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Abstract. We give here new results of topology and integral geometry
concerning the Gauss linking number I of closed manifolds in ̂ -dimensional
space. The rigid manifolds have arbitrary shapes and dimensions, and are
statistically at random positions in JRW. Generalizing PohΓs work, for two
closed manifolds %>\, ̂ s

2, of respective dimensions r and s, with O^r^n— 1,
and r + s+l = n, we consider the "kinematic linking integral"
</ = <j72(x,#)Λc>, of the square linking number I of ̂ \ and ^ s

2, over the
group of Euclidean motions of one manifold (translations x, rotations Θ).
Introducing a new tensorial method, and using group theory, we show quite

00

generally that / = num. fact. J dρ[_£/ί(ρ)ep/2{ρ)-\-δrfS@ί(ρ)3$2(ρ)'], where ρ is a
o

length variable and where j / α , J*α(α = 1,2) are characteristic functions associat-
ed with the manifold ^ α only. We study functions stf and £% of a manifold ^ r , of
dimension r, in all cases Orgr^rc — 1. srf always exists. J / ( 0 ) gives #'s area,

00

whereas j stf{ρ)dρ equals the interior volume of a hypersurface <£. £% is found to
o

exist and not to vanish only if 2 d i m ^ + l = n and n = 3 + 4g = 3,7,11... s$ and
gβ are explicitly calculated for segments and r-spheres Sr. As an application the
topological excluded volume of a gas of nonlinked spheres Sr moving in R 2 r + 1

is calculated. We generalize to N manifolds # α , α = 1,..., N, linked successively
to each other and forming a ring. The cyclic product of their linking numbers is
integrated over the group of motions of the manifolds. It is shown to factorize
completely in Fourier space, with special algebraic rules, over the set of 2N
characteristic functions j / α , ̂ α , associated with the #α's. The same algebra of
characteristic functions is shown to describe a larger class of topology and
electromagnetism properties: a new theorem is given for a family of Euclidean
group integrals involving the random linking numbers, mutual inductances
and contact distributions of N manifolds.
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Fig. la-c. Linking number / of two closed curves in 1R3 a / = + 1 because each curve crosses the
interior surface of the other from the negative to the positive side b two unlinked curves c the two
"eights" are topologically linked, nevertheless 1 = 0 (taken from [5])

1. Introduction

/./. General Background

Topological constraints can exist in a statistical system and bring in new physical
effects [1]. An example can be found in polymer theory. A set of closed polymer
rings not linked together have a phase space restricted by that topological
constraint, and the osmotic pressure deviates from that of an ideal solution [2].
Topology of links and topological invariants involve very interesting mathemati-
cal problems. In this article, we study remarkable integral properties of the Gauss
linking numbers of manifolds in IR". The Gauss linking number I of two closed
manifolds is a topological invariant counting the number of times one closed
manifold winds around the other one, both being oriented. Figure 1 gives examples
of linking numbers of curves in IR3. Two curves can be topologically linked, their
algebraic linking number being nevertheless equal to zero (Fig. lc). The analytic
formula for I was given by Gauss [3,4]

4 Ίf-g|
,dί,dg (1.1)

where f and g stand for the positions in IR3 of two generic points on c€1 and ^
respectively, and where dϊ, dg are the corresponding differential vectors along the
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Fig. 2. Cords of length ρ contributing to s/(ρ)

oriented curves. Vg represents the gradient with respect to point g. As indicated by
Maxwell [5], Gauss' formula is closely related to electromagnetism: "It was the
discovery by Gauss of this very integral, expressing the work done on a magnetic
pole while describing a closed curve in presence of a closed electric current, and
indicating the geometrical connexion between the two closed curves, that led him
to lament the small progress made in the Geometry of Position since the time of
Leibnitz, Euler and Vandermonde...." A general Gauss'formula exists for closed
manifolds embedded in IR" [4] (Sect. 2). A quite interesting mathematical property
of the linking number of curves in space has been very recently discovered by Pohl
[6]. He considered the integral

= /f I2(x,Θ)d3x (1.2)

of I2 over the translations x and the rotations Θ of one rigid curve with respect to

the other. One notices that, for two plane convex curves, I = < and J = V9 where

V is the topologίcal excluded volume between the two unlinked curves. For
nonplane curves J gives only a approximation of V. Pohl proved that for two
plane convex curves (&ί and ^ 2 , J can be transformed into a single integral

(1.3)

where ρ is a variable having the dimension of a length. The J/ 'S are functions
characteristic of each manifold respectively. For a given curve ^ the srf function
reads [6] :

j s 0 | , (1.4)

where s is the curvilinear abscissa of a point / along ^ θ is the angle between the
tangent vector at / and the points / ' on Ή such that ||f— f || = ρ (Fig. 2).

PohΓs theorem was generalized recently to nonplane closed curves in 1R3 by
Des Cloizeaux and Ball [7], and by Duplantier [8], using various methods. For
each nonplane curve, besides J / , a second characteristic function έ% appears, which
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Fig. 3. The manifold ^ 2 crosses the Seifert manifold £fi$>^ at discrete points /

modifies (1.3). New further generalizations of PohΓs theorem were also found by
the author [8]. For a set of N curves, the cyclic product / 1 2 ^ 2 3 ^NI w a s

integrated over the group of rigid motions of the curves. It was shown to factorίze
over a special algebra involving the characteristic functions sd and M, associated
with each curve separately. Besides linking numbers, mutual inductances and
contact distributions were also studied [8].

The aim of this article is to study quite generally the linking numbers of closed
manifolds in IR", and their linking integrals similar to (1.2). It is quite general
because the dimensions of the manifolds can be arbitrary, going from zero
dimensional set of points to hypersurfaces in IR". We give a set of factorization
theorems, similar to PohΓs theorem (1.3). Because of the factorization property
[see (1.3)], these theorems yield a solution to the further problems of averaging
over the deformations of the manifolds. For a given statistical weight, one has
simply to average the characteristic functions independently. For proving these
theorems, we introduce a new mathematical object, characteristic of a manifold, its
inductance tensor Γ (Sect. 3), in terms of which all quantities can be expressed. We
believe this tensor to be quite basic for such studies of integral geometry. The
linking integrals of two manifolds and of multiple manifolds are studied. Mutual
inductances and contacts are also treated. Topology, potential theory and
electromagnetism in IR" are used here. Some results have been recently published
elsewhere [10].

ί.2. Linking Numbers in IR"

Consider two orientable differentiable manifolds %>\ and ^s

2, of dimensions r and s,
embedded in IR". They are given by parametric equations in IR":

l L1 ' ' ">

where the ua, α = l , . . . , r ; vb, b=ί, ...9s SLΪQ parameters, and f, g are differentiable.
The orientations are given by the natural orders a— 1, ...,r and b = ί, ...,s. The
manifolds are closed, i.e. they have no boundary d:dc$ = O. For a closed and
orientable manifold Ψv there exists a Seifert manifold ^{^\\ the boundary of
which is #1 (Fig. 3). The dimension of ^{^\) is r + 1 , and its points / are given by
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( R 3 )

t=0

iφO

( R 4 )

t = 0

α) b)

Fig. 4. a The straight line D{x, y = 0,te IR) and the circle Sλ{x2 + y2 = 1, t = 0) are linked in IR3 and b the
corresponding situation in IR4. The line (x, y, z = 0, ίε IR) and the sphere S2(x2 + y2 + z2 = 1, ί = 0) form a
link in IR4

parametric coordinates f(w l9..., w r + x), such that ^ ( ^ ) is coherently oriented with
respect to its boundary ^\ [11]. We suppose that the dimensions of %>\ and ^s

2

satisfy
= π . (1.6)

Then the intersection ^ ( ^ J n ^ is a set of points P, possibly empty. The linking
number of %>\ with ^s

2 is defined by

_ y (1.7)

where ε(P) = + 1 is the orientation of the local basis of IR"

{dϊ/dwv ...9df/dwr+ί9 dg/dvl9 ...,dg/dυs}

with respect to a canonical basis. 7 1 2 is a relative integer, topologically invariant. A
simple example in IR4 is given in Fig. 4.

13. Summary

In Sect. 2, generalizing to IR", we consider the "kinematic linking integral"

> (1.8)

over the group of relative rigid motions (x,Θ) of two manifolds. Using a
generalized Gauss' integral formula for the linking number, we introduce a
tensorial formalism, which enables us to calculate (1.8). We introduced the same
formalism in [8] in the simpler case of curves in R3.

Section 3 deals with the properties of the "inductance tensor" of a manifold. It
is calculated with the help of group theory [12]. In Sect. 4, J (1.8) for two
manifolds is calculated explicitly. We prove that two characteristic functions si
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and $ exist for each manifold, in terms of which (1.8) can be "factorized." The end
of Sect. 4 is devoted to the geometrical properties of the functions si and $.

Section 5 is concerned with the calculation of the "kinematic linking integral"
of multiple manifolds, which generalizes (1.8). We use the Fourier space and study
the characteristic functions si and $ in the momentum representation. We give a
general factorization theorem for the multiple linking integral.

Section 6 deals with a further generalization. For manifolds having the same
dimension, we define the mutual inductance M [13] and the contact distribution
C. Both M and C are related to linking number / via potential theory. We consider
cyclic products containing either the linking numbers J, or the inductances M or
the contacts C of the successive manifolds. A general factorization theorem gives
the integral of these products on the group of motions of the manifolds.

Finally, in Sect. 7, some particular geometrical cases are studied. We calculate
the si function of a zero dimensional manifold made of two points, and the si
function of the r-sphere Sr. We finally compute the topological second virial
coefficient of a set of r-spheres Sr moving in ]R.2r+1.

2. Linking Numbers and Euclidean Group of Motion

2.1. Gauss Integral

The algebraic linking number (1.7) in IR", is given by the Gauss'integral, for n^t 1 :

/(«1,*2) = (S I I_1(n-2)r!s!)-1 f d e t ( F J | f - g | Γ ( " - 2 U ^ , ^ 5 ) , (2.1)

where fe%>v # e ^ 2 , and where || || denotes the Euclidean norm 1. Sn_1 is the area
of the unit sphere Sn~x of 1R"

5 π _ 1 = 2 π " / 2 / ^ / 2 ) ; (2.2)

Fγ is the r-volume form associated with manifold ^ at point f [11]:

,.ir = dfiίΛ...Λdfir. (2.3)

This tensorial r-volume form possesses r indices iφ a = 1,..., r, taking their values in
the set {1, ...,n}. The s-volume form d$s is defined in the same way at point g of
manifold # 2 . Equation (2.1) reads explicitly

mi^2) = ίSn^(n-2)rls\Tί j e«.-'-J. ->.JL * (dfh Λ ... A dfir)

•(dgjiΛ...Λdgjs), (2.4)

where β represents the totally antisymmetric tensor of rank n in 1R":

e σ ( 1 ) -σ(w) = ε(σ)

for any permutation σ of {1, ...,n}, its signature being ε(σ). Otherwise, as soon as
two indices coincide: ε i">i' ' = 0 . The identity of the Gauss'integral (2.4) with the

1 Expanding the gradient Vg shows that (2.1) is also defined for n = 2
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linking number (1.7) is proved in Appendix A. Owing to (2.4), the linking number /
satisfies

/ 1 2 = ( - 1 ) " + 1 / 2 1 . (2.5)

Equation (2.1) gives the intrinsic formula for the Gauss linking number. For a
particular parametrization (1.5) of the manifolds, we have, according to the theory
of differential exterior calculus [11] :

(2.6)rii l f.... i r - n , ' ' " ' \duy/\ ...Λdur9

'-^— being the partial Jacobian of coordinates fia with respect to parameters ua,,

with a,af = 1, ...,r.
It will be very convenient in the following to use the generalized Kronecker

delta tensor, defined as the r x r determinant [14] :

(2.7)

The tensor (2.7) possesses an equal number of indices ia, la with a—ί,...,r, taking
their values in 1R" in {1, ...,«}. The tensor (2.7) is obviously skew-symmetric under
interchange of any two of the indices of the set I = {iv ..., ir} and under interchange
of any two of the indices of the set L = {lv ..., lr}. Furthermore δ differs from zero
only if the sets / and L are identical, up to a permutation. For any totally skew-
symmetric quantity Ah lr, depending on r indices

.Λ, (2-8)

The partial traces of tensor δ are equal to

zh...ltht+ι..>hr_
V;. i.u. . . u — ' (2.9)

π . . . i t h t + 1 . . . h r ( n _ p ) , t l . . . u >

where repeated indices ha are summed over. Using (2.7), the Jacobian (2.6) reads

(2.10)

Substitution of (2.10) into (2.4) and use of property (2.8) finally give a parametric
expression of the linking number:

f - g 3f df dg

-g | | " du1 dur dvί dv

du1...durdυ1...dvs

in agreement with that of [4]. However, it will be more convenient in the following
to use differential exterior calculus and the intrinsic Gauss' integral (2.1). To
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facilitate calculations, we define the tensor

e fVll — γ plil' irjl js Ώ \λ\
εsλx)\jι...js,i1...ir- , *fi V^J-J-J

which depends on one vector x of IR" and bears r free right indices ia, and s free left
indices j b . One notices the conventional inversion of order for s and r between the
two sides of Eq. (2.11). Owing to (2.11), the Gauss'integral (2.4) reads:

ί 1 2 = [ S n - 1 ( « - 2 ) r ! ] - 1 J [dg.-eJFJ-d.F,] \ (2.12)
^χf 2 II1 —gll

where the dots represent the ordered contractions of the r indices of the volume
form d!Fr with the r right indices of εsr, and the contraction of the s indices
with the s left indices of εslΛ

2.2. Euclidean Group of Motions and Kinematic Integrals

Consider first a manifold ^ in Rn as a rigid body. The position in W1 of Ή is defined
by that of an origin O o n ^ and by the set of the Euler angles Θ of #. Let Ωn be the
measure of the group of rotations of a solid in IR":

(2.13)

The angular position Θ of ^ in 1R" is completely defined by the choice of an axis
rigidly attached to ^ , and by the rotation of this solid ^ in a hyperplane of
dimension n—1 around the axis. Thus we have Ωn = Sn_iΩn_1, where Sn_1 is the
area of the unit sphere in 1R", and

Ω^VA-2-Si. (2.14)

In particular, for n = 3: Ω3 = S2S1 = 8π2. The linking number of two manifolds (Wί

and ^ 2 depends on the translation vector x = OxO2 joining the two origins Ox and
O2 oίc&1 and %!2, and on the relative angular position Θ of ^ 2 with respect to <βv It
writes /1 2(x, Θ). Generalizing the work of W. Pohl, we define the "kinematic linking
integral" J

/ d"xI12(x,Θ)I21(-x,Θ)\, (2.15)

where the brackets represent the average over the set of angular orientations G:

< ( . . . ) > - f f (...). (US)
n

This integral reads also, owing to (2.5)

. / : = ( - l ) r s + 1 / J dnxI2(x,Θ)\, (2.17)

where I = \I12\.

One has explicitly:
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Successive Links of N Manifolds. Consider now a set of N differentiable and
orientable closed manifolds in IR":

This set is ordered. Let us define / α α + 1 as the linking number of two successive
manifolds ^ α , ^ α + 1 . By convention we set for α = iV:

The linking number of manifolds ^ α and ^ α + 1 can be defined only if
dim^7

α + dim^ ?

α + 1 =n— 1. Thus, if we denote by r the dimension of the first
manifold ^ 1 ? and set s = n— 1 — r, we must have the sequence of dimensions:

-ί = r' (2.18)

2β = s.
Two different cases therefore appear.

a) r φ s
The existence of the whole set {/ α α + 1 ,α=l, ...,iV}, together with condition

(2.18) obviously requires the number N of manifolds ^ α to be even.
b) r = s
This case occurs iϊ r = s = n— 1 — r, that is for:

w = 2 r + l .

The dimension n of space is therefore odd. All #α's have the same dimension. N is
arbitrary. This corresponds for instance to closed curves of dimension r = 1
embedded in R3, the case considered in [6-8].

In the following, we shall denote the dimensions by r and s quite generally, and
distinguish cases a) and b) only when necessary.

Let us write xα the vector joining the origin Oα of ^ α to origin Oα+ί oϊ ^α+1

(Fig. 5). The set of translation vectors xα forms a closed polygon:

Σ χ

α = 0. (2.19)
α = 1

Each linking number Iα α + 1(xα, ΘJ also depends on the set Θα of Euler angles of
^ α + ! with respect to ^ α . The kinematic linking integral J> of an ordered set of N
closed manifolds is defined as

J ( ) 4α+ i « j ) , (2.20)
lR n x.. .xiR n \ α = l / α = l /

where the brackets represent the average

<(...)>=(Ω l ϊ)" ( N"1 )ίT[[1^α(...) (2.20a)
α = l

For AT = 2, (2.20) coincides with (2.15). Integral J> represents a measure of the
successive links made by N manifolds over the group of rigid motions of these
manifolds. The integrand of (2.20) is nonvanishing only for the ring configurations



230 B. Duplantier

Fig. 5. N manifolds # α , α = l, ...,iV, successively linked to each other. The set of translation vectors xα

forms a closed polygon: xί+ ... + xN = 0

Fig. 6. The generic points on two manifolds used for calculating the square linking number /2(x), with
x = OλO2

of the N manifolds, in which all successive couples # α , Ήa+ ί are linked (Fig. 5). We
shall in the next sections show how linking integrals (2.15) and (2.20) can be
"factorized" into a product of terms associated with each manifold.

2.3. Tensorial Factorization Method

We generalize here in IRW a method previously introduced for closed curves in IR3

[8]. For the sake of simplicity, we make it explicit only for two manifolds, the
extension to N manifolds being straightforward.

Replacing in (2.15) each linking number by a Gauss' integral gives

J
1

£l X^2

n-2 (2.21)

where generic points (/, g') and (/', g) have been related to each other for building
up linking numbers I12 and ϊ2ί respectively (Fig. 6). Here, vectors f, f measure
positions with respect to the origin O1? and g, g' with respect to the origin O2

(Fig. 6). Inserting (2.21) in integral (2.15), we use Fubini's theorem and exchange
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the order of integrations over ((^1 x # 2 , ^ 2 x (8'1) and x. We then perform the
change of variable x-»y:

x = y + f-g'. (2.22)

The Jacobian of this local change of variable trivially equals one. Then we have

f-tf-x = f-Γ-y,

g-f' + x = g-g' + y.

The gradient operators transform, according to (2.23), into:

Vg, = Vy,Vf, = V_y. (2.24)

We notice that the change of variable x-»y has separated contributions of
manifolds c^1 and ^ 2 in (2.23). It remains for us to factorize c€1 and ^ 2 in (2.21)
with respect to their own differential volume-forms. We use the trivial algebraic
identity:

εrs <βg = tr[{ε s r (d^r®d^)} {εr8 {d$s®<βQ}] , (2.25)

where the dots represent naturally the ordered contraction of adjacent sets of
indices. The trace represents the ordered contraction of the external sets of s
indices. Collecting Eqs. (2.22)-(2.25), we obtain for (2.15)

(2.26)

where the integrand is the matricial trace

f-f'-yir2j

(2.27)

For a given manifold c€, of dimension r, we then define an associated tensor C

C(y) = ( S n _ 1 ( π - 2 ) r ! ) - 1 ( J ssr(Vy)-(d^®d^) / . , , , - Λ . (2.28)

Here the brackets represent the angular average (2.16) over the rotation group of
^. Owing to Definition (2.11) (up to an exchange of r and s), tensor C reads, with
explicit indices:

• Wh Λ • Λ df,) (<TΛ Λ ... Λ # y ^ . (229)

C appears clearly as a tensor of rank s + r = n — 1. For a manifold ^ of dimension r,
C possesses r free indices i on the left and s indices j on the right. After the angular
average over rotations of manifold #, the tensor C depends only on vector y.



232 B. Duplantier

Using Definition (2.28), integral J (2.26) finally reads

J y J C ^ - y ) ] , (2.30)

where tensors Cλ and C 2 are respectively associated with manifolds ^ and ^ 2

3 .
We have thus achieved a first factorization of the integrand of J. This method can
be applied to general integral (2.20). Integral (2.15) and (2.20) have indeed the same
cyclic structure. The result is the following. To each manifold ^ α is attached its
characteristic tensor Cα(yα). This tensor depends on an arbitrary external vector yα

of 1R". The cyclic linking integral J (2.20) can then be written as the generalized
trace:

( ) { l (2.31)

The set of vectors yα is obtained from the set of translation vectors xα by a local
change of variable generalizing (2.22). We refer to [8] where a similar algebraic
result was obtained for the successive links of N closed curves in 1R3.

We have now to calculate, for a given manifold, its characteristic tensor C.

3. Characteristic Tensor of a Manifold

3.1. Definition and Properties

Let us write tensor C (2.29) in the form

C(y) = εSP(F,) Γ(y), (3.1)

where the characteristic tensor Γ is defined by

Γ(y) = α0 | | y + f'_f||»-2
3 (3.2)

The tensor (3.2) generalizes to IR" a tensor previously introduced for closed curves
in 1R3 [8]. In (3.2), n = 2 is a special case for which the potential

— — ||y + f -f|| -{n~2) has to be replaced by the limit for n-+2: - l n | | y + f -f||. We
n — 2
shall not distinguish this case in the following, all the results being regular for n-+2.
Γ is a basic mathematical object for our problem, and will also be useful later on,
for describing the contact distributions and mutual inductances of closed man-
ifolds. Definition (2.3) of exterior r-forms d^r, d^ shows that Γ is a tensor of
rank 2r, with an equal number r of left and right indices, reading explicitly:

ιiy+f-fi

3 In (2.26) the angular average was performed on relative orientations Θ. It is obviously equivalent to
averaging over orientations of ζβι and ^ 2 separately, as in (2.29)
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After averaging over angular orientations of ̂ , tensor Γ depends on vector y only.
Moreover, tensor Γ is completely skew-symmetric with respect to the set of left
indices {ίa,a = ί,...9r} and completely skew-symmetric with respect to the set of right
indices {ja, a = 1,..., r}. Γ is not defined a priori, for 2r rg n — 2, on a set of vectors y
of zero measure (i.e. y = f—f). It is regularized by averaging on rotations and Γ is
then defined by continuity for all values of y (Sect. 3.4).

We define the left divergence of Γ with respect to the ath indice ia by

div Γ=—Γ (3 3)

with a summation over values I of ia. The result of this divergence operation is
naturally a tensor, the rank of which equals 2r— 1. A similar definition holds for
the right divergences of Γ with respect to indices j a , a = ί,...,r.

Lemma 1. All the r left and r right divergences of tensor Γ vanish identically:

Vα,α = l , . . . , r . (3.4)
divo.α)Γ =

Let us prove this for instance for the first left divergence of Γ. Defining the
(r— l)-exterior form ω

* 2 \ f )

and using - — = we may write immediately the first left divergence (3.3) of

^ dfiχ

(3.2a)

div(il)Γ=-α0/f f
\ 'where dfω denotes the exterior derivative, or coboundary, of form ω with respect

to vector / 4 . Keeping point / ' fixed, we perform the integration over point /, / e ^ ,
of the coboundary form dfω. Stoke s theorem [11] gives immediately

\dfω= J ω = 0 (3.5)

where for a closed manifold ^ : δ ^ = 0. Thus: div( ί l )Γ = 0, Q.E.D. The same proof
extends to the whole set (3.4) of divergences.

These rather simple properties of tensor Γ are sufficient to determine the a
priori form of Γ, as will now be shown.

3.2. General Form of the Characteristic Tensor Γ

We use the following key lemma:

Lemma 2. Consider a tensor Ai...ir,ji...jvW' depending on only one vector y,
vanishing at infinity, completely skew-symmetric with respect to indices

4 By definition of the exterior derivative [5, 6], for a form

co = H(f)dfi2Λ...Λdfir,

where H is a function of vector /, one has
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{ia,a=l9...,r} and {jb, b = ί, ...,r} separately, and the 2r divergences of which
vanish. Then Γ is necessarily of the form

(3.6)
vyx

where Φ and Ψ are two arbitrary scalar functions of the modulus \\y\\.

The Kronecker tensor δ (2.7) is here a determinant of order r + 1 . Because
tensor ε in IR" possesses necessarily n indices, there is a factor δ2r+ 1>n in front of the
second term. Thus the function Ψ exists only for dimΉ = r = (n— l)/2, n being odd.

The proof of Lemma 2, given in Appendix B, uses main results of classical
group theory [12], here for the orthogonal group 0(n). The condition that Γ
vanishes at infinity is auxiliary5. Tensor Γ (3.2) vanishes at infinity like \\y\\ ~(n~2>>
for n>2. For n=l,2, a direct construction of Γ gives also the form (3.6)
(Appendix B).
Let us introduce a more compact notation:

Using Definition (2.11) and (3.7) we finally may write Lemma 2 for tensor Γ in the
form

« l n l

(3.8)

where we have introduced some numerical factors for simplifying forthcoming
calculations. One must notice that the Ψ term exists only for: 2r+l=n, or
equivalently: r = s.

3.3. Some Identities on Tensors

For calculating Γ, we shall need the following identities relating the numerical
tensors ε (2.11) and δ (3.7).

εsr(x) εrs(y) = (-l) Γ s δ M (x®y), (3.9)

εsr(x) δrr(y ®x) = (x y) ε » , (3.10)

< U χ ® y) ε™(χ)=(x y) ε J χ ) , (3.11)

δΓΓ(x®y) = (x y)δΓΓ(x<g)y). (3.12)

The dots represent the ordered contraction on the r internal indices common to
both factors. These identities, proved in Appendix C, hold for any vectors x, y in

5 If the condition of vanishing at infinity is not fulfilled, one can have for 2r+l>n, besides (3.6), an
independent harmonic tensor U, depending linearly on y, and having the same properties as Γ
(Appendix B)
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Let us now consider the generalized matricial traces of tensors ε and δ, defined
by:

trεrr(x)=-xιε
Hι-i-ii-i-,

We thus have trivially

trεr, = O. (3.13)

Owing to identity (2.9), we have:

^ = ^ ( x y). (3.14)

3.4. Potential Theory and Calculation of Tensor Γ

Starting from the a priori form (3.8) of tensor Γ, we determine now the two
unknown functions Φ and Ψ. Let us first calculate the trace of tensor Γ:

trΓ^r,, . . .^. . , , . . (3.15)

Equations (3.13) and (3.14) immediately give

(3.16)

where the n-dimensional Laplacian A acts on y. For determining the second
function Ψ, we come back to tensor C (3.1) and calculate it with the help of
Eqs. (3.9), (3.10), and (3.8). We find

^ ^ (3.17)

For r = s, the trace of C can be defined and reads

) = AΨ(\\y\\). (3.18)

On the other hand, the traces of Γ and C can be calculated directly from Eqs. (3.2)
and (2.28):

/
1 fl°U,lly+f'-flΓ

= <52r+1>nα0( J dP; zn(V) dP * \ (3.20)

where ao = [Sn_ί(n — 2)r\']~1. Consider first (3.19). It involves the trace
tΐ(dέFr®d^) = dβr

r d^t! , which is the ordered scalar product of the differential
exterior forms (2.3). Thus d^ d^ is invariant with respect to rotations ofΉ in R".
Thus, the angular average in (3.19) can be inserted into the integral:

ϊ\\-(n-2)y. (3.21)
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α ) b)

Fig. 7 a and b. Newtonian potentials V and W are created by spherical distributions of respective radii
||f-f|| a and ||y|| b

Consider now (3.20). Factor d^ zrr{V) d!Fγ is clearly not invariant with respect to
rotations of #. However, trC is a scalar function of modulus ||j;|| only, and is
therefore trivially equal to its average trC = (trC), where the round brackets
represent the angular average

with j> = y/||y||.
Thus, using F = Vf, in (3.20) we may write

(3.22)

(3.23)

If we compare Eq. (3.23) for trC and the generalized Gauss' formula (2.12) for
linking number, we remark that

f dul(<g,τmn<g),
1

(3.24)
S n -

where u, u e S " " 1 is an arbitrary unit vector and where τ^y^u represents the
translation of length ||j;|| in direction u. Thus, trC(||y||) is exactly the isotropic
average of the linking number of manifold Ή with its translated images by a fixed
distance \\y\\.

We now face the simple task of calculating the two different angular averages

F=<||y + f-f|Γ ( I I " 2 ) >, and PF= -f| Γ(l|-2)). Quantity ||y + f-f|Γ(l l"2)
is

exactly, in R", the Newtonian potential between points y and /— /'. It satisfies the
Poisson equation [15]

In V, rotations of manifold ^ reduce trivially to rotations in 1R" of vector f — f
rigidly attached to manifold ^ (Fig. 7a). Thus V represents the Newtonian
potential created at point y by a uniform distribution of unit masses on the Sn~1-
sphere of radius ||f — f||. In the same way, W is the Newtonian potential at point
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/ —/' created by a source sphere of radius ||y|| (Fig. 7b). These two Newtonian
potentials V and W are equal6 and read:

V=W=θ(\\y\\-\\i-ϊ'\\)\\y\Γ("--2) + θ(\\ϊ-ΐ\\-\\y\\)\\f-f'\\-("-2\ (3.26)

where θ is the step distribution θ(ζ) = 1 for ζ>0, 0(0 = 0 for θ<0. We shall need in
the following the Newtonian fields associated with these spherical sources:

VyV= -(n-2)0(| | j; | | - | | f-f ||)y/||y||"

which vanish inside their own spherical source.
At this stage, we have all the equations determining AΦ and AΨ. We shall use

in the following V(ΔΦ) and ΔΨ. Equations (3.21), (3.23), and (3.27) give

V(AΦ)(y)=-(Sn_ίr\r1/- \ θ(\\y\\-\\f-f\\)(d^r'd^) (3.28)

and

||f-f|
(3.29)

4. Kinematic Linking Integral of Two Manifolds

4.1. Factorization Theorem

We can now give an explicit formula for the kinematic linking integral J (2.15) of
two manifolds c€\ and ^2, of dimensions r,s, with r + s = n—l. Both possess an
associated tensor C, which is decomposed into two parts containing function Φ
and Ψ. Using factorization formula (2.30) and formula (3.17), we may write

n-l)\) In y λ r's rr 1

•[ — εrs(V)ΔΦ2 + δr βrr(V(g) V)Ψ2]}, (4.1)

where we used δ2r+ί n = δr s and the parity property VΦ( — y) = — VΦ(y) in order to
take all the functions in the integrand of (4.1) at point y. Using algebraic rules
(3.9)—(3.14), we obtain, after simplifications:

v i e !
(* 1 M f / j \ IΛ ΓΛ , I Λ w—t / A ~w- \ w—r / έ T \ . Γ* A i -j-rf J j Ύ~f ~} ί A ' ^ \

One must notice the vanishing in (4.2) of cross terms involving products ΦΨ,
due to the opposite symmetry properties of tensors ε and δ. The integrand of (4.2)
is rotationally invariant. Passing then to spherical coordinates

Q=\\y\\,y=y/\\y\\,dny=Qn-1dρdy9 (4.3)

6 The fact that V~W is directly related to the covariant transformation properties of Newtonian
potential in an inversion with respect to a sphere [16]. The inversion with respect to a sphere of radius
R = (\\f-f'\\ \\y\\)112 indeed transforms Fig. 7a into Fig. 7b
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Fig. 8. An example of a twisted curve # making a link with its translated image τQ$, such that

and defining two characteristic functions for each manifold

ds

(4.4a)

(4.4b)

we obtain / a s a single integral

In this "kinematic linking formula," characteristic functions j / α , J*α(α = l,2)
depend only on the manifold ^ α with which they are associated. Using the explicit
forms (3.28) and (3.29) of V{ΔΦ) and A Ψ in Definitions (4.4a) and (4.4b), we find the
formulae for $4 and &:

and

J

ί β(llf-fΊI-

(4.6)

(4.7)

Function J / exists for any manifold, and is given by the integral of the generalized
scalar product of volume forms άίF and d@*''. On the contrary, the ^-function
exists only for a manifold <$ having a dimension r = (n— l)/2 (with n odd). ^ must
indeed be able to link with its own translated image. According to Eqs. (4.4b) and
(3.24), we have:

Sn-

(4.8)

$ is thus proportional to the isotropic average of the linking number of ^ with its
translated image τQΛ$ at a distance ρ (Fig. 8). # and τ^ have the same dimension r
and can be linked if and only if: 2r-hl =n, as expected. Equation (4.7) gives the
explicit form of the angular average (4.8). Because Gauss linking number /
satisfies (2.5), function & (4.8) verifies 3S = (- l)r2+1^ which can also be checked
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directly on (4.7). Therefore for r2 even, that is for r itself even, M vanishes
identically. Finally, function J* is nonvanίshίng only for

Using Eq. (2.17), we may also write (4.5) in a final form7.

Theorem 1.

I2(x)dnx) = - -— J ̂ [<fe)^ 2to) + ̂ s^1fo)^2fo)] . (4.10)

This formula (4.10) generalizes, for arbitrary closed manifolds in 1R", the
factorization property (1.3) discovered by Pohl [6] for curves in R3. The simple
case of two closed curves (r = s = l , n = 3) corresponds in (4.9) to the first value
q = 0. Then, one can expect the presence of two terms in integral«/. PohFs original
proof [6] was given in fact only for convex plane curves, for which J> vanishes
identically. The existence of a characteristic $ function was then established for
general skew curves in R3, by Des Cloizeaux and Ball [7], using a method based
on Fourier transforms, and by Duplantier [8], by a direct method, which is the
origin of the method used here.

In summary, we notice that functions J / and $ are directly related to the
functions Φ and Ψ appearing in the fundamental lemma (3.6). The existence of two
functions sd and M is thus a nontrivial result of orthogonal group theory, which
gives the decomposition of Γ into two irreducible components.

4.2. Properties of Functions s/ and &

4.2a. Parametric Forms. Consider a particular parametrization {ua, a = 1,..., r} of a
manifold <€. The ordered scalar product d£F' -άSF' of volume forms can be
transformed with the help of Eqs. (2.10) and (2.7):

^d^r'd&; = d e t i a J ^ ~ }(du1Λ...Λdur)(duf

1Λ...Λdu'r), (4.11)

- — — is the scalar product of the two tangent vectors along lines uω u'b at / and
όua uub

/'. The determinant is, as it must be, invariant with respect to rotations of #. The
characteristic function stf (4.6) has the parametrized form:

^ (4.12)

In a similar way, substituting Eq. (2.10) into (4.7), and using (2.8), gives

df df dΐ df\ ,
•—-,.., — , — , . . , — \duί...durdu1...dur. (4.13)
du1 dur du\ δuj

7 Owing to (4.9), the ̂ ^ 2 term exists only for r = s = 2q+l and thus ( - i y s + 1 = l
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4.2b. Limit ρ-»0. In this limit, stf (4.6) depends only on the local properties of #,
whereas J* involves the whole structure. The measure drf of an infinitesimal
r-volume element or "area" of Ή reads, for parameters ua:

( 4 i 4 )

(4.15)

and the total r-υolume or "area" of Ή then reads

S=μrf.

In the integrand oϊsi, one has ||f— f || ^ ρ and for ρ->0, / « / ' . Thus, we can write
in this limit

J ίδf dT\ (df df\112 (dί dί\112

\3Mβ duj \dua duj \dua duj

Thus, using Definition (4.14), we find for si:

fρ->0

For ρ->0, the neighbourhood of / on ^r is locally flat and tangent to lRr, and

integration of f gives the volume - ^ - ρr of a ball of radius ρ. We finally find
r

(4.16)

where S is the total r-volume (4.15) of c€. For a closed curve of length L in 1R3,
2L(S0 = 2), in agreement with previous results [7].

For ρ->0, in (4.8), τρι$ = ̂  and <# reads [10] :

S,,-iί?(ll~1)/2/seif, (4.Π)

where / s e l f is the self-linking number of manifold #, formally obtained from Gauss'
integral (2.1) by making the two integration points describe the same manifold c€.
It is known that this Gauss self-linking number is not a topological invariant
counting the number of knots made by the manifold with itself [17]. For instance,
it differs from zero for a skew closed polygon in 1R3, even if this polygon has no
knot [18].

4.2c. Chords of Constant Length. It is possible to write expressions of functions jaf
and J* uniquely in terms of the chords of manifold Ή of constant length ρ. Such is
the case for the original result (1.4) of Pohl for a plane closed curve [6] in 1R3. The
calculation is made in Appendix D. We find

r\
(4.18)
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I dS

df

Fig. 9. Differential vectors building <%{Q) for a curve in 1R3

where ff = (f— f)/||f— f || is the unit vector joining f to f. The trace reads explicitly

(ff')i(dfiΛdfi2Λ...Λdfi)(ff')j

Thus si is obtained by sweeping manifold <β with a needle of length ρ, the
extremities of which are constantly in contact with ζβ. For function J*, we find
(Appendix D)

^ ^ ί ί '), (4.19)

where d^r+1 denotes the differential (r+l)-volume form attached to a Seifert-
manifold £f(%>) of manifold C6. An obvious consequence of the preceding formulae
is

) = 0 for ρ > diameter (#). (4.20)

Therefore ja/ and J 1 have bounded supports. Specifying these results for a closed
curve # in 1R3, with r = l , Eq. (4.18) gives PohΓs form (1.4) [7]. For SS, we can
obtain an interesting formula. We define at a point / on the two-dimensional
surface £f{$) the normal vector dS :dSk = ̂ εkιjdfiΛdfj. We have then trivially in
(4.19) det(d#2, d^l) = 2dS'dr and J* reads

This gives a simple geometric interpretation for 36 (Fig. 9).

Hyperplane Manifold

Definition. A manifold ^ in IR'7, is hyperplane, if, having the dimension r, it can be
embedded in a subspace W+1 of IR" ( r + l ^ w ) . This generalizes the notion of a
plane curve (r= 1) in IR3, which can be embedded in IR2. The coordinates of a point
of ^ are

:/z = 0. (4.22)

For such a hyperplane manifold, considered as embedded in W+ \ one can define a
normal vector

dSi^~εil-ι-dfhΛ...Λdfι<., (4.23)
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dS

Fig. 10. Construction of s
segment ff

B. Duplantier

dS'

for a hyperplane manifold #" 1. (Π) is the hyperplane orthogonal to

where the indices i,la(a=ί, ...,r), take their values in set {1, . . . , r + l } only. It is
actually also possible to express volume form άSFr in function of dS:

, =εijl "jrdSi9 (4.24)

a formula which follows from the general identity [14]:

oh ••• Jr

valid for 2( r+l) indices jj taking their values in the set {1, . . . , r + l } . Calculating
(dS)2, one can check that the Euclidean norm of dS gives the elementary r-volume
(4.14) of the manifold: \\dS\\=drf. Substituting (4.24) into function si (4.18) and
using (2.9), we finally find for a hyperplane manifold:

δ(Q-\\f-r\\){dS ϊί-ff'®ffrdS'}9
(4.25)

where 1 denotes the usual unit tensor of R r + 1 : iij = δij

 lBJ = 1L — ff'®fff projects
therefore onto the hyperplane (Π) orthogonal to the direction of ff (Fig. 10). The
remarkably simple formula (4.25) allows practical calculations of si for hyper-
plane manifolds (Sect. 7). The function & of a hyperplane manifold vanishes
identically. This is obvious from formula (4.13) where the 2 r + l = n vectors of
the determinant all lie in W+1.

5. Kinematic Linking Integral of N Manifolds

5.1. Fourier Transforms

The aim of this section is to evaluate the general linking integral J (2.20), (2.31), for
an arbitrary number N of manifolds. We shall give a factorization theorem
analogous to Theorem (4.10). The convolution integral (2.31) is best evaluated by
means of Fourier transforms. We define the Fourier transform h of any function h
by

5 (5.1)

where p and y belong to vectorial space R".
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Using the Fourier representation

we obtain immediately (2.31) as a Fourier integral

where the tensors C are defined by:

We have obtained in (3.17) the general form of tensor C. The decomposition of its
Fourier transform C follows immediately

(5.4)

The Fourier transforms are related to those of functions si and J*. Defining the

ί dye1™ (5.5)

angular average

and using Eqs. (4.4a) and (4.4b) and standard properties of Fourier transforms, we
obtain

(5.6)

(n-ί)ϊ

where p = \\p\\ and p = p/p, and the functions si and 0& read in wave vector space

r ! c t A °°

- r 1 ^ j - ί dρQn{pQ)Qr- W ( ρ ) , (5.7a)

T T Ϊ T ί QQn(PQ)Q(Q) (5 7b)

(n—ι)\

Thus (5.4) becomes

(5.8)
π

Defining an angle θ by p j) = cosθ, we find βn(pρ) = Sn _ 2 J eίpρcosθ(sinθ)n~2dθ,
o

where factor Sn_2 corresponds to 0(n— 2) rotations about p. In terms of Bessel
functions [19]: / 2 n

(5.9)

where J υ is the standard Bessel function of index v8.

Its series expansion is: v

•̂  fc= 0
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5.2. Factorization Theorem

We have to calculate the trace of the product

P(P) Ξ Π C α ( p ) , (5.10)
α = 1

where each tensor C is given by (5.8). As already discussed in Sect. (2.2) the
dimensions r and s of the manifolds are supposed to satisfy conditions (2.18). We
then distinguish two cases,

a) rή=s.

In this case > φ n and only sd functions exist. Moreover the number of

manifolds N is even. Product P (5.10) involves then a tensorial factor [see (5.8)]
[εsr(p) ε r s(p)]N / 2, which, according to rules (3.9)—(3.12) for unit vector p, reads
simply δss(p®p). Taking the trace gives therefore trivially [use (3.14)]:

^ ^ ft (5.11)

where N is necessarily even.
b) r = s, 2r+\ = n.
In this case, all the manifolds have the same dimension r and their number N is

arbitrary. Owing to Eqs. (3.9)—(3.12) the tensors εrr(p) and δrr(p®p) obey very
simple multiplication rules. We then define the isomorphism

(5.12)

where ε, 1 are two objects, which, according to Eqs. (3.9)—(3.12), obey the algebraic
rules:

ε2 = ( - i y 2 + 1 , ε-l = l-β = ε, 1 2 = 1. (5.13)

The image of tensor C(p) by this isomorphism is ^[p]

(5.14)

The image of product P(p) is accordingly the product

According to rules (5.13), product 0 can always be written as a linear combination
of 1 and ε:

(5.16)

Inverting the isomorphism (5.12), tensor P is obtained as

(5.17)
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and its trace reads

^ ^ W (5.18)

At this stage, we see that the case a) r + 5, can be eventually treated by the same
method. For rφs, N even, we take the rule

ε2 = ( - l ) " + 1 . (5.19)

No terms J* exist and Eqs. (5.15)—(5.19) give together the result (5.11) we want.
Substituting Eqs. (5.14)—(5.18) into integral (5.3), and performing a partial

integration on the angular variables, we obtain the theorem:

Theorem II. The integral J of the cyclic product of the successive linking numbers
of N closed manifolds ^ α , a = 1,..., N, with alternate dimensions r and s,r + s = n—l,
(N being even if r + s) over the group of motions of the manifolds, can be written as
the single integral

00

(5.20)
0

S——

algebraic product

where J= ~——Sn_1——~ and where function % is the even part in ε of the
Z7L . o .

calculated with the rule: ε2 = ( — ί)rs+ί. j / α , ^ α are characteristic functions associat-
ed with each manifold # α . The function &a exists only for manifolds ^ α such that
2ά\mctoa+1 =n, n being odd. In this case, &a differs from zero only if dim^α is odd.

This theorem extends to IR", and to arbitrary closed manifolds, a theorem
proven in [8] for closed curves in R3. The latter case corresponds to dim^α = l,
Vα, and r = s=ί,n = 3. According to (4.9), product 0> is complete only for a set of
manifolds such that

V α = l , . . . , N ,

This gives space dimensions n = 3,7,11 . . . ! . Then the algebraic rule (5.19) reduces
to ε2 = ( - l ) ( 2 g + 1 ) 2 + 1 Ξ l . In all other cases, only s$ functions exist. Then the

N

integrand ΘC is a simple product \\ sέΛ. If all the manifolds have the same
α = 1

dimension r such that 2r+l = n(r being even) their number N can be arbitrary. If
this number N is odd, $£ vanishes identically and so does J. If the dimensions of
the manifolds are r and 5 alternatively, r Φ s, then their number TV must be even.
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We finally remark that the product 0> is Λbelίan. This means that one can
exchange the order of the manifolds in J>. However, if r =f= s, one must respect the
sequence of dimensions r,s,r ... for defining linking numbers. We therefore obtain
the nontrivial corollary:

Corollary. The cyclic linking integral J'{<^1,..., # α , . . . , %>β,..., ^N) is invariant under
any transposition of two manifolds ^ α and %'β having the same dimension.

5.3. Properties of s/ and (% in Wave Vector Space

The calculation of s$\jp\ 33\_p\ defined in (5.7a) and (5.7b) is given in Appendix E.
We find the very simple expression:

1 ί <e ' V ( f - f ' ) > s , , - 1 (^ ^ ' ) , (5.22)
[n ) ^ x β

or using the explicit form (5.9) of the angular average (5.5), we have

(n — r— IV (2π)n/2

"12 ί ^~"'2Jl M)(d^r-d^), (5.23)

where ζ= ||f— f ||. In a similar way, J*[p] is given by

7
y n — j n 1 β ^ β

(5.24)
Recalling Eqs. (5.5) and (5.9), it is possible to express formally @) as an angular
average over the unit sphere S"+ 1 in 1R" + 2 :

# [ p ] = V 2 , + i» ί <e i p- ( f-n>Sn + 1 d e t ( f - f , ^ , d # - ; ) , (5.25)

where peIR" + 2. The characteristic functions J / and 03, in momentum space, may
be viewed as exploring, at wavelength 2π/p, the geometrical properties of the
manifold. Function $0 involves the invariant scalar product of volume-forms,
whereas function 33 reads as the interference superposition of infinitesimal volume
elements.

Asymptotic Limits. The linking integral J (2.20) is necessarily convergent, because
linking numbers are finite integers, and because the volume of the group of
motions, where finite manifolds are linked together, is finite. We check the
convergence of the momentum integral (5.20) with the help of the asymptotic
behaviours of s/ and 33.

Limits p->0. They are trivial. Using Eqs. (5.7a) and (5.7b) and expanding Qn (5.9)
for small p, we find

p 0 > i f o + . . . , (5.26)
p->0

J / 0 and 3S0 are constants proportional to rth moments of j/(ρ) and 3S(Q)
respectively, which exist since si and 33 have finite supports in direct space.
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Limits p->oo. For studying the large p limit of srf\_p\ the asymptotic form of Jv

[20]

2 \ 1 / 2

— cos (x - vπ/2 - π/4) (5.27)
πx/

does not rapidly decrease, and large p limits cannot be trivially extracted from
(5.23). We find in Appendix F :

.^ |>]«cj t f(0)p- ( Γ + 1 \ (5.28)
p-> 00

where c is a numerical constant and where si (ρ = 0) is the value (4.16). Inserting
(5.27) into the explicit integral (5.24), we can majorize J* by the integral of the
modulus and get immediately

(5.29)
p-> oo

where SS^ is a constant. As 2r + 1 = n, for Si to exist, both power law decays for si
and Si coincide. Coming back to the momentum integral</, we may evaluate the
product 0* for large p:

" ( Λ + 1 ) (5.30)

Furthermore, there are no divergences at the origin. Thus, as expected, we check
that, for TV ^ 2 , Fourier integral J (5.20) is absolutely convergent.

6. Mutual Inductances and Contacts of Manifolds

In Theorem (5.20), use was only made of the even part 9£ of the product ^ . A
geometrical interpretation can also be given to the odd part (W. To find this
interpretation, it is necessary to consider not only linking numbers of manifolds,
but also their mutual inductances and contacts, which are defined below.

6.1. Definitions

We consider in this section manifolds having the same dimension r. The mutual
inductance M of two such manifolds %>\, ^ embedded in space R", is defined by

i I ^§h, (6.D

where dJ% d$r are the r-volume forms (2.3) of (€1 and ^ 2 .
This definition is the generalization to Rw of the notion of mutual inductance of

two circuits, in electromagnetism in IR3 [13]. For two closed curves, (n = 3, r = l )
the mutual inductance is given by Neumann's formula

»-kLws-
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In Eq. (6.1), the scalar product of tangent vectors appearing in (6.2) becomes the
scalar product of differential forms, given by (4.11). The contact distribution C of
two closed manifolds ty>\ and # 2 is defined in a similar way by

C^(rl)-1 j δ(f-g)(d&r'd#r), (6.3)

where C is a distribution of dimension 2r — nin length units, as shown by a trivial
dimensional analysis on (2.3). This generalizes to IR" the contact distribution
introduced in [8] for closed curves in IR3. Let us now make clear the relation
existing between linking number /, mutual inductance M and contact distribution
C. The translation x of ̂ 2 with respect to %\ reads

f-g-f-g-x (6.4)

and substitution of (6.4) into Eqs. (6.1) and (6.3) gives two functions M(x) and C(x).
Defining the "mutual inductance tensor" Γ 1 2

9 :

Γ12(x) = (5n_1(«-2)r!)-1 ί J ^ % , (6.5)

we may write /, M, C solely in terms of this tensor:

J(x) = tr{εrr(F>Γ12(x)} (a), M(x) = trΓ12(x) (b), C(x)= -A trΓ12(x) (c),

(6.6)

where V and A act on variable x. Note that a linking number and a mutual
inductance can be simultaneously defined only if both manifolds have the same
dimension

r = (w-l)/2, (6.7)

n being odd. The process could be iterated by considering higher derivatives (ε(V))p

and primitives (ε(V))~p of Γ12(x). Differentiation gives local contact distributions of
higher order, whereas integration would give "mutual inductances" of higher order
describing long range influences.

Let us now consider a set of N closed manifolds ^ α , α = 1,..., N having all the
same dimension (6.7). To these manifolds we may associate a cyclic product, the
factors of which are quantities /, M or C:

( . . . I a a + 1 . . . M β β + 1 . . . C y y + 1 . . . ) . (6.8)

This cyclic product contains N such factors, with indices running from 1 to
JV+1 = 1. This product depends on the relative positions in space IR" of the
manifolds ^ α . As in (2.20), we consider the integral over the group G of motions
of the manifolds

• = j ( -Ui ..Mw + 1...ς+ 1-)^ (6-9)

9 Γ12(x) relates two manifolds. The tensor Γ(y) (3.2) relates a single manifold and its own translated
image by vector y
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The measure over the group of relative motions is, as in (2.20), (2.20a):

α = 1 \α = 1 / α = 1 ^ n

We shall now calculate «/.

6.2. Factorization Theorem

We have shown in Sect. 2 that the linking integral (2.20) can be expressed by Eq.

(2.31). The rule is very simple: each factor J α α + 1 has to be replaced by tensor Cα.

One may notice that tensor C is related to Γ by (3.1) C = εrr(V) Γ, an equation very

similar in structure to (6.6a). We notice, at this stage, the formal analogy between

this last relation and the first Eq. (6.10) giving /. For the general cyclic integral

(6.9), the whole argument, given in Sect. 2, can be repeated step by step. One

obtains new substitution rules, which can be immediately guessed by inspection of

Eq. (6.6a-c):

α α + 1 ^ C α = ε(F) I^, M α α + 1 ^ I ^ , Cα α + 1-> — A\.Λ. (6.10)

As already stressed, these quantities I,M,C relate two successive manifolds
^a^a+v whereas the image by (6.10) is associated with manifold ^ α only.
Inserting (6.10) into (6.9) gives the tensorial factorization generalizing (2.31):

*= ί ΠdyjlΣ yβ.)tr{...Cβ(yβ)...Γί(y/,)...(-J)Γϊ(y,)...}.(6.11)
IRn x ..... x Rn α' = 1 \α' = 1 /

In Fourier representation (5.1), (6.11) reads immediately

y = (2πΓΛίd>tr{...Cβ(p)...f / ?(p)...(-)/Γy(p)...}. (6.12)
1R"

We have to calculate the above Fourier transforms. Using Eq. (3.1) and well-
known properties of Fourier transforms, we have

C(p)= -φε r r (p) f(p) ΔT= -p2t. (6.13)

Inverting (6.13) by using (5.8) for r = s, and tensorial identities (3.9)—(3.12), we find

Ap)=P"HMp®p)^M+(-ir+ 1^2,+ 1 ) n(-OUpMp]}. (6.14)

Using isomorphism (5.13) gives the rules1 0

Using this isomorphism in (6.12), as in the previous section, and taking care of the
numerical factors, we find the theorem:

Theorem III. Consider in 1R", N manifolds ^ α of dimensions r = (n— l)/2, n being odd.
The integral

f= ί (...Im+i...Mββ+1...Cyy+1...)d?
G motions

10 ( - l)r2 + ί preceding ® has been dropped, because Eq. (5.21) gives ( - ϊ)r2 + 1 = 1
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of the cyclic product of linking numbers Iaa+1, of mutual inductances Mββ + 1 and of
contact distributions Cyγ+1, over the group of Euclidean motions (translations and
rotations) of the manifolds, can be factorized into the single integral

S^ldpp*-1?.^-], (6.15)
o

where j = , "~J, 2 , and ^even is the even part in ε of the algebraic product

calculated with the rule ε2=(—I)1*2"1"1 ( = (—ί)r+1), and built with obvious cor-
respondence rules.

Theorem III generalizes Theorem (6.18) of [8]. It yields in particular the
interpretation for the odd part 9U of product (5.15). One checks indeed that p~1{W
(respectively p<W) gives the even part of (6.16) for the product of N — 1 linking
numbers and of one single mutual inductance (respectively one contact). More
generally, we note that a linking number I on one hand, and an inductance M o r a
contact C on the other, have opposite parities with respect to ε. Furthermore two
factors M and C annihilate each other according to the equivalence rule [see
(6.16)]:

MC<-K-l) r 2 + 1 / 2 . (6.17)

Until now, dimension r of the manifolds was fixed at 2r + 1 = n, so that / and
(M, C) were simultaneously defined. If we restrict ourselves to inductances and
contacts, the common dimension r can be arbitrary and differ from (n— l)/2. Only
si functions exist in this case. J reads for instance for N inductances:

ί UMm+1dp=/μpf-ί-"fls/a. (6.18)
G 2 x . . . x G Λ r α = l 0 α = 1

If one considers two manifolds only, Theorem III can be also given in direct
space. The integral (6.11) can indeed be calculated in direct space for JV = 25 as it
has been done in Sect. 4 for the kinematic linking integral of two manifolds. We
refer to [8] where a similar calculation has been done for 1-curves. The kinematic
integrals \M2, JC 2 , \IM, j /C, \MC = \l2 (provided they exist) are given by
factorization theorems analogous to Theorem I, where the characteristic functions
j/(ρ), J*(ρ) are replaced by some of their primitives or derivatives [8]. Similar
results hold here and can be obtained by startmg either from Eqs. (6.11), (3.8), and
(3.17), or from Theorem III by inverting the Fourier transforms.

Convergence. The general integral J (6.9) can be divergent. Inductances bring in
long distance divergences (p->0), while contacts bring in short distance divergences
(p->oo) [rule (6.16)]. The convergence must be checked in each case, with the help
of the asymptotic behaviours of s/ and 36 (Sect. 5). For instance, integral (6.18) is
defined for N^n — 1, being otherwise infrared divergent at p = 0, if functions J*
appear.
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Fig. 11. Coordinates on sphere Sr

7. Particular Geometrical Shapes

7Λ. The Spheres

We consider the sphere Sr, of dimension r and radius R, embedded in IRn (r ̂  n — 1):

' (7.1)

Leaving aside the x̂ .'s, for j ^ r + 2, the sphere S"*, considered as embedded in a
subspace R r + 1 , is a hyperplane manifold (Sect. 4). Thus & = 0 and function J /
(4.25) reads

^(ρ) = r-1ρ1-rμ(ρ-\\f-f'\\)(n'M'nf)dSrdS^ (7.2)

where n and n' are the normal unit vectors at / and /', and where 1Π = t—ff'®ff
is the projector orthogonal to f— f.

Let / ' be the North pole of Sr and θ be the cone angle (0/',0/) (Fig. 11):

n n '^cosβ, 0e[O,π]

Π n ^ c o s 2 ^ , | | f - f || =2Λsinθ/2.
(7.3)

Besides θ9 the position of point / is given by r— 1 other spherical angles belonging
to the unit sphere S^1 and the measure on S1' reads dSr = Rr(smθ)r~1dθdSr_v

This, together with (7.3), gives

(7.4)= ^ SrR
r{l - ρ2/4R2)r!2θ{2R - ρ).

For a circle S1 (r= 1), (7.4) coincides with the result of Pohl [6]. As expected from

(4.16): J / ( 0 ) = -?1I1^-5, where S = SrR
r is the area of sphere Sr. As expected also, the

r
finite support of stf ends at the diameter 2R.
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1 = 1

1 = 0

Fig. 12. Linking number of two points at a fixed distance I, with a hypersurface #"~

7.2. Zero Dimensional Case

As a limiting case, let us consider a manifold made of two points: ̂ 0 = {g0, g'o} in
IR", separated by a fixed distance I Ήo is zero dimensional (r = 0) and thus it can be
linked with any closed hypersurface c£n~1 of W1. c^n~1 divides space IR" into
interior ^ + and exterior ^~. The linking number I(<£n~1,(&0) is then defined by
/ = + 1 if goe%?+ and gf

oe^~, 1= — 1 if g'oe
(£+ and gQe%>~, and 7 = 0 otherwise.

^ 0 and (^"~1 are thus linked whenever g0 and g'o stay on opposite sides of
boundary surface cβn~γ (Fig. 12).

The set ̂ 0 can be considered as the limiting case of a zero dimensional sphere
S° of radius R, 2R = l Thus, taking the limit r->0 in (7.4) gives immediately the
^/-function of ̂ 0 :

Q), (7-5)

which can also be calculated from (4.6). In Fourier space j / 0 (5.7a) reads
accordingly

The function ^ of ̂ 0 vanishes for n = 2r+1 = 1, and does not exist for H Ϊ Ϊ 2 .
The linking integral (4.10) of ̂ 0 and of a hypersurface *$"'ι reads therefore

(7.6)
M - l 0

where J / is associated with closed hypersurface c€n~ι. This formula gives the
overlap probability for a segment and a closed hypersurface. This generalizes a
result by Pohl [6] for segments and curves in plane 1R2.

For Z-»oo, one of the points at most lies inside c€n~γ, and <j/2> equals two
times the interior volume Vin^€n~ι) oϊ^"'1. Thus we get the simple formula

1
(7.7)

11 For p^oo, J i s n o t given by (5.28), which holds only for r > 0 (see Appendix F)
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valid for any closed hypersurface # in IR". This can be checked for instance for the
sphere Sr considered as a hypersurface in R r + 1 . Using (7.4) and properties of the

00 O

Euler Γ-function, we obtain S~ί j stfsr{ρ)dρ = — — R r + 1 , which is exactly the

(r+ l)-volume of the interior of sphere Sr in space W+1.

7.3. Topological Second Vπial Coefficient for Spheres

Consider a gas of spheres Sr of radius R moving in space 1R" with

n = 2 r + l . (7.8)

Their phase space is restricted by the fact that they make no links together. For
two spheres the linking number / can only be equal to 0 or ± 1 . Therefore J> reads

J d"x\ (7.9)
top. excluded /

volume /

and measures the volume in space of translations x, averaged over angular
motions, over which the spheres are linked. This is exactly the topological
excluded volume. Then the virial expansion of the pressure Π [9] of the gas of
spheres at concentration (C, reads

The topological excluded volume J for two r-spheres is thus given by Theorem
(r\)2 °°

(4.10): \S\= ~r^S~} j dρjtf£r(ρ). We get by using (7.4) and properties of Euler
(2r) o

Γ-functions:

^ S 2 r R 2 ' + ί . (7.11)

One must notice, according to (7.8) that \J\ = 2Vn(R\ where Vn(R)= -^^R" is

the interior volume in IR" of the 2r-sphere S2\ generated by the rotations in 1R" of a
sphere Sr about its centre. Thus, we finally have

βΠ\topol=<C+Vn(R)<£2+...9 (7.12)

for a gas of nonlinked ^-spheres.
This can be compared with the pressure of a gas of hard spheres Sn~ί in 1R". In

this case, the excluded volume is obviously that of a Sn ~λ -sphere of radius
2R:Vn(2R) = 2nVn(R), leading to the virial expansion:

j8Π|h a r d s p h. = C + 2"- 1 7 π (R)C 2 +.. . . (7.13)

The topological excluded volume is evidently smaller than that of hard spheres.
Both are equal only for n=ί. This corresponds to the obvious fact that, in one
dimension, the notions of link and overlap of two intervals S° coincide.
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Conclusion

In this article, we considered the Gauss linking number I in 1R" of two closed
manifolds of dimensions r and s, with r + s + 1 = n. We also defined the mutual
inductances M and contact distributions C of closed manifolds, which are closely
related to I. This study is quite general. The physical cases n = 1 to 3 are contained
in it. For general n, all the cases r + s + 1 = w, O^r^n— 1 are treated, going from
sets of points to hypersurfaces.

We have introduced a new, compact tensorial formalism, which underlies the
calculation of scalar quantities like /, M, and C. The new mathematical tool we
introduced is the inductance tensor Γ, a 2r tensor associated with any manifold of
dimension r. We believe that such a tensor Γ, and objects similar to it, are
important and quite basic for such studies of topology, potential theory and
electromagnetism, and provide a generic method. Using group theory, we proved a
key lemma, which shows that JΓ has two and only two distinct parts, each of which
generates characteristic functions s/ and 3$ of a manifold #. The calculation of srf
and & was reduced by this method to a direct application of the well-known Gauss
theorem of electromagnetism. This completely elucidates the origin and the form
of si and $. The set of values j/(ρ) yields a scanning of the geometrical shapes of
manifold ^ at distance ρ. s$ interpolates in particular between the area of ^ and its
inner volume, when ^ is a hypersurface. ^ , on the other hand, is quite peculiar,
being directly proportional to the average linking number of ^ with its own
translated images. As a consequence, we have found that J* appears only for a
manifold of dimension (n —1)/2 with n = 3 + 4q = 3,7,11,...! Luckily enough, 1R3 is
generic. We calculated the kinematic linking integral </ = <J I2dnx} over the group
of motions of two manifolds <^1 and # 2 . We established a general theorem giving
</ as the single integral of products s$ γs$2 +(% γM 2, factorized over manifolds 1
and 2. As an application, the topological excluded volume F Ξ / of hyperspheres
was calculated. In general, J can provide useful numerical information on the
relevance of topological constraints. In particular, the problem of a further
statistical average over the deformations of the manifolds is solved by the
factorization theorem. One has simply to average independently the characteristic
functions.

More generally, the theory of rings (like polymer rings), or closed surfaces, with
topological constraints, could be tentatively described by a partition function

where Jti? is the Hamiltonian. The limit of large values of g, g->oo, would select
configurations such that 7 = 0 (alas not necessarily unlinked). Thus, expanding in
powers of g, the integral */ = ( j / 2 ) gives the first moment of Z. It would then be
necessary, but difficult, to calculate the higher order moments for studying the
large g limit of the theory.

We gave in this article a generalization in another direction by considering AT
manifolds, and the cyclic product of their successive linking numbers. The integral
of this linking product over the group of motions of the TV manifolds, has been
shown to factorize completely in Fourier space. The factors read εj/ + ̂ , and are
associated with one manifold only. The objects (l,ε) obey special algebraic rules.



Linking Numbers of Manifolds 255

The same algebra {jrf, £$} with coefficients (l,ε) has been shown to describe a
quite large class of topological and electromagnetic quantities. Defining mutual
inductances M and contacts C of manifolds in 1R", we considered cyclic products,
the factors of which are quantities /, M or C. We established a general theorem
giving the integral of these products over the group of motions of the manifolds.
We showed that this integral factorizes over the same set of characteristic
functions srf and $ of the manifolds. These theorems allow practical or numerical
calculations of these integrals, which are reduced by the theory to integrals over
one single momentum variable.

All the quantities considered here were arranged in a cycle, going from
manifolds 1 to N. Work remains to be done for calculating kinematic integrals
involving multiple crossed terms, as in usual cluster expansions in statistical
mechanics. It would be an important step towards a general theory of topological
constraints.

Hopefully, these mathematical methods and results could be useful in to-
pology, electromagnetism and in statistical mechanics.

Appendix A

Proof of Gauss' Formula

Equation (2.4) can be written I = J ω, where ω is the mixed (r + s)-form:

ω = Hk({-g)εki'-'^-Hdfh Λ ... Λdfi)(dgJι A ...Λdgjs) (A.I)

with

ΰ * = - [ S I I - i ( n - 2 ) r ! s ! ] - 1 ^ r | | f - g i r ( " - 2 ) . (A.2)

°Jk

Stoke's theorem gives

/ = J dfω, (A.3)

where 5 ^ ) is a Seifert-surface of (S1 such that d^{c^ι) = ̂ v The exterior
derivative dfω of ω with respect to / is by definition

^ E ^ Z - ' ^ - ^ A ί i / . Λ ... Λdfir)(dgh A ...Λdgjs). (A.4)

Substituting the trivial identity i/IΛί// i lΛ...Λί// ir=- — — ε"1-^1"-1*

εVkl' 'krlί"Λs(dfv Λdfkί A ... Adfkr) into (A.4) and summing over indices z\ to ir, we
get:

d/ω = δ I f l t ^ i ^ ; ; ; / y * ' *'I' 'Wr Λd/kl Λ ... Λdfk)(dgh A ... Adgjs).

Then, expanding the generalized Kronecker delta with respect to indice I [14]:

%ti;=διδt:t - δίι δ \ t t + • • •. (A.5)
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we see that dfω can be written as the sum of two terms:

dfω = dxEx -J-J- β1'*1 •*-* -Hdfv ΛdfklΛ...Λ dfk) {dgh Λ ... Λ dQj) + dgω',

where dgω' is the exterior derivative with respect to g of a second form ω' coming
/ p,ττ rjj-f\

from the second term of (A.5) use Definition (A.4) and —— = — - — . Thus we find
V dfj dgj)

the exterior derivative of a form of type (A.I):

1

r + Ί
dfω = (div£0 dQt(d^r+ί9 d^s) + dgω

f. (A. 6)

Inserting (A.6) into (A.3) gives

/= ί

by using J dgω'= j ω/ = 0. Using Poisson equation for H (A.2) yields diviϊ

= —— δ(f— g), and finally
I ,S .

1 , ^ s ) ( e Z ) . (A.7)

When explicit variables are introduced on both manifolds [see (2.10)], (A.7) reads:

which corresponds to the geometrical definition (1.7) Q.E.D.

Appendix B

Proof of Lemma (3.6) for Tensor Γ

Consider a tensor r(y)\iiirJi^jr, which has the following properties:
B.I Γ depends on only one vector y of Rw.
B.2 Γ is skew-symmetric with respect to the set of indices ίa, α = l,...,r and

separately skew-symmetric with respect to the set of indices^, b = ί, ...,r.
B.3 All its divergences (in number 2r) vanish.
Then we want to prove that Γ has necessarily the form

(B.4)
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where Φ and Ψ are two arbitrary functions, and δ,= -r—. U is a harmonic tensor

linear in y satisfying (B.2) and (B.3)12. Conversely, all tensors (B.4) satisfy
conditions (B.1)-(B.3). Property (B.I) means that the transformation properties of
Γ are given by those of vector y. Then we use a theorem analogous to a main
theorem on the invariants of orthogonal group O(ή), which can be found in WeyΓs
book [12]. Tensor Γ is built with the Kronecker delta διv, the components yt of y
and the completely skew-symmetric rc-tensor εlί'-Jn. The other factors will be
invariants, i.e. functions of modulus \\y\\. It is equivalent to consider, instead of

components yl9 the dual differentiation operators dt = — as elementary bricks for

building Γ. The equivalence can be seen in Fourier space, where dι generates
components of the momentum variable. Using differentiation signs is more
convenient for dealing with scalar divergence properties. These differentiation
operators act on functions of the modulus | |j;| |.

Consider then a component Γtί ir χ jr. Because of the skew-symmetry
property (B.2), no symmetric terms δiaiaf, δjbjbt9 and δίadίa/ or djbdjbt appear. One can
have only terms:

δij9 di9 dj and dtdj. (B.5)

No monomials of higher degree in d appear, because they would involve
symmetrically at least two indices i or two /s.

Consider now the skew-symmetric tensor ε. It can bear some indices i and
s o m e / s : εIα•• jb ••. Let us first assume that

2 r ^ n - l . (B.6)

Then the set ίί...ir, j1...rr will not saturate the n indices of tensor ε. The n — 2r
remaining indices / of ε must necessarily be contracted with components dt of the
gradient. If

2r<n-l, (B.7)

at least two dummy indices /, ΐ appear and είa -'jb"Λl'dιdι, = O. Thus, if 2r<n— 1, no
term involving tensor ε can appear in Γ.

If 2r = n— 1, the only possibility is given by a term

which satisfies properties (B.I) and (B.2).
If condition (B.6) is not satisfied, the number of indices 2r^n allows much

more possibilities. For instance, a term βlί ιpj^ jp§ . _§ with 2n = m and
antisymmetrized, could appear in Γ. However, we show later that a duality
property exists for tensor Γ, because of (B.3), which relates tensor Γ with a large
number of indices 2r ̂  n — 1 to a dual tensor with a small number of indices 2s
Sn— l(r + s + 1 =n). We thus prove first the lemma in case (B.6).

12 We give first the full group theoretic argument. The fact that U = 0 for the actual Γ (3.2) is left to the
end
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/. Case 2r^n- 1. Γh irJί jr reads, according to (B.5) and (B.8)

r

Σ Σδί,j. ( 1 ) ΛlJ<,(.) ^ w . M
a= 1 σ

i (B.9)

where σ is a permutation of 1, . ..,r. The (p's and Ψ are arbitrary functions. The
notation δiaj means that this factor is missing.

First of all, one must remark that the last term of (B.9)

satisfies trivially properties (B.I) and (B.2) and also the divergence property (B.3).
Thus this term is always present in Γ, provided that 2r + 1 , = w, and we drop it from
now on. Now, the skew-symmetry property (B.2) gives immediately

φσ = s(σ)φid, φ^ = s(σ)φ[^ (B.ll)

where ε(σ) is the signature of σ, and id the identity permutation. Removing the
subscript id, the unknown functions are φ, φ(1\ ...,φ(r\ We introduce the delta
tensor (2.7), and tensor Γ (B.9) reads exactly, owing to (B.ll):

Let us fully exploit the skew-symmetry with respect to indices ia. Consider two
particular indices ίa and ib. The only terms of (B.I2) which are not obviously skew-
symmetric under exchange of ia and ib are δ'y;;1:^^^^^ ^δ'y- ^^^βfi^φ^.
Taking the partial trace ia'=ja> for a'ή=(a,b) we get the object

which must satisfy ΘYf = —Θψf. Expanding the δ%, we find:
J Jajb Jajb L '-' JJ

dfijcpW = didjψ™ + cδ) Vi, j , (B. 13)

where c is a constant. The contribution oϊcδ\a to (B.I2) can be absorbed in the first
term of (B.12) and we can set in (B.12):

Vα, φ ( f l > = - Φ , (B.14)

where Φ is an arbitrary function of \\y\\.
Using the expansion with respect to /':

δh"&=δn::.ίδv- Σ W . . . 'Λ .'.Λ ( B 1 5 )

and using (B.14), we may write (B.12) as

This is the general form of a tensor satisfying to properties (B.I) and (B.2) and with
2r<n—ί. Let us now exploit the property (B.3). The divergences of the second
term of (B.I6) all vanish because by skew-symmetry δyla//Jdίadι = O. The first term
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of (B.I6) is divergence-free if V(φ-AΦ) = 0. Thus: φ-AΦ = C, where C is a
constant. This constant term can in fact be absorbed in the second term of (B.I6),

. . . ., C
by remarking trivially that δyi\\'*jrC = δyι\\\ιrι,dιdΓ — -y . Remembering that a

Z[n r)

term (B.10) also exists, we thus have proved that tensor Γ, for 2r^n—ί, has the
form

+ ίnε-ιdιΨ. Q.E.D. (B.16a)

II. Case 2r>n—ί. Here, the number of indices 2r is great enough to allow a priori
much more possibilities than in (B.9). Here the vanishing divergence property (B.3)
plays a crucial role. We define the dual tensor of Γ:

jζh...ls =ph...lslί1...irpkι...ksljί...jrΓiί...ίr (Γ> ΛH\

The number s satisfies, as before r + s + 1 = n and 2r>n—l implies

2 s < n - l . (B.18)

Thus, for tensor K, we are in case I. The dual tensor K satisfies trivially (B.I) (B.2)
but not (B.3). However, we have proved above that the general form of a tensor
(B.I) and (B.2) is given by (B.16):

where φ(||y||), Φdlyll) are arbitrary. The tensor Γ can be obtained back from K.
We have indeed

= (s\r\)2ΔΓ*\\\%. (B.20)

For proving it, one substitutes (B.17) into (B.20) and finds

(εδ)2K = (s ntt^tlfWr^A "X •
If Γ = ia a term 3f Γ" ία = 0 appears [use (B.3)]. Likewise, Γ=jb gives

Thus V = l" = l and (εδ)2K reads (sO^ l^j j ^ Γ j J;, which gives (B.20).
Property (B.3) is crucial for (B.20) to hold. Substituting (B.19) into (εδ)2K (B.20),
and making some manipulations on numerical tensors [use (2.8) (2.9)] finally give

\Jεd)2κy) •;;:>, = (s !)2δ£;;;^3

Therefore, owing to (B.20), we get the Poisson equation

AΓkX = δij\"fAdr<l> ( B 2 1 )
with φ = (r\)~2(φ + AΦ). Integrating (B.21) gives:

ι (B.22)

where Φ(||y||) is a spherically invariant function such that ΔΦ = φ. U(y) is a
harmonic tensor such that zlU = 0, which satisfies also (B.1)-(B.3). If Γ vanishes at
infinity, (for n>2), then U = 0. It is sufficient to consider a tensor U independent of
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the first term of (B.22). Then U vanishes at infinity, and being harmonic, vanishes
everywhere. Then for 2r + 1 > n (and n > 2) we obtain the form of Γ

T = δ - ι

ΓdιdΓΦ, (B.23)

which achieves the proof of Lemma (3.6) for 2r+ 1 >n, n>2. Q.E.D.
For n = 1,2, Lemma (3.6) is also true. For n = l, r = 0 and for r = 0, Γ is a scalar

function of \\y\\, in agreement with (B.23). For n = 2, r = 0,1. For r = l , Γ is a 2
indices tensor and has been constructed directly in [8] in the form (3.6). This,
together with (B.16a) achieves the proof of Lemma (3.6) for tensor Γ (3.2). Q.E.D.

In the absence of boundary conditions, one can show that U is necessarily a
tensor linear in y. Owing to the first results of this appendix, a typical term of
Ulj\\\\ιjr satisfying (B.I) and (B.2) depends on y in one of the following ways (apart
from numerical tensors in factor)

diadhφ2(2); ef-d^3(3); ει-d^iaφ4(4);

Then AU = 0 gives

z j φ 1 = θ ; α = 2,4,5 MiJ 3 f3/J <pα) = 0

Spherically invariant functions /(||y||) such that dtf = 0 or didjf = 0 or didjdιf = O,
are necessarily constant. Therefore Vα=l, ...,6; AφOί = Ca(C1 =0), Ca being con-

C C
stant. By integrating: φa= ^ \\y\\2 + Ca(Cί =0), and thus: d^a=-^yi9 didjφΰi

Q
= —δu. This, inserted into (B.24), gives that all terms of (B.24) are constant,

n J

excepted (3) which reads C?)E
ι'"yι. Therefore U has the linear form L ^ + L ^ y,

where \Jί and U 2 are constant tensors. This achieves the proof of the lemma in the
form (B.4). Q.E.D.

Here again, the fact that Γ (3.2) vanishes at infinity (for n>2), gives UΞΞO and
(3.6) follows.

Appendix C

Multiplication of Tensors ε and δ

Let us prove Eqs. (3.9)-(3.12). Definition (2.11) gives for (3.9)

^ h - ί ^ - H ι ' ^ - ^ - ί ^ (C.I)
s. r.

We then insert in (C.I) the general identity [14]

ί ίV 7 1 J s p l ' i ' l ••• i ' r j ί f s — filίl • i r j ί . . . j s

Permuting indices i and j in (C.I) and summing over indices i gives then

( - i ) "I X i 3 ; r ( 5{/) ί ; ; ^= ( - l)»δ s s(x®y). Q.E.D
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Equation (3.10) reads, with Definitions (2.11) and (3.7):

£jx).My®x)^¥ l i l ' J r i l" l J sym 'i |i. (C3)

We then use the expansion with respect to πϊ

^::%=K'%:t-^t:.t+'- ( c 4)
The second term of (C.4) (and the following ones) gives a contribution in (C.3)

xιXiιε
lίί - = 0.

Inserting only the first term of (C.4) into (C.3) and summing over the r indices i
gives

(χ y)^χι^' Λ'rh'' js=(χ y)zsr(χ). Q.E.D.

Equation (3.11) is proven in the same way. For Eq. (3.12), we have by definition

δ,r(x®y) δ r r ( x ® y ) = ^ x z Λ ^ ^ ^ ^ (C.5)

and we use expansion (C.4) for the second δ. The second term of (C.4) (and the
following ones) gives in (C.5) a vanishing factor of the type

Thus, keeping only the first term of (C.4) in (C.5) and summing over the indices i
finally gives:

(x y) 1 xιyvδ
ιti;:;% = (x • y)δrr(x® y). Q.E.D.

Appendix D

Formulae with Chords of Constant Length

Proof of Eq. (4.18) for J / . We start from (4.6):

^ r ' d & ; ) . (D.I)

Consider the exterior form:

ω = θ(Q-\\f-r\\)V-f')jl(dfj2Λ...ΛdfJX

Its exterior derivative dfω is

Therefore, we have

J θ(d^r-d^) = j dfω-dF;+ j ρ<5(...)tr[(#' ^ ) ® ( / 7 ' ^ . ' ) ] . (D.2)
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The first term vanishes because of Stoke's theorem (3.5), and (D.2) inserted into
(D.I) gives (4.18). Q.E.D.

Proof of Eq. (4.19) for &. We start from Eq. (4.7) and consider the exterior form

where

J Ϊ = - θ ( | | f - Γ | | - β ) F r | | f - Γ [ r < » - 2 > . (D.4)

Then

^ = = < 5 2 r + i , > - 2 Γ 1 ( r ! ) Y J co. (D.5)

Stoke's theorem gives:

j ω= j dfω. (D.6)

Then the coboundary form dfω reads [use Eq. (A.6) of Appendix A]:

1
dfω= (div fH) det(d#I, λ, d!F!) + d rω'. (D 7)

J r+i J J

The second term of (D.7) gives no contribution to (D.6). Furthermore div// can be
calculated easily with Eq. (3.25) and reads

| | f - f | | )ρ- ( ' I " 1 ) . (D.8)

Inserting (D.6)-(D.8) into (D.5) then gives Eq. (4.19). Q.E.D.

Appendix E

Functions s$\_p\ and £%\_p\

We perform the ρ integrals in Eq. (5.7). Substituting (4.6) into (5.7a), we have

d °°
where α [ p ] = — — f dρρ~1θ(ρ — ζ)Qn(pρ) and ζ=\\f— f||. Changing the inle-

dp o
gration variable ρ into x = pρ, we find a[p~\ =p xQn{pζ). Using the angular average
(5.5), we find Eq. (5.22), while using Bessel functions (5.9), we get Eq. (5.23).

In the same way, substitution of (4.7) into (5.7b) gives for

where b\_p\ = ζ~n j dρθ(ζ-ρ)ρn-χQn(pρ). For computing b[p], we use (5.9) for Qn

o
and the identity [20]
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Integrating by parts in b\_p~\ finally gives

bί

and this yields Eq. (5.24) for

Appendix F

Large p Limit of

can be written [Eqs. (5.7a) and (5.9)], with x = pρ

(?ττ)n/2

Jn-i \ ClpJ o 2 " 1

We use the identity

— Γ V v-g = ^ Γ " ( F 2 )
XuXJ X X

valid for integer ^. Inserting (F.2) for q— 1 into (F.I), we get

(2πW2 I d \q °° >*- — + i -

If the integral

GO I ' ^

K— \ dxxμJJx)\ , (F 4)

o [v=--

is convergent, then <stf(x/p) can be replaced for large p by J^(0) in (F.3). Here K
converges and is equal to [20]

for

-(v + l ) < μ < i (F.6)

(F.6) applied to (F.4) gives the condition

r-(n-l)/2<q<(r + 2)/2. (F.7)

The difference between the two bounds in (F.7) is equal to 1 + (n — r—1)/2> 1 and
thus the integer q does exist. Therefore integral K converges. On the contrary, for
q = ί, which corresponds to the initial form (F.I), μ = r — n/2 does not necessarily
satisfy (F.6). Inserting (F.4) and (F.5) into (F.3) finally gives the asymptotic
behaviour:

y+ln/2([_ ,

2

Γ[(n-r)/2]
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where, of course, terms involving the auxiliary q have automatically cancelled each
other. One must notice that this does not hold for r = 0 because (F.7) gives then
q< 1, and we used (F.2) for q—1 which must be a positive integer.
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