2,x3, ή = f(xvx2,x3 — 4ε, t).

For every α > 0 we can use a slight modification of the construction in [1,
pp. 20, 21] (with Ψ replaced by θε and Ω replaced by ΘJ to find a continuous
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function wa: [0, oo)-> W (where W has the norm topology) such that, setting ιf(x, t)
= (w\i)){x\ we obtain u\x, 0) = vv(x),

i\tf(x9t)\2dx£\\w\\22, (3.1)

J f \D(u«*ΘJ(x,t)\2dxdt^(1/2) l|w|!i, (3.2)
0 R*

Dtw
a is a norm continuous function on JR + , and

DtW(s) = P(- ((w%s)*θε) Dj(w«(s)*θε))*θε + Δ(w«(s)*θa*θa)). (3.3)

Let α1 ? α2, α 3 , . . . be a sequence of positive numbers converging to zero. If α = αfc

then ua will be denoted vk for the sake of typographical simplicity. Using (3.1) and
the Cantor diagonal process we can pass to a subsequence and assume that there
exists a measurable function u:R3 x R+-+R3 such that vk converges weakly in L2

to u when the domain is restricted to a set of the form R3 x (0, b\ 0 < b < oo. In view
of (3.2), we can also assume that D(vk*θai) converges weakly in L2. Taking the inner
product with a test function, we find that this weak limit coincides with the
distribution Du. This proves the next lemma:

Lemma 3.2. The distribution Du is an L2 function and D(vk*θΛk) converges weakly to
it.

Lemma 3.3. By passing to a subsequence, we may assume lim (vk*θε) (x, ί)
fc->oo

= (w*0fi)(x,ί) for almost every (x,ί). In addition, one can modify u*θε on a set of
measure zero so that it becomes a continuous function on R3 x [0, oo).

Proof. For any α>0, (3.1) yields

* ^ ^

i ^ \\ns)*θε\\2 I I W ^ D Θ J L

^ w l l ^ l l D Θ J ^ . (3.4)

Let aeR3, j?e{l,2,3} and define / :R3->R3 by fβ{x) = θε(x-a\ /ι(x) = 0 if i + β.
Let g = P(f). For any δ >0 we let g\x) = (g*θδ) (x - (0,0, δ)). If 0 < s t <s2 and α = ak

for some fe, then the fact w«(s)eW, (3.1), (3.3), the fact (P(h),gδ) = (h,gδ) (which
follows from g'eW), (3.4), the estimate | | w α ( 5 ) « | | 2 ^ ||wα(S)||2 HflJ^ HβJ^
= ||wα(5)||2, and (3.1) yield

= I ί <(s 2 ) (x) /,(*) rfx - J w?(Sl) (x) fix) dx
| i? 3 i ? 3

R3
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\R3

\\w*(s2)\\2\\Pf-gδ\\2

g j fD,γftsK>
Si R3

S2

?(S l) (x) flf(x) dx

\w«(sι)\\2\\Pf-gδ\\2

^ J ||Z)0J 2

ds + 2||w||2 \\Pf-gδ\\2

J \\vf(s)*θa*θ
a\\2

\\Pf-g%

ύ(s2-Sl) I!will ||DΘJ|2 \\gδ\\2 + (s2-s1) ||w|| + 2||w|| (3-5)

If y > 0 then 2||w||2 \\Pf — gδ\\2 can be made smaller than γ by choosing δ
sufficiently small. Then the other two terms at the end of (3.5) can be made less
than y by choosing s2 — s1 to be small enough. This shows that (vk*θε) (a, s) gives us
a uniformly equicontinuous family of functions of the variable 5 for every fixed
point a. If {aua2}cR3 then (3.1) yields

= \$ vk(x,s)(θε(ai-x)-θε(a2-x))dx

U3

1-a2 + x)-θε(x)\2dx)1/2. (3.6)

Since the last line of (3.6) approaches zero as aι — a2 goes to zero, we use the
previous result to conclude that vk*θε is an equicontinuous family of functions
when restricted to K x [ 0 , oo) for every compact set KcR3. Using (3.1) we get
\(vk*θε)(x,s)\^\\w\\2 \\θε\\2 Now Ascoli's theorem implies that, passing to a sub-
sequence, we may assume that vk*θε converges uniformly on compact sets to a
continuous function. Since vk*θε converges weakly to w*θε on every subdomain
JR3 x (0, b\ the pointwise limit of vk*θε must coincide with u*θε almost everywhere.
The proof of the lemma is now complete.

In view of this lemma, we may assume that u*θε is a continuous function. We
also have [from wα(s)e W\

iv(w) = 0,H(x,ί) = 0 if xφU. (3.7)

For the next argument we will need to convolve with respect to the time
variable. If the domain of / is a subset of R3 x R and the domain of g is R then
( / * 0 ) C M ) = ί f(x>s)g{t — s)ds when the integral makes sense. We use the same

R

definition when / is defined only on jR3 x JR+ but g(t — s) = 0 whenever s gO. Then
the values of / outside R3 xR+ are irrelevant.



284 V. Scheffer

Lemma 3.4. Suppose aeU, 0<b'<b, 0<δ<a3, j8e{l,2,3}, YeC%{R,R), support
(Y)C[-bf,b'l Y(ή = Y(-ί), and η>0. Then

\(uβ*Y*θδ)(a,b)\

S J
3

+ J J
3b' R3

Proof. Set r = a3. We let V, f be the functions of Lemma 2.6 corresponding to our
choices of δ, r, β. The function φ:R3 x R-+R3 is defined by

φ(xj)=V(x1-a1,x2-a2,x3,b-t) if xeU and b'^t^b,

and φ(x,t) = 0 otherwise. The restriction of u*Y to R3x[b\b~\ has these two
properties: It is zero outside U x [b', b] and its spatial gradient is in L2 [see (3.7)
and Lemma 3.2]. Hence we can say (u*Y)(xvx2,0,s) = 0 for a.e. xvx2,s with
b'^s^b. Lemma 2.6 implies that the restriction of Dtφ + Aφ to Ux(b\b) is a
spatial gradient, and (3.7) yields div(u*Γ) = 0. All this implies

J \Dt(ui*Y)(x,s)φi(x,s)dxds
b' U

+ j $Dj(ui*Y)(x,s)Djφi(x,s)dxds
b' U

= J (Mί* Γ) (x, b) φt(x, b)dx-\ (Uί* Y) (x, b') φjx, V) dx. (3.8)
u u

Let k be a positive integer and set α = αfe. For each 5, the function g(x) = (φ*Y) (x, 5)
is an element of FF(see Lemma 2.6). Using this fact, (3.3), and div(wα(s)) = 0 we find

b

J $ Dt(iή*r){x9s)φάx,s)dxds
b' R2

= J j Dtiή{x9s)(φi*r)(x9s)dxds
0 i?3

0 K3

= - ϊ J (((H5(s)*θ
0 tf3

+ J f Δ(w«(s)*θa*θa)(x)(φi*Y)(x,s)dxds
0 i?3

= f j (vη(s)*ΘJ{x)W{s)*θχx)(D]φi*Y*ΘJ{x,s)dxds
0 i?3

- J J DJ(W*(s)*ΘJ(x)DJ(φί*Y*θa)(x,s)dxds
0 Λ3
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00

= j f (vk

j*θe)(x,s)(v**θε)(x,s)(Djφi*Y*θε)(x,s)dxds
0 R3

- J J DffiθJ (x, s) D^* Y*ΘJ (x, s) dx ds. (3.9)
0 R3

Parts (2.3), (2.1) of Lemma 2.6 imply that Dφ*Y*θε is an L 1 function. Hence
Lemma 3.3, the estimate \(vk*θε)(x,s)\^ \\w\\2 \\θε\\2 [see (3.1)], and the Lebesgue
dominated convergence theorem yield

lim J ί(ή*θ^{x9s)(iή*θ^(x9s)(DJφi*Y*θ^(x9s)dxds
fe^co o R3

00

= j J (ΰj*θε) (x, s) (u^θε) (x, s) (Djφi* Y*θe) (x, s) dx ds. (3.10)
0 R3

The weak convergence of vk, the fact Dt(vk*Y) = υk*DtY, (3.10), Lemma 3.2, and
DφeL2 [see (2.1)] imply that (3.9) yields

b

j j Dt(u^ Y) (x, s) φi(x, s) dx ds
b' R3

00

= j J (ΰj*θε) (x, s) (Ui*θε) (x, s) (Djφi* Y*θε) (x, s) dx ds
0 R3

00

- J \Djui(x,s)Dj(φi*Y){x,s)dxds.
0 R3

Hence (3.8), the fact φ{x,t) = O when xφU, and (3.7) yield

j (ut* Y) (x, 6) φfa b)dx- I (Ui* Y) (x, V) φt(x9 V) dx
R3 R3

= - J j (((^^^^^^^(^^(^^^(x^)^^. (3.11)
0 Λ3

Lemma 2.6 yields

φ(x, b) = V(xί — avx2 — α2, x3,0) = P(f + /') (xx — av x2 — α2, x3)

iϊ xeU. In addition, δ<a3 = r and (3.7) imply (see Lemma 2.6)

j (M * Γ) (X, b) /^(x1 — α1 ? x 2 — α2, x3) dx — j 0 dx = 0.
fl3 .R3

Hence (3.7) and the symmetry of θ yield

R3

j ')i(x1-avx2-a2,x3)dx
R3

- J (uβ*Y){x9b)θδ(xι-aι,x2-a2,x3-a3)dx
R3

= (uβ*Y*θδ)(a,b)- (3-12)
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Also, (2.2) yields

^ $C\(u*Y)(x,b')\(\x1-aι\ + \x2-a2\ + \x3-a
u

Now (3.11)—(3.13) and the definition of φ imply

\(up*Y*ed)(a,b)\£ J

dx. (3.13)

j J VVV̂ j " ε / ΓMΊ εf) * ) V^? *̂ / xψi ™R) \ %Ί &J UΛ UO

b' R3

(3.14)

Let g :R3 x JR->[0, 1] be a function such that g(x,s) = ί when |x — a\^r\jl and
b — η2Ss^b, g(x,s) = 0 when |x — α | ^ ^ and b — η2^s^b, g(x,s) = 0 when

Let K = K(a,b,η,η2). Using the /irsί inequality in (2.2) we find

J \{φ*θε)(x,s)\dxds^Cη2. Property (2.3) yields

J \(Dφ*θε) (x, 5 ) | dxds^ j j \(Dφ*ΘJ (x, 5)| dx ds
K b-η2 R3

Using the above and div(w*#δ) = 0 [see (3.7)] we find

fμpθJ)* Y) (x, s) (φt*ΘJ (x, s) dx ds

J (((ύjxθjDjiu^θ^Y) (x,s) g(x,s) {φt*θt) (x,s)dxds
b' R3

+ J J (((ΰj*θε) DfμpθfrY) (x,s) (ί-g) (x,s) (φ^θj (x,s)dxds

- ί ί (((ΰj*θε) (Uί*θε))*Y) (x,s) Djθ(x,s) (φ^θj (x,s)dxds
b' R3

- J j (((ύj*θε) (M ;*Θ£))*Γ) (x,s) g(x,s) (DjφpθJ (x,s)dxds
b' R3b'

J j (((ύj*θe) Djiu
V i?3

b

V R3

* Γ) (x, 5) (1 — g) (x, 5) (Φi*θε) (x, 5) dx ds

(«*0ε))*r) (x,s)| :(x,5)eX,ye{l,2,3}}

r (wf*θε))*^) (x,s) (1 —#) (x,s) (Φi*θε) (x,s)\dxds.
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If x = (xvx2,x3) and x3Ξ>2ε then the second inequality of (2.2) yields \(φ*θε)(x,s)\
SC{\x-a\+{b-s)ll2Γ3. If, in addition, (l-#)(x,s)Φθ then \x-a\ + {b-s)il2

^η/2 and we conclude \(φ*θε){x9s)\^C(\x-a\ + (b-s)1/2 + η)'3. If x3<2ε then
(ύ*θε)(x,t) = 0 for each t [see (3.7)] and hence

All this implies

} f \(((ύfθε) Dfμt*θj)* Y) (x9 s) (1 - g) (x, s) (φ^θε) (x, s)\ dx ds
b' R3

ί 5 j C|(((^ε)(Z)^>r)(x,5)| (\x-a\ + (b-s)ll2 + ηy
V R3

This inequality and (3.14), (3.15) yield the conclusion of the lemma.

Lemma3.5. Suppose ceR3, d>0, τ>/ι>0, h2<d, 2ε<τ, andθ<η^h. Then

\(u*ΘJ(c9d)\£ f ί C\u(x,s)\(\x-c\ + τy3h-2dxds
d-h2 R3

d

+ J Cl I \u(x,s)\3dx)1/3h-3ds
d-h2 \B(c,τ) )

+ (Cη) max {\(ύ*θε) (x, s)| \(u*θε) (χ9 s)\: (x, s)e X(c, d, η, η2)}
d

+ J j C\(u*ΘJ(x9s)\ \D(u*ΘJ(x9s)\ (\x-c\ + (d-s)1 η
d-h2 R3

Proof. Suppose first that we have the case ε < c 3 [where c = (c 1 ? c 2 ,c 3 )]. If we set
δ = ε, a = c, b = d then use of Lemmas 3.3 and 3.4, with a sequence of functions Y
converging to the Dirac delta function, gives us

\(u*θε)(a,b)\^ J C\u(x,bf)\(\x-a\ + (b-bf)1/2)-3dx
R3

+ (Cη)max{\(ύ*θε)(x,s)\ \(u*θε)(x,s)\:(x,s)eK(a,b,η,η2)}

+ J f C|(fi*0e)(x,s)| \D{u*ΘJ(x9s)\ (\x-a\ + (b-s)1/2 + ηΓ3dxds
b' R3

for almost every b' such that b — h2<b'<b — (1/2)/ι2. Averaging the above over all
such b' and setting bf = s we find

j l
b-h2 R3

x {|(2*0β) (x, s)\ \(u*θε) (x, s ) | : (x, s)eK(a, b9 η9 η2)}

J J CB*ΘJ(x,s)\\D(u*ΘJ(x9s)\ (\x-
b-h2 R3
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Combining this with

f \u{x,s)\(\x-a\ + hy3dx
R3

ύ J \u(x,s)\(\x-a\ + hΓ3dx + C( J \u{x,sψ
R3~B(a,τ/2) \B(a,τ/2)

^ J C\u(x,s)\(\x-a\ + τ)-3dx + C( j \u(x,s)\3dxY^h'1 (3.16)
R3 \B(a,τ/2) )

we obtain the conclusion of the lemma in case ε<c 3.
Now we observe what happens in the case ε < η/2. Using Lemma 3.4 with a

sequence of numbers δ converging to zero, a sequence of functions Y converging to
the Dirac delta, and η/2 in place of η we obtain

S j C\u(x,b')\(\x-a\ + (b-bf)1/2Γ3dx
R3

+ (O//2)max{|(fi*θβ)(x,s)| |

+ J f C\(ύ*ΘJ(x9s)\ \D(u*ΘJ(x,s)\ (\x-a\ + (b-s)ll2 + η/2Γ3dxds (3.17)
b' R3

for almost all a, b, V such that ae U,0<bf<b. Property (3.7) implies that (3.17) is
still true when aφU [because then u(α,b) = 0]. If we integrate the above over
aeB(c,ε) and use the corresponding inequality

^\x-a\ + \a-

we find

J UaMda
B(c,ε)

B(c,ε) R3

+ Cηε3 max {\(ΰ*θE) (x, s)\ \(mθε) (x, s)\: (x, s)eK(c, b, η/2 + ε, η2/4)}
b

+ j f Cε3\(ύ*θε)(x,s)\ \D(u*θε)(x,s)\ (\x-c\ + (b-s)1/2 + η)~3dxds (3.18)
V R3

for almost all ft, V such that 0<b'<b. If αe£(c,ε) then 2ε<τ yields

2(|x-α| + τ)^ |x-α | + ε + τ ^ | x - β | + |α-c | + τ ^ | x - c | + τ.

Property 2ε < τ also implies B{a, τ/2) C B(c, τ/2 + ε) C B(c, τ). Hence the argument of
(3.16) yields

\u(x,b')\(\x-a\ + τ)~3dx + C( j \u(x,bf)\3 dx]1'3

\B(c,τ)
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If we fix b such that b>h2, average (3.18) over bfe[b-h2, b-h2/2\ use (3.19) and
ε < η/2, and substitute later b' = s, then we find

ε)(c,b)\^ f Cε-3\u(a,b)\da
B(c,ε)

b

j $ C\u(x,s)\(\x-c\ + τy3h-
b-h2 R*

+ J C( J Wx,s)|3ί
ί) - h 2 \B(c, τ)

+ (Cη) max {|(ΰ*0£) (x, s ) | |(u*0e) (x, s)\: (x, s)e K(c, b, η, η2)}
b

+ j j C|(«*0ε)(x,s)| |D(w*θδ)(x,s)| (\x-c\ + (b-s)ll2 + ηy3 dxds
b-h2 R3

for almost every b>h2. Now the conclusion of the lemma follows in this case from
the contunuity of u*θE (Lemma 3.3) and the substitution b = d.

It remains to examine the case c 3 ^ ε , ε^η/2. If aeUnB(c9ε)9 /?e{l,2,3},
0 < b' < ί>, and (5, Γ are as in Lemma 3.4 then we conclude (3.14) just as before. The
function φ appearing in (3.14) was defined at the start of the proof of Lemma 3.4.
Since (ύ*θB)(x,t) = 0 whenever x3^2ε [see (3.7) and Definition 3.1], property (2.2)
yields

J j (((ύj*θε)Dj(uί*θε))*Y)(x,s)(φi*θχx,s)dxd^
V R3

} ί j / (3.20)
b' R3

Since αe B(c, ε) and c3 ^ ε we find a3 ^ 2ε. If |x — a\ ̂ ε then x3 ^ 3ε, and hence (3.7)
and Definition 3.1 yield (ύ*θε)(x, ί) = 0. Hence |x — α| >ε must hold when x is such
that the integrand on the right hand side of (3.20) is not zero. Since we have

^\x-a\ + \a-

in such cases, (3.14) and (3.20) imply

\{uβ*Y*θδ){a,b)\£ J C\(u*r)(x,b')\(\x-a\ + (b-bf)1/2Γ3dx
3

+ J J C\(((ύj*ΘJ DJμ*θj)*Y)(x9s)\ (\x-
V R3

Using a sequence of functions Y converging to the Dirac delta and a sequence of
numbers δ converging to zero, we find

|w(α,b)|g f C\u(x,b')\(\x-a\ + {b-b')ll2y3 dx
E 3

+ J j C\{ΰ*θε)(x,s)\ \D(u*θε)(x,s)\ (\x-
b' R3
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for almost all α, b, V such that ae UnB(c,ε), Q<b'<b. Property (3.7) implies that
the restriction ae U is unnecessary. Integrating the above over aeB(c, ε), we obtain
(3.18) without the "max" term. Now the argument that follows after (3.18) gives us
the conclusion of the lemma because the absence of a "max" term makes the earlier
assumption ε < η/2 unnecessary.

4. An Estimate for Approximate Solutions

We continue working with the same number ε fixed in the previous section. Recall
that the functions w, ύ are defined in terms of ε. For the remainder of this section,
we fix (a,b)eR3xR and τ > 0 . If r > 0 , ίe{l,2,3,...} and seR we set

(4.1)

(4.2)

(4.3)

The following assumptions [(4.4) through (4.8)] will be in effect throughout this
section:

a3 = - 4ε [where a = (av a2, α3)], τ > 2ε, b > τ2 (4.4)

M1 is a positive number such that

J \D(u*θε)(x,t)\2+ \D(ύ*θε)(x,t)\2dxdt^M.rifOKr^τ ; (4.5)
L(r)

^ τ 2 , t1=b — τ2, t2 = b — τ2-\-s then

J( J Ittίx^^dxV^Λ^MiS, (4.6)
ίi \B(a, 2τ) J

ti

J j\u(x,t)\(\x — a\ + τ)~3dxdt^ίM1τ~1s. (4.8)
ίi R3

Lemma 4.1. Suppose (c,d)eR3 x jR, M 2 >0, αnrf

|(u*θε)(x5ί)l^-M2(τ2~£)~x if (χj)eG(ί)nD(d), ΐe{l,2,3,...}. (4.9)

Suppose also that \a — c\<τ9 b — τ2<d<b, and n, p are defined by

n is an integer, (4.10)

p, p is an integer. (4.11)

^(c9d)\^C1M1(τ2~q)~1 + C1Ml(τ2~9Γ1 for some

\B(a, 2τ)

ί2

ίi R3

absolute constant C1.



Boundary Regularity 291

Proof. Using (4.10), (4.11), τ > 0 , and d<b we find

Since n, p are integers and q = max{n, p}, we find

n^0,p^0,q^0. (4.12)

Using (4.4), the resulting inclusion

property (4.9), the fact that (u*0e)(x,t) = O when x 3 ^ - ε , (4.2), and (4.3) we find

\(u*θ^{x9t)\^M2{τ2-t)-1 if (x,ί)eG(i)πZ)(d),ie{1,2,3,...}. (4.13)

Using (4.11) and q^p WQ deduce

The above and d < b yield

b>d>d-τ22

If | x - c | ^ τ 2 ~ ( ί Z + 2 ) then (4.10) and q^n yield

The above, (4.12), (4.2), and (4.3) yield

X(c,rf,τ2- ( g + 2 ),τ22

Combining this with (4.9), (4.13) we find

ma.x{\(ύ*θε)(x, ί

We define

Our strategy is

We have 2( |x-

)l l(«*0

to use

β)(^ί)|:

Lemma

I

>\x-c\-

<

3.5

\-τ-

. Properties (

•2<d-h2,ht

h τ > ι x _ c ι +

(9+2) τ 2 2 ~ 2 (

4.11), (4.12)

£τ/4.

q + 2))}

yield

x-α\ +

(4.14)

(4.15)

(4.16)

τ. Hence (4.16),
(4.11), (4.12), (4.8) yield

d

J j \u(x,ή\(\x
d-h2

d

g f f C|tί(x,ί)l(lx-β| + τ)~3/z-

-τ2))h~2SCM1τ~h22-2^-2SCMίh-1 = CM1τ-12p

^^2 (4.17)
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Also, \c — α |<τ, (4.16), (4.6), and the argument in (4.17) yield

} I j \u{x,t)\3dx\ll3h~3dt
d-h2\B(c,τ) )

ύ ] ( I \u(x,t)\3dx)ίl3h-3dt

22-2ph- 3

q + 2. (4.18)

Now \c-a\<τ and (4.16) give us |x
1) (\x-c\ + h). Hence (4.16), (4.7) and the argument in (4.17) yield

j j κa*0β)(χ,ί)iι/)(tt*θβ)(χ,ί)l (\χ-c\+(d-ήxl2+hy3dχdt
d-h2 R3

ψ J J |(S*0β)(x,ί)| \D(u*θε)(x,t)\ (\x-a\
2 3

S CMγh~ι ^ CMλτ~ ι2q + 2. (4.19)

lϊq = p then h = η [see (4.15)], (4.14)-(4.19), and Lemma 3.5 yield the conclusion of
the lemma. Therefore, we may assume q>p. This implies [see (4.12)]

^l. (4.20)

We fix an integer k such that p + 2^k^q+l. From (4.10) and (4.20) we obtain
τ-\a-c\^τ2~n^τ/2, and hence \a-c\^τ/2. Then (4.12) yields \a-c\^τ/2
> τ 2 ~ ( p + 2 ) ^ τ 2 ~ k . This implies that we can define ek to be the point on the line
segment joining a and c such that

The above and \a—c\<τ yield

B(ek,{l/4)τ2~k)cB(a,τ-τ2-~ik+1)). (4.21)

Using (4.11) and p + 2^lcwe find

Hence we conclude d-τ22~2k>b-τ2(l-2~2{k+1)). Combining this with d<b,
(4.21), (4.2), (4.3) we conclude

CK(a, b, τ(l - 2" ( / c + υ ) , τ 2(l -2~2(k+ ί]))nD(d) = G(k+l)nD(d). (4.22)

The definition of ek yields B(ek,(l/4)τ2~k)CB(c,τ2~k). This inclusion and the proof
of Lemma 2.2 of [1] give us

S C(τ2~k)5 (max{\(ύ*θε)(x, t)\2 : (x, ί ) e % d,(l/4)τ2" k, τ22~2k)})
fc2 2, K(c, d, τ2~\ τ22~2k)). (4.23)
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From (4.10) and k^q + l = n + l [see (4.20)] we conclude

+2}. (4.24)

From d<b, p + 2^k, (4.12), and (4.11) we conclude

b>d>d-τ22-2k^d-τ22-2ip+2)>d-τ22-2{p+1)>b-τ2. (4.25)

Now (4.24), (4.25), (4.1) yield

K(c,d,τ2-\τ22-2k)cL(τ2-k+2). (4.26)

Using (4.26), (4.5), p + 2^K (4.12) we find

I(\D(u*θε)\\K(c,d,τ2-\τ22-2k))

^/(|D(w*0 ε) | 2,L(τ2- / c + 2))^M 1(τ2- ; c + 2). (4.27)

The same argument also yields

I(\D(ύ*θε)\2,K{cJ,τ2-\τ22-2k))SM1(τ2-k+2). (4.28)

Using (4.23), (4.22), (4.13), (4.28) we find

I(\ύ*θε\
2,K(c,d,τ2-\τ22~2k))

+ C{τ2-k)2M1{τ2~k+2)

ώ"*) 3 + CM2

2(τ2~k)3. (4.29)

The inequality

|2 0ε| \D(u*θε)\ g(l/2) (τ2- f c)-! |S*0,|2 + (1/2) (τ2~k) \D(u*θε)\2

and (4.27), (4.29) give us

/(|«*θ,| \D(u*θE)\, K(c,d,τ2~\τ22-2k))SCM^-*)2 + CM2

2(τ2-k)2, (4.30)

when p + 2^fegήf+l. Now (4.15), (4.20), the estimate

f J B*θε)(x,s)\\D(u*θε)(x,s)\(\x-c\ + (d-

S ί $\(ΰ*θε)(x,S)\\D(u*θε)(x,s)\(\x-c\

d-h2 R3

q+ί

+ Σ C{τ2-*)-3I(\ύ*θe\\D{u*θB)\9 K(c,d,τ2-\τ22-2k)),

properties (4.14)-(4.19), (4.30) and Lemma 3.5 yield the conclusion of the lemma.

Lemma 4.2. There exist absolute constants C 2 > 0 , C 3 such that the following is
true: If M^C2 then |(w*^ ε)(χ,ί) |^2C 3τ" 1 for every (x,t)eK(a9b,τ/2, 3τ2/4).

Proof. We choose C 3 >0 so that 0^1^(1/4)0^ Then we choose C 2 >0 so that
CiC2^(l/4)C3. Let /:interior(iC(α,b,τ,τ2))^K+ be a continuous function such
that

ί - 1 τ - 1 if (χ,ί)eG(i)~G(i-l) (4.31)
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for ze{l,2,3,...}. Here G(0) is the empty set. In particular, we get

ffaή^C^τ'1 if (x,t)eG(ϊ). (4.32)

We will prove

|(w*0e) (x, t)\^f(x, t) when (x, t) e interior (K(a, b, τ, τ2)). (4.33)

Assume that (4.33) is false. Then the nature of/ and the continuity of/ and u*θε

(see Lemma 3.3) imply the existence of (c,d)einterior(K{a,b,τ,τ2)) such that

|(u*0J(c,d)|=/(c,d), (4.34)

|(w*0e)(x,ί)|^/(x,ί) if (x,ί)eD((i)ninterior(X(α,fc,τ,τ2)). (4.35)
Then c, d satisfy \a — c\<τ,b — τ2<d<b. We define n, p9 q as in Lemma 4.1 and set
M 2 = C3. Then (4.32), (4.35) imply that (4.9) is satisfied. All this implies implies that
the hypotheses of Lemma 4.1 are satisfied and hence we get (using M1^

|(w*0β)(c, d)\ ^ CγC22H-γ + C^llH-ι. (4.36)

The definition of p, n, q yields (c,d)φinterior(G(q)). Hence (4.34), (4.31) yield
|(M*0J (C, d)\ ̂  C32

qτ~ K Combining this with (4.36) we get C 3 ̂  C ^ + CγC\. Now
the definition of C2, C 3 yields C 3 ^(l/4)C 3 -f(l/4)C 3 , which is a contradiction.
Hence (4.33) is true. Setting i=ί in (4.32) and using (4.33), (4.2) we obtain the
conclusion of the lemma.

5. Isolating the Singular Set

Once again, we fix ε > 0 and consider the corresponding functions u, ύ. Lemma 3.2
and (3.2) yield

ϊ $\Du(x,t)\2dxdtS(l/2)\Ml (5.1)
0 JR3

A consequence of (5.1) and \\θε\\1 = 1 is

00 /00 \

ί J \D(u*θε)(x,t)\2dxdt^\\θε\\2A$ \\Du(x,t)\2dxdt)
O R 3 \0 R3 I

w\)l (5.2)

Using (3.1) we find

f J \u(x,t)\2dxdtS(sf-s)\\w\\l when O^s<s'<oo. (5.3)
s R3

This also yields

s' /s' \

j j \(u*θ&)(x,t)\2 dxdt^\\θz\\\ J \\u{x,t)\2 dxdt)
s R3 \s R3 I

ύ{s'-s)\\w\\2

2 (5.4)
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Lemma 5.1. There exists an absolute constant C 4 > 0 with the following property:
Suppose (α, b)e R3 x R, σ > 0, b > σ2,

b

J J \D(u*θε) (x, t)\2 + \D(ϋ*θε) (x, t)\2 dx dt S C4σ, (5.5)
b-σ^ B(a,2σ)

j / ί \u(x,t)\3dx)ll3dtίC4σ
2, (5.6)

b-σ2\B(a,2σ) j

) -\ (5.7)

J J \u{x,t)\{\x-a\Λ-σ)-3dxdt^C^σ. (5.8)

Then there exists τ swc/z that σ/2<τ<σ and properties (4.5)-(4.8) are satisfied when
M^C2.

Proof. This is a consequence of the Hardy-Littlewood weak-type inequality for L1

and the fact that σ/2<τ<σ implies ( |x-α| + τ)~3^8(|Λ:-α| + σ)~3.

Lemma 5.2. Suppose (α,b)eR3 xR,a3=-4ε (where a = (aί9a2,a3)), σ>4ε, b>σ2,
and properties (5.5)—(5.8) are satisfied. Then

\(u*θε) {x, t)\ ^ 4C 3σ- x if (χ9 t)e K(a, b, σ/4,3σ2/16).

Proof. This follows from Lemmas 5.1 and 4.2.

Lemma 5.3. // (α, b)eR3 x R, a3 <0, and fe > σ2 then

] I f Wx,t)|3dxW3Λ
2\ /

l/2

J

c-αl + σ)"
b-σ2 R3

I h

Proof. From α 3 < 0 and (3.7) we conclude

j \u(x,t)\2dxSCσ2( j
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for almost all f >0. Hence Lemma 2.6 of [1] yields

j { f \u(x,t)\3dx)1/3dt

b-σ2\B(a,2σ) J

b

^ { C{2σ)~1/2σ( { \Du(x,t)\2dx\ίί2dt
b-σ2 \B(α,4σ) /

+ J C(2σ)1/2( j \Du(x,t)\2dx)ll2dt
b-σ2 \B(α,4σ) /

b \ l/2

J J \Du(x,t)\2dxdt) .
-σ2 B(α,4σ) /

In addition,

J \u(x,t)\{\x-a\ + σ)~3dx

£ jCγ\u(x,t)\2(\x-a\
R3

for almost every ί > 0 and every y>0. The second inequality of the lemma follows
by substituting y = (C5"

1(l/2)C4)~1 and integrating over t.

Lemma 5.4. There exists an absolute constant C6 with the following property:
Suppose (a,b)eR3 xR, a3= — 4ε, σ>4ε, b>σ2,

b

ί ί
b - σ 2 J3(α,4σ)

b

ί ί l (
b-σ 2 # 3

|Du(x,ί)|2

u*θε)(x,t)\

+ \D{mθ

1 \D{u*θε)

f)|2 + |D(^

)|( |χ-«H

ι*θE)(x,t)\2

-σ)-3dxώ

dxdt^C6σ,

t*Cδσ~\

(5.9)

(5.10)

j j x/2. (5.11)
b-σ 2 R3

u^ f i )(x, ί) |^4C 3 σ~ 1 whenever (x,ί)eK(α,b?σ/4,3σ2/16).

Proof. This follows from Lemmas 5.2 and 5.3.

Definition 5.5. For each σ > 0 we choose a countable set Z(σ)CjR2 such that

# 2 x{0}C (J interior of £((c l5c2,0),σ/4)? (5.12)
(ci,c2)eZ(σ)

k-cΊ^σ/4 if {c,c'}CZ(σ) and cφc'. (5.13)

Lemma 5.6. There is an absolute constant CΊ with the following property: Let σ >0,
b>σ2 and define

S1 = {{cί9c2, — 4ε) :(c l Jc 2)eZ(σ) and {5.9) is false when a = {cί,c2, — 4ε)},
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S2 = {(cvc29 -4ε) :(cvc2)eZ(σ) and (5.10) is false when a = (cvc2, -4ε)},

iSl

3 = {(c1,c2, — 4ε) :(c1 ?c2)eZ(σ) and (5.11) is false when a = (cvc2, — 4ε)}.

TTiew 5 f

1u5 r

2u ίS 3 is α seί wϊί/ι αί mosί C71|w|||cτ~1 elements.

Proof. Using (5.13), (5.1), (5.2) and Definition 3.1 we find

(C6σ) (cardinality of Sj)

ύΣ \ ί
aeSi b-σ2 B(a,4 σ)

Similarly, (5.13), (5.4), (5.2) yield

(C6σ~ *) (cardinality of S2)

^ Σ ί ίl(fi ΘJ(x,ί)|
asS2 b-σ2 R3

b

g j J Cj(w*0e) (x, t)| \D{u*θε) (x, ί)| σ " 3 dx dί
6- τ2 Λ3

^ j j C\{ΰ*θc){x,t)\2σ-4dxdt+ J j C\D(u*θε)(x,t)\2σ-zdxdt
b-σ2 R2 b-σ2 R3

Using (5.13), (5.3) we find

(C 6σ 1 / 2) (cardinality of S3)

^ Σ ί ί Mχ,ί)l2(|χ-fl| + σ

^ J J C\u(xj)\2σ-5l2dxdt^Cσ-1/2\\w\\2.
b-σ2 Ri

Lemma 5.7. Suppose σ>4ε and b>σ2. Then there exists a set of points {(cn,ci2):
i = 1,2,..., N} CZ(σ) such that N^ C71|w\\ \σ~1 and ί/ie following property holds: If
(cvc2)eZ(σ) and (cl9c2) is not one of the (cn,ci2) then

|(M*θβ)(χ,ί)|^4C3σ"1 whenever (x,t)eK((cl9c29 -4e),fc,σ/4,3σ2/16).

Proof. Let {(ciί9ci2)} be an enumeration of all (cί9c2) such that
(cl9c2, — 4ε)eS1^jS2uS3 (see Lemma 5.6). The conclusion follows from the de-
finition of the St and Lemma 5.4.

6. The Limit as Epsilon Approaches Zero

We choose a sequence ε l 5 ε2, ε3,... of positive numbers converging to zero, and we
let M 1 ,u 2 ,u 3 , . . . be the corresponding functions u constructed in Sect. 3 (with ε = εn).
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Using (5.3) (which is valid for every u = un) and passing to a subsequence, we find
u : R3 x [0, oo)-+R3 such that un-*u weakly in L2 when the domain is restricted to a
set of the form R3 x [0, T], T< oo. In addition, (5.1) implies

| |D W " | | ^ ( l /2) | |w | | i | |Du | | ^ ( l /2) | | vv | | 2 . (6.11)

For any fixed δ >0, a slight variation of the argument in the proof of Lemma 3.3
shows that the functions un*θδ are equicontinuous and uniformly bounded on
compact subsets of R3 x [0, oo). From the inequality \\(f*θδ)-f\\2^Cδ\\Df\\2

(used for f = un and f = u) and (6.1) we conclude (using Ascoli's theorem and
passing to a subsequence) that un converges to u in L2 norm when the functions are
restricted to a compact subset of ,R3 x [0, oo). This implies

lim ] Kύ^θJi^ήiu^θJ^ήiDjg^θJ^
3R3

0 R3

if ge C%(R3 x R, R3) and ε = εn is used in the definition of ύn. Now the construction
at the start of Sect. 3, (3.7), and (6.1) imply that u satisfies properties (1), (2) of
Theorem 1.1.

Lemma 6.1. Suppose σ > 0 and b>σ2. Then there exists a set Y(σ,b)CZ(σ) (see
Definition 5.5) such that the cardinality of Y{σ,b) is at most C 7 | | wilder"1 and the
following property holds: If (cvc2)eZ(σ) and (cvc2)φY(σ9b) then

\u(x, t)\ ύ4C3σ~1 whenever (x, t)eK{{cv c2,0), b9 σ/4,3σ2/16).

Proof. This follows from Lemma 5.7 (which applies to the functions un) and a
subsequence argument.

Now we construct the (possibly empty) singular set S. For ie{ί, 2,3,...} and for
every integer; we define b(i,j) = i~2jβ and

u 0 U KKc^c^&tUλΓ 74,3Γ2/16).
j=9 (cι,c2)eY(l/i,b(iJ))

00

Let 5 = p | S(i). The set S is a closed subset of B(U) x [0, oo) (see Sect. 1). We will
£ = 1

show that, for any fixed ί > 0 , the one-dimensional Hausdorff measure of
Sn(R3 x {ί}) is at most C7||vv|||.

Let ^ > 0 and choose an integer i large enough so that i~1/2<δ and Γ2<t.
Then

Sn(R3 x {t})CS(ί)n(R3 x {t})

C 0 U lC((c1,c2,0),b(i,j),i-74,3i-2/16)n(R3x{ί}).
7=9 (cί,c2)eY(l/i,b(i,j))
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There exists an integer J such that Γ2(J— l )/8<ί^f~ 2 J/8. The above implies that
we can write

Sn{R3 x {*})
J+l

C U U K((c1,c2,0)?fc(/j),/-1/4,3z-2/16)π(JR
3x{ί}).

j = J (cι,c2)eY(l/i,b(i,J))

Since Y(l/i, b(ij)) has at most C71| w||f z elements (see Lemma 6.1) and the diameter
of K{a9 b, z"V4, 3Γ2/16)n(,R3x{ί}) is at most i~1/2<δ, we conclude that
Sn(R3 x {t}) can be covered by sets AVA2, ...,AN where NS2Cη\\w\\\i and

diameter (̂ 4Λ) ̂  Γ V2 < δ. Since

is valid in such cases, we conclude that the one-dimensional Hausdorff measure of
Sn(R3 x {t}) is at most C 7 | |w| | | .

Now we prove the last property in the conclusion of Theorem 1.1. Let
{a,b)eB(U)xR+ such that (a,b)φS. Then there exists i such that (a9b)φS(i). This
implies (since the third component of a is zero) b > b(i, 8). There exists an integer j
such that b(iJ)-3Γ2/16<b<b{iJ), and we must have j ^ 9 . From (5.12) and
aeB(U) we conclude

αeinterior of B{(cί9c29O)9Γ
1/4)

for some (cvc2)eZ(Γ1). Hence we get

(a9b)einterior of K((cvc2,0\ b(ij)9 rx/49 3Γ2/16).

The facts j ^ 9 and (a9b)φS(i) imply that (cvc2) is not an element of Y(ί/i,b(i,j)).
Now Lemma 6.1 tells us that u is bounded on the open set

interior of K((cvc2,0% b(i9j)9 Γ 7 4 , 3Γ2/16),

which contains (a9 b).
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