
Communications in
Commun. Math. Phys. 85, 177-196 (1982) Mathematical

Physics
© Springer-Verlag 1982

The Low Energy Scattering for Slowly
Decreasing Potentials

D. R. Yafaev

Leningrad Department of Mathematical Institute, 27, r. Fontanka, 191011, Leningrad, USSR

Abstract. For the radial Schrodinger equation with a potential q(x) decreasing
at infinity as qox~Λ, αe(0, 2), the low energy asymptotics of spectral and scatter-
ing data is found. In particular, it is shown that for q0 > 0 the spectral func-
tion vanishes exponentially as the energy k2 tends to zero. On the contrary,
there is always a zero-energy resonance for q0 < 0. These results determine
the local asymptotics of solutions of the time-dependent Schrodinger equation
for large times t. Specifically, for positive potentials its solutions decay
as exρ(- &ot

(2~a)/{2+a\9 o >0,f-»oo. In the case αe(l,2) it is shown that
for ±qo>0 the phase shift tends to ± oo as fc->0 and its asymptotics is
evaluated.

1. Introduction

In the study of the low energy scattering of nonrelativistic particles it is usually
assumed that the potential is vanishing sufficiently quickly at infinity. Moreover, in
the physics literature potentials are often assumed to be central. In this case the low
energy scattering is determined [1,2] only by the behaviour of particles with a zero
angular momentum /. For i = 0 the phase shift and generically the partial cross
section have finite limits as the energy tends to zero. This shows that scattering at
low energies depends weakly on the shape of the potential. Specifically, low energy
scattering is well described in terms of the scattering length. Recently the low energy
asymptotics of scattering data was found and rigorously proved by A. Jensen and T.
Kato [3] for arbitrary quickly decreasing potentials. The behaviour at low energies
of a spectral family of the corresponding Hamiltonian was also investigated in [3].
Hence the local decay in time of the solution of the time-dependent Schrodinger
equation is deduced. Namely, the solution decays [4,5,3] generically as t ~3/2 if the
initial state is sufficiently localized in the space and is orthogonal to the bound states.
Most of these results are valid if q(x) = O{\x\~2~ε\ε>0. We call such potentials
quickly decreasing or short-range.

In this paper it is found that for potentials vanishing slower than |x |~ 2 as |x |
-> oo, the low energy behaviour of spectral and scattering data is essentially different
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from a short-range case. We restrict ourselves to scattering by a central potential
q(x\ x = |x|, for fixed t. Some qualitative results, valid for arbitrary (not only
central) slowly decreasing potentials in any dimension of the space, were published
in [6]. For simplicity we take £ = 0, though our results may be literally carried over
to all ί. We denote by H the Hamiltonian corresponding to a differential operator
— d2/dx2 + q(x) and a boundary condition w(0) = 0.

If q(χ) = O(x~λ~% ε > 0, then the radial Schrόdinger equation

-u" + q(x)u=s2u (1.1)

has for Im s ̂  0, s φ 0, the Jost solution /(x, s) defined by its asymptotics as x -• oo:

f(x,s)~eisx. (1.2)

It is well known that in a radial case all characteristics of scattering are expressed in
terms of the Jost function M(s) =/(0, s) for s > 0. We shall write k instead of 5 if 5 is
positive; k2 is the energy of the quantum particle. Specifically, the argument of M(k)
is the phase shift η(k) and A(k) = | M(k) | determines the spectral function

p(k) = 2π-1Λ(k)-2k2 (1.3)

of the Hamiltonian H, which is interpreted as the density of quantum states of the
continuous spectrum at the energy k2. For potentials vanishing at infinity slower
than Coulomb, i.e. for q(x) ~ qox~a, αe(0,1], x -> oo, the canonical definition of the
Jost function M(k) is lacking but its modulus A(k) does not depend on the choice of
regularization. We recall that in a short-range case when q(x) = O(x ~ 2 ~ε), ε > 0, the
function M(s) is continuous as s -> 0 and generically M(0) φ 0. The equality M(0) = 0
is interpreted as an appearance of a zero-energy resonance for the Hamiltonian H. In
the presence of such a resonance the low energy behaviour of scattering data is
slightly different from a generic case. The notion of zero-energy resonance is
discussed in [3,7].

The aim of the present paper consists in deriving the asymptotics of M(k) as k -• 0
for slowly decreasing potentials when q(x) ~ qox~a, αe(0,2), at infinity. It appears
that for such potentials the phase shift is unbounded as k^0:

# ) ^ f 7 0 ^ - 2 / α , α e ( l , 2 ) , (1.4)

where ηo<0 for q0 < 0 and η0 > 0 for q0 > 0. The behaviour of A(k) as k -> 0 depends
essentially on the sign of the potential:

A(k)~A_kil2,q0<0,

j (1.5)

The formula (1.4) shows that the scattering matrix and the partial scattering cross
section are oscillatory as /c->0. We emphasize that (1.4) permits us to recover
information about the behaviour of g(x) at infinity. The first formula (1.5) ensures
that M(0) = 0, i.e. there is always a zero-energy resonance in case q0 < 0. The second
formula (1.5) provides an exponential fall-off of the spectral function as k -• 0. This
result may be interpreted as a virtual shift of the continuous spectrum; the spectral
point zero turns out to be in a sense quasiregular in this case. The exponential fall-off
as k -• 0 of the density of the states of the continuous spectrum in case q0 > 0 should
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be compared with an appearance of an infinite number of the discrete states in the
case q0 < 0. The asymptotic formula for p(k) (see (5.11)) plays a role of the classical
WeyΓs formula for the function of distribution of discrete eigenvalues.

Formulae (1.5) enable one to find the asymptotics of solutions of the time-
dependent Schrodinger equation

iγt=Hu, u(x,0) = uo(x\ (1.6)

for fixed x and t -• oo. Let the initial state u0 be orthogonal to the bound states and
have compact support. Then the wave function u(x, t) vanishes locally as t ~1, t -> oo
for negative potentials, and as exp( - 90t

{2 " α ) / ( 2 + α ) ) , &0 > 0 for positive potentials.
The precise proof of the last assertion requires an analyticity of the spectral function
p(s) and the study of its behaviour as 5 -• 0 in some sector of a complex plane. This
study may be achieved for analytic (for sufficiently large x) potentials q(x).

The proof of the asymptotic formula for the Jost function is based on an
investigation of a quasiclassical solution φ(x,s) of Eq. (1.1). We construct ιj/(x9s)
with the help of the Green- Liouville approximation, which in the physics literature
is usually called the WKB-method (see e.g. [8]). It turns out that for slowly
decreasing potentials the quasiclassical solution ψ(x,s) (in contrast to/(x,s)) is
continuous as s -> 0 (x fixed). Thus for such potentials the small energy is the correct
parameter of the quasiclassical approximation. The explicit expressions for the
constants η0 and g0 (see Sect. 7) confirm that formulae (1.4), (1.5) are essentially of a
quasiclassical nature.

This paper is organized as follows. In Sect. 2 for potentials vanishing at infinity in
a sufficiently arbitrary way, the solution ψ(x,s) is introduced and investigated
outside some neighbourhood of the point 5 = 0. Here the spectral function p(k) is
expressed in terms of \j/(O,k) and an appropriate theorem on eigen-function
expansion for the operator H is obtained. The behaviour of ψ(x, s) as s -> 0 is studied
in Sect. 3. In Sect. 4 the analytic continuation of ρ(s) in some sector of a complex
plane is constructed and in Sect. 5 the asymptotics of p(s) as 5 -^ 0 is evaluated. These
results are used in Sect. 6 to find the local asymptotics of solutions of the time-
dependent Schrodinger equation. In Sect. 7 we study potentials satisfying q(x)
= O(x~1~ε\ε>0, when scattering data have unequivocal meaning. Here the
connection between solutions/(x, 5) and ψ(χ, s) is established and the asymptotics of
the function M(s) as s-»0 is derived. The general discussion of our results is also
contained in Sect. 7.

2. Quasiclassical Solutions of the Schrodinger Equation

Let us consider Eq. (1.1) for x = 0 and Im s _ 0, s φ 0. It is everywhere assumed that
q(x) = q(x\q(x)-• 0 as x->oo and xq(x)eLί(0,xί) for all x1 < 00. This condition
admits singularities of q(x) of the type ex ~ β, β < 2, as x -• 0.

At first we shall recall some well-known facts about regular solutions
φ(x9s),θ(x,s)9seC, of (1.1), which are defined by

φ(a09s) = 0, φ'(ao,s) = 1, θ(aθ9s) = 1, θ'(a09s) = 0



180 D. R.Yafaev

for some fixed number a0 > 0. The dependence of φ and θ on a0 is dropped out of
notation. The number α0 is chosen positive because of a possible singularity of q(x) at
x = 0. Equation (1.1) also has a unique solution φo(x,s) satisfying φo(0,s) = 0,
φ'0(0, s) = 1. It is well known that φ(x, s), φ'(x, s), θ(x, s), θ'(x, s), φo(x, s), φ'0(x, s) for
every fixed x > 0 are entire functions of a variable 5. For all seC functions
φ(x, s), θ(x, s) have limits as x -• 0 and φ(0, s), 0(0,5) are also entire functions of 5. For
derivatives relations

lim xφ\x9 s) = 0, lim xθ'(x, s) = 0 (2.1)
x->0 JC->0

hold. F o r every x ^ 0 the following asymptotics as \s\ -> 00 are valid:

φ(x, s) ~ s~x sins(x — ao),θ(x,s) ~ cos s(x — α0),φo(x,s) ~ s~x sin sx. (2.2)

Formulae (2.2) may be differentiated with respect to x for x > 0.

We need notation for sectors in a complex plane of 5. Let

y(ω l Jω 2) = {seC:ω1 <args <ω 2 }, Y[ω1 ?ω2] = {seC:ω1 ^args^ω 2 } ,

Y^ω^, ω2) = Y (©!, ω 2 )n {|s\ < ε}, yε(ω!, ω2) = y(ωx, ω2)/^(©i, ω2).

We everywhere suppose that the branch of any function zy is fixed by the condition
arg ze [ — π, π] C and c are generic constants. To construct a quasiclassical solution
ψ(x, s), we assume that for some x0 ^ 0 and x > x0 the potential q(x) is twice
differentiate and

ϊ(lβ"MI + l9 /WI2^<oo. (2.3)
xo

This implies that q'(x)->0 as x ^-0. The condition (2.3) admits sufficiently arbitrary
decay of q(x) as x -+ 00. Let us introduce some auxiliary functions: Q(x, s) = q(x) — s2,

Then Re Q(x,s)1/2^0 and for x^x0 the function Q(x,s)1/2 is analytic in
se y(0, π/2)u Y(π/2, π) and is continuous in corresponding closed sectors. Note that
Q(x,s)1/2 is not in general continuous as s goes over the positive part of the
imaginary axis.

The solution ψ(χ9 s) of Eq. (1.1), where se Y[0, π/2] u Y[π/2, π],sφ 0, is called
quasiclassical if

ψ(x,s)~Q~1 i\x,s)exp(-ξ(a,x s)),

ψ'(x,s)~ -

as x -> 00. We fea|x0 and omit the dependence of ψ on a. Formulae (2.4) may of
course be simplified

<Kxs)~(- i s )- 1 ' 2 exp(-«αx; s )n
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However, for slowly decreasing potentials (2.4) is uniform in s, s->0, whereas (2.5)
does not have this property.

Our construction of ψ(x,s) relies on the study of an integral equation for
functions Uj{x, s), j = 1,2, connected with φ(x, s) by

1 1

Namely, let us consider the following system

CO

uί{x,s)= - $ e-2ξ{x>y;s)ζ(y,s)lu1(y,s) + u2(y,s)~]dy,
X

00

u2(x,s) = 1 + J ζ(y,s)[.ui(y>s) + U2{y>s)~\dy
X

For sufficiently large x the system (2.7) may be solved by iterations, i.e.

00

Uj(x,s)= X uf\x,s),

where <> = 0, w(

2

0) = 1, and for n ^ 1
00

Uγ \X,s) ~~ — I e x p ( — 2,Q\X,yj5jjζC^? ^)L^i ly?^) • ^2
X

M(

2"»(X, s) = f ζ(y, s)lu[n~ 1}(y, s) + w(

2"" X )(y, sfldy

(2.6)

(2.7)

(2.8)

(2.9)

Theorem 1. L^ί the condition (2.3) hold and Im 5 ̂  0, |s | ^ ε > 0. Then for sufficiently
large xι = x1 (ε) and x ^ xx the system (2.7) has a unique solution Uj(x, s)J = 1,2, which
is bounded on(xlf oo). This solution is obtained by formulae (2.8), (2.9). For each x _ xι

functions Uj(x, s), j = 1,2, are analytic in sfor Im s > 0, \s\ > ε and are continuous in s
for Im s ^ 0, |s | = ε. Moreover,

lim w1(x,s) = 0, lim u2(x,s) = 1
χ->- oo χ-> oo

uniformly in s, |s | ^ ε, and for each x^xλ

lim ujL(x,s) = 0, lim u 2 (x , s )=l .
| s | -• oo I s I —»• c o

Proof. Since q(x)->-0 as x->oo,

| β ( x , 5 ) | ^ φ ) > 0

for |s| = ε and x ^ x1 = xλ(ε). It follows that

K(x,5)|^C(ε)(|^(x)| + |^'(x)|2).

Once Re ξ(x,y;s)^0

|exp(-2ξ(x ? 3;;5))| = l.

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Let us solve the system (2.7) by iterations. According to (2.13) and (2.14), formulae
(2.9) ensure a recurrent estimate

\uf>(x9s)\ ^ C(β) Jte'ΌOI + \q'(y)\2)(\u[n-l)(y,s)\ + I " Γ ^ ύ ^
X

whence

\uf\x,s)\ S Cn(s)(n\r ^ jf (\q"(y)\ + |^ (y) | 2 )^ J . (2.15)

Thus by condition (2.3) the series (2.9) is convergent for x^xx and therefore it
determines the unique bounded solution of the system (2.7). The estimate (2.15)
ensures relations (2.10). Since a constant C(ε) in (2.13), (2.15) vanishes as ε -> oo, (2.11)
also holds. The analyticity and the continuity of Uj(x9 s) follow from corresponding
properties of functions ζ(x9 s), ξ(x9 y s) and (2.12)-(2.14). D

Defining φ(x, s) by (2.6) it is easy now to prove the following

Theorem 2. Let the condition (2 J ) hold and seY[0,π/2]u Y[π/2,π],s φθ. Then
Eq. (1.1) has a solution φ(x9 s) obeying (2.4) as x -> oo. For each ε > 0 the asymptotics
(2.4) are uniform in se Yε[0, π/2] u Yε[π/2, π]. For fixed x^O and \s\ -> oo, Im s ^ 0,

φ{x,s) ~ ( - is)"1 / 2exp[is(x - a)l (2.16)

The relation (2.16) may be differentiated with respect tox,x> 0. The functions φ(x, s)
for x^.0 and φ'(x9s) for x>0 are analytic in se Y(0,π/2)u Y(π/2,π) and are
continuous in se Y[0, π/2] u Y[π/2, π], with an exception of point s = 0.

Proof. Let \s\ Ξgε, Im s ^ 0 and ̂ ,7 = 1,2, be the solution of (2.7), constructed in
Theorem 1. By differentiation it is verified that functions u satisfy for x ^ x1(s) the
system

Qll2 + ζ ζ

Substitution (2.6) ensures that in terms of ψ, ψ' this system takes the form

ί\(ψ

whichis obviously equivalent to (1.1). All properties of i/φc,s)and ι/^(;c,s)for \s\ ̂ ε
and x ^ χx(ε) are immediate consequences of Theorem 1. For the proof of these
properties for all x we use additionally the representation

φ(x9 s) = b(s)φ(x, s) + d(s)θ(x, 5), (2.17)

where b(s) = w(φ(., s), 0(., s)) = φ'(x9 s) θ(x, s) - φ(x, s)θ'(x, 5), d(s) = - w(φ(., s\ φ(.9 s)).
Evaluating these Wronskions for x ^ x^ε), we find that b(s) and d(s) are analytic in
Yε(0, π/2)u Yε(π/2,π) and are continuous in the closure of this domain. By (2.17)
φ(x9 5), x ^ 0, and ^'(x, 5), x > 0, have the same properties in a variable s, since φ(x, s)
and 0(x, s) are entire functions of s. Formula (2.16) and the corresponding relation for
φ'(x,s) follow quite similarly from their validity for x ^ x^ε) and (2.2). Since ε is
arbitrary, this concludes the proof. •
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Remark. The functions ψ(x, s), ψ'(x, s) are not continuous as s goes over the ray arg s
= π/2,because ξ(a,x\s),x ^a, has in general different limits from the right and from
the left. Still if \s\ is sufficiently large, namely \s\2 > — inf q(x\ then ξ(a,x;s) and

therefore ψ(x, s), ψ'(x9 s) are continuous in the neighbourhood of the ray arg s = π/2.
Specifically, for potentials positive on (xθ5oo), the functions ι/̂ (x, s, x) ̂  0, and
ψ'(x,s),x > 0, are analytic in the whole upper half-plane Im 5 > 0.

Under the assumptions of this section the operator (the Hamiltonian of the
quantum particle) H = — d2/dx2 4- q(x) with the boundary condition w(0) = 0 is self-
adjoint in the Hubert space L2(0, 00). Since g(x)->0 as x-»oo, the continuous
spectrum of H coincides with the positive half-line and its negative spectrum consists
of eigenvalues, which may accumulate only at the point zero. Let Rz = (H — z) ~ *, Im
z ψ 0, be a resolvent of the operator H and Eλ, λeU, be its spectral family.

Now we shall establish an eigenfunction expansion for the Hamiltonian H in
terms of the quasiclassical solutions ψ(x, 5). Since φ(.,s)eL2(0i 00) for I m s > 0, the
kernel Rz(x,y) of Rz obeys

Rz{x,y) = w(φo(.,s), ψ(.9s))'1φ0(x9s)φ(y9s)9x^y9z = s2,lms>0, (2.18)

and Rz(x,y) = Rz(y,x) Conditions (2.1), φo(09s) = 0, φf

o(0,s) = 1 imply that

w(φo(.,s)iψ(.,s)) = ψ(0,s). (2.19)

Note that the function (2.18) is meromorphic in s for Im s > 0 , because
ψ(0, s) ~ 1ψ(y, s) is continuous at the ray arg s = π/2. The equality ψ(0, s) = 0 for Im s
> 0 ensures that z = s2 is an eigenvalue of//. Thus complex zeros of ̂ (0,5) lie on the
imaginary axis. The asymptotics (2.5) show that ψ(0, —k) = ψ(0, k) for k> 0 and

(2.20)

where Q+ = max {Q, 0}. Specifically, the functions φ(x, k) and ψ(x, - k) are linearly
independent. The equalities (2.19) and φo(x, — s) = φo(x,s) imply that

φo(x, k) = (livik))-1 [>(0, - k)φ(x,k) - ψ(0, i#(x, - k)]. (2.21)

By (2.21) ψ(09k)φ0, and hence the function Rz(x,y) is continuous in z in the
neighbourhood of the cut over [0, 00) with the exception of the point z = 0. Thus the
positive spectrum of H is absolutely continuous. The formula iπidEJdλ = Rλ + i0

— Rλ-i0 permits us to evaluate dEJdλ. Namely, taking into account (2.18), (2.19)
and (2.21), we find that

dEj*'y) = (2k) ~ VWΦOC*, k)φo{y9 fc), λ = k2, (2.22)

where

p{k) = 2π ~ 'kvik) [>(0, k)ψ(09 - fc)] " l (2.23)

is called the spectral function of the operator H. The function p does not evidently
depend on a. Thus we have proved the following
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Theorem 3. Let the condition (2.3) be fulfilled and let the function p be defined by
(2.20), (2.23). Then the derivative of the spectral family of H obeys (2.22). Moreover,
p(k) is continuous for /c> 0 and ρ(k) ~ 2π~ 1k2, k -• oo.

Note that an eigenfunction expansion for the operator H with a long-range
potential was established earlier in [9]. However, in [9] the spectral function was
expressed in terms of modified Jost solutions rather than quasiclassical ones. This
does not permit us to use directly the results of [9].

3. Slowly Decreasing Potentials. The Continuity of
Quasiclassical Solutions as s -• 0

As was already noted in the introduction, potentials vanishing at infinity slower
than x" 2 are called slowly decreasing in the present paper. More precisely, we
assume in this section that q(x) =/= 0 for x = xo(xo is as before some nonnegative
number) and

ϊ [|«"(*)l \q(x)\ "3/2 + \q'(x)\2\q(x)Γ5l2Vx
xo

]imq>(χ)\q(x)\
JC-> oo

The condition (3.1) corresponds to potentials vanishing as gox~α,αe(0,2), at
infinity.

Let us extend the definition (2.4) of a quasiclassical solution to a point s = 0.
Namely, we introduce the solution \l/0(x) of (1.1), where s = 0, with the asymptotics

)lj2dy , x->oo. (3.2)

Here it is supposed that arg q = 0 if q > 0 and arg q = —πiΐq<0. Then

q(xf = lim Q(x, 5 ) y (<?(x) > 0, Im 5 = 0 or q(x) < 0, SG Y[0, π/2] O

> (3.3)
^(x)" = Urn ρ(x, 5)^(φ) < 0, se Y[π/2, π])

s->0

Theorem 4. Lei ί/ze condition (3.1) hold. Then the equation —ψo + q(x)Ψ0 = 0 has the
solution obeying (3.2). If q(x) >0,x ^ x 0 , then the asymptotics (2.4) is uniform in
se Y[<5, π — <S] (ί/ίe pomί 5 = 0 included), where δ is an arbitrary positive number. For
each x _̂  0

\imψ(x,s) = ψo(x), seY[δ,π-δl (3.4)
s->0

Ifq(x) < 0, x = x0, then (2.4) is uniform in seY [0, π/2 - <5] u Y[π/2 + δ, π]. For each
x > 0

Km φ(x, s) = ιA0(x), SG Y[0, π/2 - δ], lim ^(x, s) = ^0(x), 5G Y[π/2 + (5, π]. (3.5)
s-^0 s-»-0
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Relations (3.4), (3.5) may be differentiated in xfor x > 0.

Proof. Recall that for sufficiently large x,x>x 1 ( | s | ) , the functions φ(x,s) and
ψ'(x, s) were defined by (2.6), where u} satisfy (2.7). Note that for x ^ x0 in cases q(x)
> 0, 56 Y[<S, π - <5] or q(x) < 0,56 Y[0, π/2 - δ] u Y[π/2 + <5, π] the estimate

| β ( x , 5 ) | ^ φ ( x ) | . (3.6)

holds. The constant c here depends only on δ. Thus the function ζ(x, s) obeys

|C(x55)|^C(|^W||^(x)|-3/2 + k ' M | 2 | φ ) r 5 / 2 ) . (3.7)

The following copies the proofs of Theorems 1 and 2. Namely, by (3.7) and (2.14) for

uf(x,s)\ s σfnir'ϊ] (\q"(y)\\q(yT312 + W(y)\2\q(yT 5/2)dy

where C does not depend on 151. Thus the series (2.8) converges for x ^ x0 uniformly
in 56 Y[δ, π - (5] (if q(x) > 0) and in 56 Y[0, π/2 - δ] u 7[π/2 + 5, π] (if #(x) < 0).
Moreover, formulae (2.10) and hence (2.4) are also uniform in 5. In particular, for
5 = 0 this proves the existence of φo(x). For x = x0 equalities (3.4), (3.5) and
corresponding relations for φ'(x,s) follow directly from (3.3). With the help of (2.17)
this can be extended to arbitrary x. •

Let us discuss now the assumptions of Theorem 4. For positive (for x = x0)
potentials we have not yet studied the continuity ofφ(x, s) as 5 -• 0 along the real axis.
It appears that ψ(x, s) is continuous in 5 in the whole half-plane Im 5 ̂  0. However,
the proof of this assertion is impeded by the existence for arbitrary small s > 0 (or
5 < 0) of such a point x (a turning point), where #(x) = 52. In a neighbourhood of a
turning point the asymptotics of ψ(x9 s) is described in terms of Eiry functions. Below
(see Sect. 5) we shall prove the continuity of φ(χ9 s) as 5 ->0 in the whole upper half-
plane (and even in a broader region, including some part of the lower half-plane) for
potentials, which admit an analytic continuation to some sector of a complex plane.
For such potentials it is possible to avoid a rather cumbersome study of a
neighbourhood of a turning point.

For negative (for x = x0) potentials we have excluded some neighbourhood of
the imaginary axis, where e.g. the function ψ(0, s) has an infinite number of zeros,
corresponding to negative eigenvalues of H. On the other hand, in this case the first
formula (3.5) permits us to evaluate the asymptotics of the spectral function ρ(k) (see
(2.23)) as k -> 0. Note that the function v(k) defined by (2.20) equals now identically 1.
Hence solutions ι^0(x), φo(x) are linearly independent and, in particular, φo(x) Φ 0
for x = 0.

Corollary. Let the condition (3.1) hold and q(x) <0for x = xo. Then

2π-1\φ0(0)\-2K fc-0, *Ao(0)̂ 0. (3.8)

4. Analytic Continuation of the Spectral Function

In this section it is assumed that the potential g(x) is analytic in the region
: — &>0 <argx < ω 0 , | x | > x 0 } , where ωoe(0,π/2). Set
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^*o(ωo) = {*eC: 0 ^ argx < ω09 \x\ > xo}
 τ h e dependence of Γxo(ω0) and Γ+0(ω0)

on ω 0 is usually dropped out of notation. By ω we denote the argument of a complex
number x. Let us define analytic continuation (AC) of a function/ originally defined
on (ε, oo),ε^0, into a region Yε[0,<5) as a function that is analytic in Yε(0,δ% is
continuous up to (ε, oo) and coincides there with/ An AC of/ is denoted by the same
letter. First we shall study an analyticity of solutions

φ^s) = v(sΓ V(*,s), φ2{x,s) = v(s)~ xφ{x9 - s) (4.1)

of Eq. (1.1), which are defined for s > 0.

Theorems. Let the potential q(x) be analytic in Γxo(ωo). Let relations #(x)->0,
|x|->oo, and

00

J (\q"(reiω)\ + \q'(reiω)\2)dr < oo (4.2)
XO

be fulfilled uniformly in ωe(— ω o,ω o). Then the functions φ1(x,s)for arbitrary x ^ 0
and φ[(x, s)for x>0 admit an AC in a sector Y( — ω 0,0], and functions φ2(x, s), x ^ 0,
φ'2(x9s)9 x > 0, in a sector Y[0,ω0). Moreover, for x^.0 and \s\ -^ oo

φί(x,s)~(-isΓ1/2exptis(x-a)lseY(-ω0,Ol

φ2(x, s) ~ (fe)- ^ e x p [ - is(x - α)], se Y[0, ω0). r ( 4 3 )

Relations (4.3) may be differentiated with respect to x if x > 0.

Proof. Let us consider for definiteness the function φγ(x, s) and correspondingly the
sector Y( — ω 0,0]. First for arbitrary ε > 0 and SG Yε[0, ω0) we shall construct an AC
of φ(x,s) and φ'(x,s) to complex xeΓXί where x1 =χ1(s). Then for fixed xeΓXί

functions φ(x,s\φ'(x,s) will be analytically continued to Yε(— ω,0]. Hence it is
easily deduced that φ(x, s), x ^ 0, ι/̂ (x, 5), x > 0, admit an AC to Y( — ω 0 ,0].

Let ε > 0 be given and xί=xί(ε)bQ chosen so that

| β ( * , * ) l £ Φ ) > 0 , xeΓ x l , | 5 | > ε . (4.4)

Functions g(x, 5)y(y = 1/2,7 = —1/4) are obviously analytic in xeΓX l for fixed
se Y% - ω0, ω0) and in se Yε( - ω0, ω0) for fixed xeΓXl. Therefore

ξ(x,y;s)=]Q(z9sγ!2dz (4.5)
X

is also analytic separately in x, ysΓXl, 56 Y% — ω0, ω0). The contour of integration in
(4.5) should belong to ΓXί, e.g. one may integrate over a piece of a straight line. Note
an estimate

= ωe[0, ω0), se Yε[ - ω + δ, ω0), (4.6)

where C depends only on ε and δ (δ is an arbitrary positive number).
Our construction of AC of φ(x, s) relies on the expression (2.6) of φ(x, s) in terms

of Uj(x, s\ j = 1, 2. For se Yε(0, α>0), x ^ xx functions Wy(x, s) are represented by con-
vergent series (2.8). Functions u{p(x,s) are easily studied by induction (see (2.9))
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Namely, properties of ζ(y, s) and ξ(x9y; s) ensure that for fixed se Yε(0, ω0) functions
uf\x9 s) are analytic in xeΓXί and the contour of integration in (2.9) can be deformed
to the ray (x, eiωao). The integral (2.9) over (x, eiωoo) is analytic in se Yε( - ω + δ, ω0)
and by (4.4), (4.6) uf(x,s) obey

\uf(x,s)\ ̂  σiniy^] (\q"(reiω)\ + \q'(reι»)\2)dr] ,
Lι*ι J

, [ - ω + <5,ω0). (4.7)

Thus according to (4.2) for se Yε(0, ω0) functions u/x, s) are also analytic in xeΓxι,
and for xeΓXί they have an AC to Y ε (-ω,ω 0 ).

Let us return to the formula (2.6). The function

is analytic in xeΓXι and ξ(xί9x;s) for fixed xeΓXί is analytic in se Yε( - ωθ9 ω0). Thus
all factors in the right hand side of (2.6) are analytic in xeΓXl for se Yε(0,ωo). By
continuity the representation (2.6) for xeΓXί, is extended to real s > ε. Moreover, for
xeΓ^ all factors, except exp(- ξ(a9x1;s))9 are analytic in se Y ε(- ω,ω0). Accord-
ing to (4.1) it remains to prove the analyticity in Y ε (-ω o ,0] oϊ υ{s)Qxp(ξ(aixί;s))
or by (2.20) of

2g(s) - ξ(a, x 1 ; s ) = ξ(a, x x \ - s ) , s > ε .

This follows from analyticity of ξ(a,x1 s) in Yε(π - ω o , π ] . Since C in (4.7) tends to
zero as |s|->oo, the function ψ^s) obeys (4.3). By (2.6) φ[(x9s) has similar
properties. Now with the help of the formula ψί (x, s) = b1{s)φ{x, s) + d1 (s)θ(x, s) it is
easy to carry over the analyticity in se Y ε(- ω,0] of ^ ( x ^ i / ^ x ^ x e Γ ^ , to all
x ^ 0 for φ1 (x, s) and to x > 0 for φ[(x, s). Since ε > 0 and ω < ω0 are arbitrary, we
find that φ1 (x, 5), x ^ 0, φ[(x9 s\ x > 0, are analytic in se Y(- ω 0 ,0] . Π

By Theorem 5 the equality p'\s) = π(2s)~1 φx(0,s)φ(0, -s\s> 0, implies that
p " 1 ^ ) admits an AC to Y ( - ω θ J 0 ] . Moreover, according to (2.16), (4.3)

p ( 5 ) - 2 π - 1 5 2 , | s | —00, (4.8)

for se Y( — ω0,0] and, in particular, p~ί(s) does not have zeros for sufficiently large
\s\. Similarly, the equality p~1(s) = π(2s)~1φ2(0,s)φ(0,s\s > 0 , ensures the same
properties of p(s) in Y[0,ωo).

Theorem 6. Under the assumptions of Theorem 5 the spectral function p(s) has a
meromorphic continuation to the sector Y(— ω o ,ω o ) . Moreover, p{s) is regular for
sufficiently large \s\ and obeys (4.8)for seY( — ωo,ωo).

5. The Asymptotics of the Spectral Function in the Complex Plane

For the study of p(s) as s -> 0 in some sector of the complex plane we need additional
assumptions on q{x), combining conditions of Sects. 3 and 4. First we shall show that
under such assumptions the quasiclassical solution φ(x9 s) of Eq. (1.1) admits an AC
in 5 to some sectors of a lower half-plane (for sufficiently small \s\) and is continuous
there as s->0.
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Theorem 7. Suppose that q(x) is analytic in Γxo. Let q(x)φθ for xeΓX0 and let
relations

q(x) ~ qox " α , αe(0,2),qQ = qo£0,\x\-> oo, (5.1)

00

ί l\q"(reiω)\r3a/2 + |α/(re / ω)|2r5 α / 2]dr < oo (5.2)

hold uniformly in argx = ωe( — ω0,ω0). T/ιen in case q0 >Ofor each δ>0 and some
ε = ε(δ) functions ψ(x, s), x 7> 0, ψ'(x, s), x > 0, are analytic in se Yε( — 2 ~ 1aω0 + <5,
π + 2 " 1 a ω 0 — δ). The relation (3.4) holds in the sector Y[ — 2 " ^COQ + (5, π + 2 ~ x aω 0

— <5]. /n case g0 < 0 functions \j/(x9 s), x ^ 0, ι/̂ '(x, s), x > 0, are analytic in se Yε( — ω0

+ (5,π/2)u Yε(π/2, π + ω 0 — 5), w/zere as foe/ore ε = ε(<5) anίί <5 ΪS arbitrary. The first
relation (3.5) holds in the sector Y[— ω 0 + (5, π/2 — 5], and the second in the sector
Y[π/2 + 5, π + ω0 — δ]. Relations (3.4), (3.5) may be differentiated with respect to x if
x>0.

Proof of this theorem unifies considerations of Theorems 4 and 5. The properties of
functions φ(x, s), ψ'(x, s) in variable s are previously investigated for complex x. Here
we use essentially the absence of zeros of Q(x, s) for suitable choice of ω = arg x and
sufficiently large |x| if s belongs to.sectors specified in the formulation of the
theorem. This permits us to perform on the ray argx = ω the same bounds as in
Theorem 4. It follows that φ(x9 s), ψ'(x, s) are continuous as s -> 0 for arg x = ω and
consequently for positive x.

For definiteness we shall study an AC of \l/(x9s)9\l/'(x9s) over positive half-axis.
Let q0 > 0. Let some positive number δ be given. By Theorem 4 it suffices to study
^(x, s) in a sector Y( — 2 ~1 αω 0 + δ, δo)9 where <50, δ0 > 0, is arbitrary. According to
(5.1) we choose xx = xx(δ) ^ x 0, so that

l . (5.3)

Then for xeΓXί,seY(- 2 " 1ocω + δ,δ0) (3.6) holds, where c = c(δ) does not depend
on ωe[0,ωo). Actually, denoting A = s2\q(x)\ ~1 and taking into account (5.3) one
reduces (3.6) to 11 — ei<xωA \ ̂  c. The last estimate is obvious, since eiaωAe 7(2(5,2δ0

+ αω) and 1 does not belong to this sector. In particular, (3.6) implies that β(x, s) φ 0
if xeΓ+j, se Y( — 2~ xαω + δ, δ0). Thus by continuity we define the regular branch of
β ( x ? s)

y(γ = 1/2, y = - 1/4) first for complex xeΓx+, se7(0, δ0) and then for se
Y(-2~1(xω + δ,δ0). It follows that ξ(χ, y; s) for se7(0,^0) may be analytically
continued in x and y (separately) to the region Γ*r Moreover, for fixed
x,^eΓ^,argx = arg3; = ω > 0 the function ξ(x9y;s) is analytic in seY( — 2~ 1αω
+ δ9δ0) and is continuous in this sector as s-*0. Next we shall prove that for
xeΓ+ι,seY(-2-1aω + δ,δ0)

Ree i ω β(x,s) 1 / 2 >0. (5.4)

Since (5.4) holds for x ^ 0 , s e Y(0,(50), it suffices to check that Ree ί ω β(x,s) 1 / 2 # 0 .
Supposing to the contrary, we find that e2iωs2 = e2iωq(x) + y2 for some xeΓxl, se
Y(-2-1otω + δ,δo) and y = y. By (5.3) e2iωq(x)eY((2 - α)ω - δ,(2 - α ) ω + δ) and
consequently e2iωq(x) + y2 belongs to Y(0,(2 - α)ω + δ). However, e 2 ί ω s 2 lies in the
sector Y((2 - α) ω + 2<592<5O + 2ω), which does not intersect Y(0,(2 - α) ω + δ). Thus
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RQeiωQ(x,s)1/2 φ 0 and (5.4) holds. This in its turn implies (2.14) for x, j>eΓ + , argx
= arg y = ω, s e Y ( - 2 "* αω + δ, δ0).

Now we use the representation (2.6). The function ξ(a,x;s) for seY(0,δo) is
analytic in xeΓxl,ξ(a,x;s) = ξ(a,eίωxί;s)-\-ξ(eicox1,x;s) and ξ(e?ωxl9x;s) is ana-
lytic in seY( — 2~1ocω + δ,δQ). Moreover, since q(χ)φθ for xeΓXo, the function
ξ(a,eiωxx s) is also analytic in 5 for sufficiently small |s|. Thus ξ(a,x;s) is analytic in
seYε( — 2~1αω + δ9δ0) and is continuous in this sector as s->0. It remains to study
Uj(x, s)J = 1,2. As was shown in Sect. 4, for fixed se Y(0, δ0) functions Uj(x,s) defined
by (2.8) are analytic in xeΓXl if |x| is sufficiently large. Functions uψ(x9 s) in (2.8) obey
recurrent relations (2.9), where integrals are taken over the half-line (x,eiω oo). Note
that by virtue of estimates (3.6), (2.14) and conditions (5.1), (5.2), the formula (2.8) can
be extended to all xeΓXί (we emphasize that as distinct from Sect. 4 xx does not
depend here on \s\). Moreover, for xeΓxι functions uf\x,s) are analytic in se
Y( — 2~1(xω+ δ,δ0) and are continuous in this sector as s ->0. The series (2.8) converges
and defines the AC of Uj(x, s) to Y (— 2 ~ 1aω + δ9 δ0) that is continuous as s -> 0. Thus
by (2.6) functions φ(x9 s) and ψ'(x9s) for xeΓXί have the same properties in the region
Yβ( - 2 - 1 α ω + δ9δ0). Now (2.17) implies that ^(x,s) for x ̂  0 and ψ'(x,s) for x > 0
are also analytic in se Yε( — 2 ~1 αω -f δ, δ0) and are continuous as 5 -> 0 in this sector.

In the case q0 < 0 the number xx should be chosen so that |argg(x) + αω — π|
< δ. Then estimates (3.6), (2.14) hold for seY(-ω + δ9δ0). All other considerations
go through without any modifications. •

Results of Theorem 7 determine the asymptotics of the spectral function p(s)
defined by (2.23). In the case q0 <0, (3.8) obviously remains true for seY[ — ω 0

+ <5,ω0 — £], s->0. In the case qo>09 note that by (5.1) ̂ 0 eL 2 (0 , oo). Hence
ΨoΦ) φθ ΰ H does not have zero eigenvalue and, in particular, if q(x) ;> 0 for all x
^ 0 . It follows that [^(0,s)^(0, - s ) ] " 1 ->\ψo(0)\~2 as s-»0, 5 e 7 [ - 2 - 1 α ω 0

+ δ92~1(xω0 — <5]. Thus it suffices to study the function g(s) defined by (2.20). For
sufficiently small ε > 0 and seYε\_-2~1aω0 + δ.2'1 αω 0 - <5] the equation Q(x9s)
= 0 has in Γxo a single root x(s) and x(s)~ ql/<xs~2/a,s-+0. Consequently, the
definition (2.20) of g(s)9 s > 0, can be rewritten in a form

g(s)=*f QfrsΫ^dz. (5.5)
a

Thus g(s) admits an AC to Yε[ — 2~ 1 αω 0 + (5,2"1αω0 — <5] by the formula (5.5),
where an integral is taken e.g. over a piece of a straightline. Condition (5.1) ensures
that g(s)~gos

1~2/a

9s-+09 where

0

Moreover, if q(x) obeys

q(x) = qoχ-a[l + O(χ-*)],β > 1 - α/2, |χ| -, oo^eΓ^ίωo), (5.7)

then g(s)^g0s
1-2/a + gί +o(l),5->0, where

g1=](\q(x)\ll2-\q0\
1/2x-al2)dx-\q0\

1/22(2-ay1a1-^2. (5.8)
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So we have proved

Theorem 8. Let the conditions of Theorem 1 be fulfilled. Assume further that in the
case qo>0 zero is not an eigenvalue of the operator H and (5.7) holds. Then for arbit-
rary δ>0 and s-»0

p(s)^2π'1s\φ0{0)\-2

9seYl-ω0 + δ9ω0-δ ]9q0<09 (5.9)

2-1*ω0-δ]9q0>0. (5.10)

In particular, if conditions of Theorem 7 are fulfilled for some ω 0 > 0, q0 > 0 and
zero is not an eigenvalue of H, then

Γ Ϊ | fc->0. (5.11)

We emphasize that by its structure and physical meaning the last formula is similar
to the classical WeyPs formula for the function of distribution of negative
eigenvalues of H in the case q0 < 0.

6. The Local Asymptotics at Large Times of the Solutions of the
Time-Dependent Schrόdinger Equation

In this section we shall study the behaviour of the kernel U(x9y ί) of the operator
exp( — Ht)E(0, oo) as ί->oo. More precisely, we shall find the asymptotics of
U(x,y; t) for fixed x, y and t -> oo in the closed right half-plane. In particular, as t -> oo
along the imaginary axis this gives the asymptotics of the kernel of the evolution
operator for time-dependent Schrodinger equation (1.6). The projection £(0, oo)
cancels the trivial part of the evolution operator corresponding to the discrete
spectrum of H. According to (2.22) we shall proceed from the formula

OO

U(x,y;t)= J φo{x,s)φo(y,s)Qxp(-s2t)p(s)ds. (6.1)
o

Since φo(x9s) is an entire function of s, the asymptotics of U(x,y;ή as ί-»oo is
determined by the behaviour of p(s) as s->0.

In the case of negative (for x ̂  χ 0) potentials the asymptotics of (6.1) may be
easily found with the help of an obvious relation

]sf(s)exp(-s2t)ds~f(0)(2t)-\ t = eiτ\t\-^oo, τ e ( - π/2,π/2). (6.2)
o

The formula (6.2) holds if e.g. f(s) is continuous and f(s) = O(ecs), s^-oo. Thus under
the assumptions of Theorem 4 by (2.2), (3.8), (4.8)

U(x,y;t)^φo(x,0)φo(y,0)(n\ΦoΦ)\2t)-\ (6.3)

as t = e ί τ | ί |->oo,τe( — π/2,π/2). To treat the case ί = ± i | ί | one should use
additionally the analyticity of p(s) in some sector Y( — δo,δo), which is ensured by
Theorem 7. Then taking into account (2.2), (4.8), (5.9) one deforms the contour of
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integration to the ray s = eiδ\s\, where δe(0,δo) for t = —i\t\ and <5e(-<50,0) for
t = i\t\.Ύo the integral over (0,eiδao) the relation (6.2) is again applied.

The case of positive (for x ̂  x0) potentials, when p(s) -> 0 exponentially as s -• 0,
is essentially more difficult. Assume first that ί-> + oo. Let us split (6.1) in two
integrals-over (0,ε) and (ε, oo), where ε = ε(£)->0 as ί-> oo. The asymptotics (2.2),
(4.8) show that an integral over (ε, oo) is O(e~ε2t). In integral over (0,ε)p(s) can be
replaced by its asymptotics (5.10) and φo(.,s) by φ o ( >°) T n e n w i t h a n e r r o r o f a n

order O(e~ε2t) the integral over (0,ε) is again extended to (0, oo). This gives the
relation

9y;t) = φo(x90)φo(y90)2π-1e-2βl\ψo(0)\ -2

00

x J sexp( — 2gos1~2 / α — s2t)ds(l + o(l)) + 0(e~ε2t). (6.4)
o

After the substitution s = ί~α / ( α + 2 )σ the asymptotics of the integral in (6.4) is
evaluated by the Laplace method, i.e.

]sQxp(-2gos
1-2/a-s2t)ds

0

where

&(s) = 2gos
1~2/" + s 2, s0 = [0O(2 - α ) α " 1 ] α / ( α + 2 ) (6.6)

(s0 is the minimum of S(s)). Suppose now that t{2~0ί)/i2+Cί) = o(ε2t). Then 0(e~ε2t)
vanishes faster than (6.5) as ί->oo and hence it may be omitted. Thus formulae
(6.4)-(6.6) determine the asymptotics of U(x,y\t) as £-> + oo.

If t = eiτ 111 -> oo, τ φ 0, τe [ — π/2, π/2], one should deform previously the contour
of integration in (6.1). Let ω 0 >2(α + 2)~1τ. Then for sufficiently small c>0 by
Theorems 6 and 8 one can integrate in (6.1) first over (O,e~ίατ/(α + 2)c) and then over
the half-line (β~ iατ/(α + 2)c, ̂ ~iατ/(α + 2)c + oo), which is parallel to the real axis.
According to (2.2), (4.8) the second integral is O(e~cit),cί > 0. The integral over
(0, e~ίατ/(α + 2)c) c a n b e t r e a t e d similarly to the case ί-> + oo. So we have proved

Theorem 9. \)Let the assumptions ofTheorem4 hold and q(x) < Ofor x ̂  x0. Then the
kernel U(x,y; t) of the operator exp ( — Ht)E(0, oo) for fixed x, y obeys (63) as t = eιτ \ t\
-> oo, τe( — π/2, π/2). If for some ω 0 > 0 the conditions of Theorem 7 are fulfilled and
q0 < 0, then (6.3) remains true for t = + i\t\ -• oo.

2) Let the assumptions of Theorem 8 hold and q0 > 0. Then

^ ( s o ) ί ( 2 " α ) / ( 2 + α ) ] ( 6 7 )

as t = eiτ\t\ -> oo, where τ ε [ - π/2,π/2],|τ| < ω o (l + ot/2%$and s0 are defined by (6.6),
(5.6\ Qi by (5.8).

Note that formulae (6.3), (6.7) are uniform in x, y from any compact interval. This
ensures the local asymptotics as t-> ± oo of the solution u(x, t) of (1.6) if the initial
state uo(x) has finite support and is orthogonal to bound states of H.
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7. The Asymptotics of Scattering Data. Discussion of Results

As is well known, if q(x) obeys

]\q(x)\dx<oo, (7.1)
xo

then (1.1) has for Ims ^ 0,5 φ 0, the Jost solution f(x,s) with the asymptotics (1.2) as
x -• oo. The function / (x, 5) for each x ^ 0 is analytic in s, Im 5 > 0, and is continuous
up to the real axis with the exception of point s = 0. If q(x) is analytic in Γxo and
qlre^eL^XQ, 00) uniformly in ωe( - ω 0, ω0), then f(x9s) for each x ^ 0 has an AC
to the sector Y( — ω o ,π + ωo). Since M(s) = /(0,s)->l as s->oo,lms^0, it is
usually supposed that η(k) = argM(fc)->0,/c->oo. By continuity this uniquely
determines the phase shift η(k).

Under the assumption (7.1) for the pair of operators Ho= — d2/dx2,H =
- d2/dx2 + q(x) with the boundary condition u(0) = 0 in the space L2(0, 00), wave
operators exist, are complete and the scattering operator is unitary. The scattering
matrix S(k\ the partial scattering cross section σ(k) and the physical wave function
Ψ(x, k) (normalized eigenfunction of the continuous spectrum) are expressed in
terms of M(k) by the following formulae:

S(k) = e x p ( - 2iη(k))9 σ(k) = 4πk~2sin2η(k\ 1

Ψ(x,k) = M(k)-1φ0(x,k). J ( 7 2 )

The function Ψ(x,k) describes the scattering of the beam of particles with the energy
k2. The density of particles in the beam is supposed as usual to be equal to their
velocity 2k. The quantity

p(x,k)=]\Ψ(x,k)\2dx
0

is interpreted as the number of particles, localized in the interval (0, x). For potentials
not obeying (7.1), the modulus Λ(k) of M(k) can be defined by the relation (1.3). This
defines also p(x, k).

We recall now for a comparison with slowly decreasing potentials some well-
known facts about the low energy behaviour of scattering data in a short-range case
when xq(x)eLί(x0, 00). In the latter case M{s) is continuous as s->0, Ims ̂ 0 ,

M(0) = M(0) and generically M(0) φ 0. If M(0) φ 0, then S(k) -+1 and p(x, k) has
finite (not vanishing) limit as fc->0. The kernel U(x, 3;; ί) of the evolution operator
exp( - Ht)E(0, 00) obeys

U(x9y;t)^2-1π-1/2\M(β)\-2φo(x90)φo{y90)Γ3l2

9 ί-^oo, R e ί ^ O .

Moreover, if x2q(x)eL1(x0,00), then η(k) - ηok and henceσ(k)->4πη2

0 as k-+0. The
following formula (Levinson's theorem) connects the number N of negative
eigenvalues of H with the phase shift at zero energy:

-η(0) = πN9 M(0)φ0 (1/(00) = 0). (7.3)

If M(0) = 0, i.e., a zero-energy resonance exists, then M(s) ~ Mos, 5^0, and N should
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be replaced by N + 1/2 in (7.3). It follows that U(x9y; t) vanishes as t ~1/2, t -• oo, and

S(fc)->-l,σ(/c)~4π/c-2 as /c->0.
Let us return to the slowly decreasing case. Assume that both conditions (2.3)

and (7.1) hold. Then the quasiclassical solution ι/f(x,s) and the Jost solution /(x,s)
exist. Now we shall establish the connection between them. Since |g(x,s)1 / 2 + is\
^ C(s)\q(x)\ for Ims ^ 0,5 Φ 0, then by (7.1)

ί Q(y,s)1/2dy = - ίs(x - a) + j [Q(y,s)1/2 + is\dy + o(l), x -+ oo. (7.4)
a a

Substituting (7.4) into (2.5) and comparing (2.5) with (1.2) we find that

J [Q(y,s)1/2 + ίsldy + isa\φ(x9s). (7.5)

According to (7.5) and the results of Sects. 3 and 5 the asymptotics of f(x, s) as
s -• 0 (x fixed) is determined by the function

G(s)= ]lQ(x,s)^2 + is^dx. (7.6)
a

Note that if q(x) < 0, x ̂  x 0, then G(s) defined for se F[0, π/2] u 7[π/2, π] appears
to be analytic in 7( - π/2, π/2) u Y(π/2,3π/2). If q(x) > 0, x ̂  x0, then G(̂ ) is analytic
in Y(0>π). Assume that q(x) obeys (5.7) with αe(l,2). Then

G(s)= -ίG^-^-ig^oii), 5->0, se7[- π/2, π/2],

G(s) = iG0(-s)ί-2/« + ig1+o(l\ s^O, sG7[π/2?3π/2]

in the case q0 < 0, and

G(s) = G0(-is)1-2l« + gί+o(l), s-+0, s6Y[0,π]. (7.7)

in the case q0 > 0, where

and g09g1 are defined by (5.6), (5.8). The branch of zy as before is fixed here by the
condition arg ze( - π, π). If q(x) is analytic in Γxo(ω0) and satisfies (5.7) with q0 > 0
there, then G(s) has an AC to Yε( - 2" x αω 0 + δ,π + 2" 1 αω 0 - (5), where ε = β(<5) and
<5,5 > 0, is arbitrary. Moreover in this case the asymptotics (7.7) remains true in the
whole sector Y [ - 2~ 1αω 0 + <5,π -h2" 1 αω 0 - £]. Combining this information on
the function G(s) with Theorems 4 and 7 and taking (7.5) into account, we receive the
following

Theorem 10. 1) Let q(x) obey(5.7) with αe(7,2) and (3.1). Then for each fixed x ̂  0,
δ > 0 and s -» 0

>oM, ^ o > ° ? seY(<5,π-δ], (7.8)

oW» ^o<0, seY[O,π/2-(5], (7.9)

ίMx), g o < 0 , s6Y[π/2 + 5,π]. (7.10)
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2) Let q(x) be analytic in ΓXo and let q(x) obey (5.7), (5.2) with αe(7,2)uniformly in
ω = argxe( — ω 0 , ω0). Then in the case qo>0 the formula (7.8) remains true in the
sector Y[ — 2 ~ 1otω0 + δ, π + 2 ~ 1OLCDO — δ~\. In the case qo<0 the formula (7.9) holds
in 7 [ - ω 0 + δ, π/2 - £] and (7.10) in 7[π/2 + δ, π + ω 0 - <5].

Note that by (7.8) if q0 > 0 the function/(x, s) grows exponentially as s -• 0 in the
closed upper half-plane. If q0 < 0 the function /(x, 5) vanishes exponentially as
5 = eiy\ s I -• 0 with y e (0, π/2) or y e (π/2, π). If 5 -• 0 along the real axis the exponent in
(7.9) or (7.10) becomes purely oscillatory and hence \f(x,s)\ tends to zero as |s | 1 / 2.

Now we pick out of Theorem 10 results on the behaviour of the Jost function
M(k) as k -> 0 (the low energy asymptotics). We assume that in conformity with (2.16)
the phase χ(k) of ψ(0,k) is normalized by χ(k)= — fcα + π / 4 +o(l),/c-> 00. Since
G(k) -• 0 as k -* 00 (see (7.6)), the relation (7.5) implies that η(k) = Im G(k) + χ(k) + ka
-π/4 .

Corollary. 1) Let the conditions of the first part of Theorem 10 hold and qQ < 0. Then
ask->0

A(k)~\ψo(0)\k1l2Mk)~-G0k
1-2!«-η_+o(l\η_=g1+π/4-χ(0). (7.11)

2) Let for some ωo>0 the conditions of the second part of Theorem 10 hold, qo>0
and zero is not an eigenvalue of the operator H. Then as /c->0

+ ^)| lA0(0)|, I
η(k)= - G o c o s π / α ^ 1 - 2 / α + ^ + ( l ) / 4 ( 0 ) J

Note that according to (1.3) the asymptotics (7.11), (7.12) for A(k) agree with the
formulae (3.8), (5.10) for p(k) and are valid for all αe(0,2). Relation (7.11) ensures that
in the case qo<0 necessarily ,4(0) = 0. Thus for negative slowly decreasing
potentials the operator H always has a zero-energy resonance (whereas for short-
range potentials this is an exceptional case). However, A(k) vanishes only as /c1/2, i.e.
slower than for short-range potentials. Hence this stable zero-energy resonance is
"weaker" than an unstable one in a short-range case. In particular, this is exhibited
in a local decay of U(x,y;t): for negative slowly decreasing potentials U(x,y;t)
vanishes as t~ \ whereas in a short-range case, as t~3/2(Λ(0) φ 0) or t~1/2(A(0) = 0).
On the contrary, if q0 > 0, relations (7.12) for A(k) or (5.10) for p(k) show that the
density of quantum states vanishes exponentially as the energy tends to zero. This
result may be interpreted as a disappearance of a sharp boundary at the spectral
point zero between the continuous spectrum and the regular points of the operator
H. In this case we call the point zero quasiregular. This notion is opposite to the
notion of a zero-energy resonance when ρ(k)/po(k) -• 00 as k -> 0(po(fe) = 2π~1k2 is
the spectral function of Ho).

As is well known, the infinitude of the negative spectrum of the operator H with
the negative slowly decreasing potential is connected with the infinitude of zeros (see
(3.2)) of the solution φo(x,0) of Eq. (1.1) for s = 0. The above-described results and
notions can be also clarified from the point of view of asymptotic behaviour of its
solutions. In a short-range case φo(x,0) grows generically as x and is bounded if a
zero-energy resonance exists. For slowly decreasing negative potentials both
solutions ιj/0(x) and ^0(x) of (1.1) for s = 0 increase slower than xα/4 = φc 1 / 2 ) , x -» 00,
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but are not bounded at infinity. The estimate φo(x,0) = o(x1/2) corresponds to the
existence of a zero-energy resonance. Since, however, φo(x,0) is not bounded at
infinity, this resonance should be weaker than in a short-range case. For slowly
decreasing positive potentials Eq. (1.1) for 5 = 0 has solutions behaving itself as
exp [ + qo/22(2 — α)~ 1 x 1 ~ α / 2 ] , x -• oo. Hence one of them is exponentially growing
and another is exponentially decaying at infinity. This is similar to the behaviour of
solutions of (1.1) for Ims > 0 and justifies the term "quasiregular point" for s = 0.

Relations (7.11), (7.12) give also the asymptotics of the function p(x,k)as fc-^O:

p(x,fc)~ k~ι e x p ( - 2 ^ ' ~ 2 ' « -2θl)\ψo(0)\-2] \φo(y,0)\2dy, qo>0.
0

These formulae are valid for all αe(0,2). Thus for positive potentials decreasing at
infinity slower than x~2, the number of particles from the scattered beam, which are
localized in a fixed compact region, decays exponentially as the energy of particles
tends to zero. For Coulomb potential this circumstance was noted in [10].

The substitution of asymptotics (7.11), (7.12) for η(k) in definitions (7.2) shows
that the scattering matrix is oscillatory as k -* 0 and the partial scattering cross
section obeys

σ(k) = 4πfc-2sin2 (g + k1 ~2/a + η±

where signs " + " ("—") correspond to positive (negative) potentials, g+ =
-G 0 cosπ/α,#_ = Go.

Let us discuss the behaviour of η(k) as /c—>0 from the point of view of its
conformity with Levinson's theorem (formula (7.3)). In the case q0 < 0, by (7.11) η(k)
tends to — oo as k -•0, and the negative spectrum of H is infinite. Thus for negative
slowly decreasing potentials both sides of (7.3) equal + oo. In the case q0 > 0, (7.12)
shows that η (k) -+ + oo as k -> 0, and hence for positive slowly decreasing potentials
the formula (7.3) is violated.

In conclusion we note that all considerations of the present paper may be
generalized from (1.1) to the equation — u" + £{£ -f l)x~2u + q(x)u = s2u. Since the
centrifugal term t?(t?+l)x~2 vanishes at infinity faster than q(x)9 for arbitrary
angular momentum £, the low energy asymptotics of all spectral data are similar to
the case £ = 0. In particular, in contrast to short-range potentials for different £
partial scattering cross sections have the same order.
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