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Abstract. Starting from the fact that electrically charged particles are massive,
we derive a criterion which characterizes the state space of quantum elec-
trodynamics. This criterion clarifies the special role of the electric charge
amongst the uncountably many superselection rules in quantum electrody-
namics and provides a basis for a general analysis of the infrared problem.
Within this framework we establish the existence of asymptotic electromag-
netic fields in all charge-sectors, find a general characterization of infra-particles
and introduce a notion of asymptotic completeness.

1. Introduction

In striking contrast to the excellent experimental confirmation of quantum
electrodynamics, the understanding of its conceptual foundations is still only of a
rather qualitative nature. Besides the well-known infrared problems which one
encounters in the interpretation of physical states at asymptotic times [1], the even
more fundamental problem of defining a physical state space has not yet been
solved in a satisfactory manner. It is the aim of the present contribution to clarify
this point and thereby to provide a basis for a general discussion of the structure of
quantum electrodynamics.

There are two related problems which one encounters in the definition of a
state space. First, there exists the well-known difficulty that physical states
carrying an electric charge cannot be constructed by applying local field operators
to the vacuum state. This fact can be traced back to Gauss' law which implies that
the electric charge of a particle can be determined by measuring the total electric
flux through an arbitrarily large sphere surrounding the particle [2, 3].

The second complication, which is less frequently noticed although it has the
same physical origin, consists in the fact that there exist uncountably many
superselection sectors in quantum electrodynamics. This may be seen from the
following heuristic argument: choosing some Lorentz system, the observable φ
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measuring the asymptotic electric flux-distribution in spatial directions n, |n| = 1 is
given by

φ(ή)= l imr 2 n E(r n). (1.1)
r->oo

Here E is the suitably regularized electric field operator, and it is tacitly assumed
that the limit can be defined on the states of interest, φ is a classical observable
because it commutes with all local observables due to the principle of locality.
Therefore it is represented in each superselection sector by some onumber
function n-xp(n) describing the asymptotic electric flux-distribution of the states
in that sector [24].

Now the only physical constraint imposed on the functions φ is that the total
flux jdωφ(n) must be a multiple of the electric charge. This indicates that there
exists a tremendous number of superselection sectors in quantum electrodynamics
corresponding to a variety of asymptotic flux-distributions φ. In particular, one
can generate a continuum of states belonging to sectors with different asymptotic
flux-distributions φΛ by acting on any charged state with all Lorentz transfor-
mations Λ. (The latter fact also explains the breakdown of Lorentz covariance in
sectors describing charged states [4].)

In the conventional field-theoretic treatment of quantum-electrodynamics one
simply ignores this abundance of sectors and selects in some arbitrary way a
convenient subset of states. In the Coulomb-gauge [5], for example, this is done by
constructing a nonlocal charge-carrying field operator which generates states from
the vacuum with a fixed asymptotic flux-distribution (usually one chooses a
spherically symmetric one). The resulting Hilbert-space consists then of a count-
able number of superselection-sectors which can be distinguished by their electric
charge.

It is less obvious how such a selection of states is achieved in the Gupta-Bleuler
formalism [3]. There one constructs with the help of the local gauge-fields an
indefinite metric space of unphysical vectors, which are expected to approximate
the physical states in a suitable topology. Since the choice of this topology is highly
ambiguous, it is not quite clear which physical sectors are actually obtained by this
procedure. But the resulting physical Hilbert-space is always separable, so that it
also contains an at most countable number of superselection-sectors with a
discrete weight.

Despite the fact that these field-theoretic settings do not include all super-
selection sectors, they cover all situations of physical interest. In fact it follows
from the well-known "particle behind the moon"-argument of Haag and Kastler
that even the states in a single superselection-sector would be sufficient to deduce
all the physically relevant information [6]. But the conventional field-theoretic
settings are not a very convenient frame if one wants to express the fact that there
exist sectors in quantum electrodynamics with almost arbitrary asymptotic flux-
distributions. Since we want to exploit this important feature which allows us to
choose the localization properties of charged states within certain limitations, we
will use here the more flexible Haag-Kastler framework of local quantum theory
[6]. In this framework a unified treatment of all superselection sectors of quantum
electrodynamics is possible!



State Space ofQED 51

Using the fact that the charged particles are massive, we will introduce in
Sect. 2 an equivalence relation between sectors of a given electric charge. The
resulting concept of charge-classes is used in Sect. 3 to select those charged states
which have the best possible localization properties with respect to the vacuum.
We propose to consider this set of states as the physical state space of quantum
electrodynamics. In Sect. 4 we will show that one can define on these states
incoming and outgoing electromagnetic fields as limits of local observables. Using
this result we will also obtain some information on the asymptotic observables
which are associated with the charged particles. In particular, we will find a
general characterization of infra-particles and introduce a notion of asymptotic
completeness which applies to quantum electrodynamics. With this input, we can
show in Sect. 5, that the sectors within a charge-class only differ by radiation fields
which are induced by an infinite number of incoming, respectively outgoing, low-
energy photons (infrared-clouds). This result establishes the consistency of the
underlying physical ideas.

We conclude this introduction with a list of assumptions. The basic objects in
our analysis are the local observables, which according to the fundamental work of
Haag and Kastler are known to embody all the relevant physical information. In
quantum electrodynamics these observables are the electromagnetic field Fμv and
the electric current j v = dμFμv. In order to avoid the discussion of domain problems
we assume that these field-operators smoothed out with suitable testfunctions
generate a net 0-*2ϊ(0) of C*-algebras indexed by the bounded regions Θ of
Minkowski space. Thus each 21(0) may be regarded as the algebra of all
observables which can be measured within 0. For unbounded regions ^ , the
algebras of observables 2ί(^) are defined as the C*-inductive limits of the local
algebras 21(0) with ΘCM,

210*)= U W@)> ί1-2)

and 2ί = 2ί(IR4) denotes the algebra of all local observables. We recall that
observables in spacelike separated regions commute (locality)

[2I(0J,2r(0 2)]=O if 0 X C0' 2 (1.3)

and that the Poincare transformations L induce automorphisms αL of 21 which
respect the local structure of the net (covariance)

αL(2I(0)) = 2I(L 0). (1.4)

The physical states in quantum electrodynamics are distinguished by the fact
that they induce representations (π, Jrif) of the algebra 2ί on a separable Hilbert-
space j f which are invariant with respect to the space-time translations x = (ί, x).
This means that there exists a strongly continuous unitary representation x-» U(x)
of the translations on jtf such that the operators U(x) implement the action of ax

π(ax(A))=U(x)'π(A) U(xΓ1 for 4e2l. (1.5)

Moreover, the generators P = (P 0,P) of U(x) satisfy the relativistic spectrum
condition, i.e.

(1.6)
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If the representation π is reducible, then the operators U(x) are not fixed by these
conditions. It can be shown, however, that it is always possible to find operators
[7(x)eπ(9I)~ such that the spectrum of the generators P has a Lorentz invariant
lower boundary1 in each factorial subrepresentation of π [7], and this property
fixes them uniquely. We will call representations exhibiting these properties
positive energy representations.

Amongst the positive energy representations in quantum electrodynamics
there exists in particular the irreducible vacuum representation (π0, Jf0) of 91. We
assume that there is a continuous unitary representation L->U{L) of the full
Poincare group on ^f0 which implements the automorphisms αL and leaves
invariant the (up to a phase unique) vector Ωe34?0 representing the vacuum state.
Moreover, there is a subspace J f ^ C J>f0, describing states of a single photon, on
which the Poincare transformations U(L) act like a direct sum of irreducible
representations of zero mass.

We mention as an aside, that starting from a local, covariant field such as Fμvi

there is a canonical way of constructing in the vacuum representation a net
$-•91(0) of local algebras. This net satisfies the above assumptions and in addition
duality [8], a powerful maximality condition invented by Haag [9]. It is therefore
natural to consider the vacuum representation as the defining representation of 91.

2. Charge-Classes

A superselection sector is defined as a class of unitarily equivalent irreducible
representations of 91, where we restrict our attention to positive energy repre-
sentations as defined in the Introduction. In view of the preceding discussion we
must be prepared for a tremendous number of such sectors corresponding to
different asymptotic electric flux-distributions, and there arises the question as to
what distinguishes the electric charge from the other superselection rules in
quantum electrodynamics.

An answer to this question can easily be given in physical terms: the electric
charge is tied to massive particles which move with a velocity which is less than the
velocity of light. It is therefore possible to determine the total electric charge of a
state by measurements in proper subregions of Minkowski-space, such as the
lightcone V+. This is plausible if one notices that all charged particles which are
described by a state will eventually enter that cone, provided they are not
annihilated in pairs. On the other hand it is not possible to determine the
asymptotic electric flux-distribution in V+, because photons coming from the
remote past cannot be observed in that cone, but they will in general affect the
flux-distribution.

The fact that the electric charge of a state can be determined in a lightcone, but
not its sector, indicates that the positive energy representations of 9ί can be
combined into classes of representations whose restrictions to the subalgebras
9ί(F + +α) are equivalent for all αeR 4 . Each such class should contain repre-
sentations of a fixed electric charge but quite arbitrary asymptotic flux-
distributions. We will verify this assertion in the following analysis.

1 This result follows only from the spectrum condition and locality, so that it can be applied in a
situation where the Lorentz transformations are not unitarily implemented
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Given any positive energy representation (π, Jf) of 91 we consider its center,
3 = π(5I)~nπ(2I)/, and the center of its restriction to $I(F++α) where αeIR4 is
fixed, 3+ =7r(9I(F+ +α))~rΊπ(9t(F+ H-α))'. The following lemma is then a con-
sequence of the spectrum condition for the translations U(x) in the representation
π.

Lemma 2.1. i) The elements of 3 + cire invariant under arbitrary translations,
U{x)ZU{x)~1=Z for

Proof Let n be any positive timelike vector. Then it is obvious that
U(t-n)'3+ U(t n)~1C3'+ for ίelR, so that the von Neumann algebra
\/ U{t' - n) 3 + * U{tf - n) ~ ι is Abelian. This algebra is, by construction, stable under
f

the automorphisms induced by the translations U(t n). On the other hand we
know from the spectrum condition (1.6) that the generator of ί-> U(t n) is positive.
It then follows from a theorem of Borchers [10] that the elements of this algebra
are pointwise fixed under the action of U(t n), hence U{t n) Z U{t n)~1=Z for
Z G 3 + This proves the first part of the statement, because the linear span of all
positive timelike vectors n is IR4. The second part is then an immediate
consequence. QED

Since 3+ C3> one can decompose the representation π with respect to 3+ [11],

π= J dμ(ξ)πξ, (2.1)
SP3 +

and the representations πξ belong (for μ-almost all ξ) to the class of positive energy
representations. Moreover, since 3+ = π(3I(F+ + α))~nπ(2I(F+ +α))' does not de-
pend on a, it follows that the restrictions of the representations πξ to the algebras
2ϊ(F++α), αeIR4 are factorial. It is therefore sufficient to concentrate in the
following on such representations.

Now given any two such representations, it is clear that they induce either
quasi-equivalent or disjoint representations of the algebras 2I(F+ + α), αeIR4. We
shall see that in the present case one can replace in this general alternative the
notion of quasi-equivalence by unitary equivalence. At this point it is essential that
the model describes massless particles.

This fact should imply that one can define asymptotic electromagnetic fields as
LSZ-type of limits of local observables in the representations (π, Jf) of interest. If
there is any reasonable way of constructing the outgoing field F o u t , for example, it
should generate a net 0->go u t($) of von Neumann algebras on ^ which is
covariant with respect to the action of the translations U(x) and which has in
addition the following properties. (These properties will subsequently be derived in
the frame of the infrared minimal representations, cf. Theorem 4.1 below.)

i) g o u t ($)Cπ(2I(F + +α)Γ if ΘCV++a
ii) go u t($)Cπ(2I(F++b)y if ΘCV_+b

c*
iii) (J go υ t($) = $ o u t has a cyclic vector in j#\

Θ

The first property follows from the physical meaning of F o u t and the second
one amounts to Huygens' principle [12]. It is only the third property which
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requires some explanations. Since g o u t is generated by a free field, it is a realization
of the algebra of canonical commutation relations, and it is therefore clear that
go u t~ does not have any normal tracial state. Thus the von Neumann algebra
gout~~ is properly infinite, and since also legout~~ it follows [11, Theorem 2.2.4]
that there exist infinitely many isometries FJego u t~, jeN with orthogonal ranges,
i.e. VfVj = δij l. Hence one must only choose some orthonormal basis {Φi}ie]N in

00

Jίζ and the vector Φ= YJ2~i'ViΦi is then clearly cyclic for goυt.
1

After these preparations, we can now continue our analysis of those positive
energy representations π for which π(9ϊ(F+ + α))~ is a factor. The following lemma,
where we exploit the anticipated structural properties of go u t, is the analogue of a
result of Borchers [13].

Lemma 2.2. Let Eeπ((Ά(V+ +a))\ EφObea projection. Then, for some belR4, there
exists an isometry Feπ(3I(F+ +b))' such that F* F = 1 and V V* = E.

Proof. Let b be such that (V++b)C(V++a). Then it suffices to establish the
existence of a vector ΦeJf such that Φ is cyclic and E Φ is separating for the
algebra π(2l(F+ +&))". Since in that case there exists another cyclic vector
for which [11, Theorem 2.7.9]

(EΦ,B EΦ) = (Ψ,BΨ) if

and it is then easy to verify that the isometry V defined by

V-BΨ = BEΦ for

has the desired properties.
For the construction of the vector Φ we pick a region Θ such that its closure

ΘC{V+ +a)n(V_ +b) and a vector Φe Jf which is cyclic for g o u t ". Now since the
spectrum condition holds for U(x) and since go u t~ is stable under the automor-
phisms induced by U(x), there exists a representation of the translations
U(x)e$oxlt~ satisfying the spectrum condition and inducing the same automor-
phism on go u t~ as U(x) [10]. Hence the vector Φ = e~H-Φ9 where H denotes the
positive generator of the time-translations ί->ί7(ί), is also cyclic for go u t~
Moreover, Φ is an analytic vector for H, therefore it follows from the Reeh-
Schlieder theorem [14] that Φ is cyclic for each subalgebra

(J U{xr) - go u t(#) lUxY1 C S o u t if Jί is an open region of IR4.
x'eJί

Now according to the properties of the net $-»gout($) one has
U(x)'%out(Θ)'U(xΓ1Cπ(M(V+ +b))~ for sufficiently large timelike x9 hence Φ is
cyclic for π(2I(F+ +&))". On the other hand, if B EΦ = 0 for some
J3eπ(2ί(F+ +b))~, one gets for a whole neighbourhood Jί of the origin in IR4

B B f U t/(x) afout(ίP)- U(x)"1 Φ] = 0 ,
[xeJί \

because with our choice of Θ it follows that

U{x) Sout(^) U(x)~ι C π(9I(F+ + a))' n%{<&{V+ + b))'
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if x is small. Thus BE = 0, and since π(2l(F+ +α))~ is a factor, 5 = 0. Consequently
£ Φ is a separating vector for π(2l(F+ + &))", and this completes the proof of the
statement. QED

The already mentioned, sharpened alternative holding for positive energy
representations is now an immediate consequence of this lemma. (See the appendix
of [2] for a similar argument.)

Proposition 2.3. Let πv π2 be positive energy representations of 91 whose re-

strictions to <Ά(V+ +a) are factorial. Then

- either πt t9t(F+ +b)^π2\3I(F+ +b) for feelR4,
- or π ir9I(F++fc)iπ2r9ί(F++fo) for fcelR4,

where the symbol i denotes disjointness.

Proof We must only show that the nondisjointness of πί and π 2 on 2ί(F+ + α)
implies the equivalence of these representations on 9ί(F+ + b) for all be IR4. Now any
subrepresentation π\ of πx Γ9I(F+ + α) is of the form

π'1{A) = π1{A)Έ for ,4e9I(F + +α),

where EGπ1(3ϊ(F+ +α))' is a projection. From the previous lemma it then follows
that π\ and T^ are unitarily equivalent on 9I(F++6) for some b. A similar
statement holds for π 2, hence if π1 Γ9ί(F+ H-α) and π 2 f 2ί(F+ +α) have equivalent
subrepresentations, then π1 \ 9ί(F+ + b ) ^ π 2 Γ 2 I ( F + +b). This result extends to
arbitrary b because the representations π1 and π 2 are invariant with respect to
translations. QED

We can divide now the positive energy representations into charge-classes
according to the following

Definition. Let π be a positive energy representation which is factorial on 9I(F+).
The charge-class [π] of π consists of the set of positive energy representations π1

for which

π ir9r(F+)-πr9I(F+). (2.2)

(It is an interesting question whether πί is then equivalent to π also on the
algebra 9I(F_). If this should not be the case, one must distinguish in the following
analysis between the charge-classes [ π ] F + and [ π ] F , respectively.)

It follows from the above proposition that the set of representations in a charge
class [π] is stable under taking direct sums and subrepresentations.

We will see that the charge-classes are a useful tool for the description of the
localization properties of charged states. But before we can enter into that
discussion, we must consider the question of how the charge-classes differ from
each other. According to the above heuristic remarks it is plausible that
representations of different charges belong to different charge-classes. The con-
verse is, however, not true: we will indicate below that there exists a variety of such
classes describing representations of a given electric charge which differ by some
background radiation field.

Let us consider some irreducible positive energy representation (π, 3tf) of 91
and study the algebras g i n and g o u t of the asymptotic electromagnetic field on Jf.
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We call the expectations of elements of g i n, respectively go u t, in a state the
(incoming, respectively outgoing) radiation fields of that state. Now because of the
presence of charged particles there will be in general substantial differences
between the radiation fields of different states which may cause the corresponding
subrepresentations of the asymptotic algebras ffin, respectively 50Ut? to be disjoint.
But since π is irreducible the radiation fields of the states in J-f can be transformed
into each other by the action of local observables. Thus we may say that the
differences between these fields are of a dynamical origin.

Let us compare next the radiation fields appearing in the charge class of π:
using Huygens' principle and Lemma 2.1 one can show that the algebra go u t(F_)~
is a factor, and assuming that the algebras go u t(F_)~ and g i n(F_)~ are isomorphic
(which is clearly true if a scattering matrix exists) it follows that g i n(F_)~ is a factor
too. Therefore one can apply the arguments of Lemma 2.2 and show that the states
in J f induce equivalent representations of the algebra g i n(F_)~. Since
5 i n(F_)~ Cπ(9ί(F_))~ this result can then be extended to all states belonging to the
charge-class of π. Thus the various representations of the incoming electromag-
netic field appearing in the charge-classes of π cannot be discriminated by
measurements in V_. (An analogous statement holds for the outgoing elec-
tromagnetic field.)

It is straightforward now to exhibit representations of the same electric charge
as π but belonging to different charge-classes: if ω is a vector-state with finite
energy in the representation π, one can add to it (by means of creation operators)
any number of incoming low-energy photons such that the resulting states ωn have
about the same energy as ω. Hence each limit point ω' of these states should
induce a positive energy representation of 91 [15] which, by construction, has the
same electric charge as π. Now there exist sequences of states for which2

i 2 (2.3)

for each αeIR4, and taking into account that g i n(F_)~ is a factor and that the free
electromagnetic field commutes with itself at timelike distances, it follows from this
relation that no limit point ω' of the sequence ωn is a normal state of 5m(F_)~.
Hence the states ω and ω' do not belong to the same charge-class although they do
have the same electric charge.

In view of the above remarks it is clear that the states ω and ω' differ by
radiation fields which cannot be transformed into each other by the action of local
observables. In order to stress this point we say that these states have different
background radiation fields. Thus the charge-classes are not only labeled by the
electric charge but also by such background fields.

3. States of Interest

Up to this point we have considered in our analysis the whole set of physical states
in quantum electrodynamics. Now we want to restrict our attention to the subset
of states which do not have any background radiation field. The charge-classes

2 This statement can easily be verified because it refers only to the free electromagnetic field
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generated by this restricted set of states are expected to be uniquely characterized
by their electric charge, and we will incorporate this idea in the subsequent
selection criterion. Moreover, since the vacuum does not have a background field,
we can take it as a reference state, and we will identify all other states of interest by
their good localization properties with respect to the vacuum. The formal
conditions characterizing these states are the following ones.

Criterion. Let ω be a state inducing a representation (π, jj?) of 91. ω is called an
infrared minimal state (and π an infrared minimal representation) if the following
conditions are satisfied:

i) π is a positive energy representation.
ii) π°oίΛe[π] for all Lorentz transformations Λ.

iii) For each open, pointed spacelike cone3 ^ C l R 4 there exists a repre-
sentation π ^ e [ π ] such that

7v r 9l(.S") ̂ π o f 9I(^'), (3.1)

where π 0 is the vacuum representation.

It is obvious that the vacuum induces an infrared minimal representation in the
sense of this selection criterion, and we will now provide some heuristic arguments
to the effect that the criterion admits also states carrying an electric charge. The first
condition needs no explanation, so let us consider the second one. This condition
says that the states in the representations π°ocΛ and π cannot be distinguished by a
classical observable which can be determined in a lightcone. Since the electric
charge is Lorentz invariant, this requirement should not exclude charged states,
but we expect that it rules out states with a background radiation field. For the
infrared minimal representations it is noteworthy that for each π 1 e [ π ] one has
π 1 °α y l e[π°α y l ] = [π] because Lorentz transformations map lightcones onto
lightcones. Thus stability of the charge-classes under Lorentz transformations
seems to be the appropriate substitute for the general lack of invariance of the
individual representations [4].

The third condition of the criterion expresses the assumption that one can
prescribe the shape of the asymptotic electromagnetic field of the infrared minimal
states of a given charge. Of course, one must choose suitable data in order not to
come into conflict with the first two conditions of the criterion. But taking classical
electrodynamics as a guide, (which is legitimate in this context because all that
matters is the behaviour of the field at infinity, which is essentially classical) it
seems to be plausible that one can find states of a given electric charge which have
finite energy and whose electromagnetic field at time t is confined (in the sense of
Cauchy-data) to some cone ^CΊR3 without giving rise to a background radiation
field4. Because of locality, it would then not be possible to distinguish such a state
from states in the vacuum representation by measurements in the causal comple-
ment Sf' of the region (t,£f), and this is the content of relation (3.1).

3 It suffices to consider cones £f of the form £f = a + (J λ &, where ae IR4 and Θ is an open double
Λ > 0

cone whose closure lies in the spacelike complement of the origin in IR4

4 In classical electrodynamics such background fields are connected with Cauchy-data which
decrease more slowly than the Coulomb field, i.e. than |x|~2
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In a field-theoretic setting it should be possible to construct the infrared
minimal states with the help of Coulomb-type field operators ψc, which are
formally related to the Fermi-field ψ and the vector-potential A in the Gupta-
Bleuler formalism according to

ψc(x) = ψ(x) exp(ίe J d4yc"(x - y)Aμ{y)). (3.2)

The functions cμ have to satisfy the equation

(3.3)

because ψc must be invariant under local gauge-transformations. Moreover, in
order not to give rise to any background field, cμ should decrease in all directions
of IR4 at least like |x| ~ 3 this is the optimal behaviour which is compatible with this
equation. The set of these functions cμ is stable under Lorentz transformations,
and for any open spacelike cone 9 containing the origin of Minkowski space there
exist functions cμ having support in y . Therefore one may expect that the
appropriately regularized field-operators ψc generate charged states from the
vacuum which belong to the set of infrared minimal states. Yet since it is not quite
clear whether one can give a rigorous meaning to the fields ψc and since the
concept of a charge class does not fit very well into a fieldtheoretic setting, we will
use here the more intrinsic characterization of infrared minimal states given in the
criterion.

We remark, as an aside, that our selection criterion leads also to a complete
characterization of the physical state space in massive particle theories. It is
evident that in such a theory the energy of a state can be determined in each
lightcone of Minkowski space, similar to the electric charge in quantum elec-
trodynamics. Therefore, the time translation operators U(t) are elements of the
algebras π(2I(F±))~, and consequently π(2I(F±))~ =π(9I)~. (For a formal argument
see [16].) This implies that the notions of charge class and sector are synonymous
in massive theories. Thus the second part of the criterion amounts to the condition
that each representation π of interest has to be invariant under Lorentz transfor-
mations, and the third part means that π must be equivalent to the vacuum
representation on the algebras 91(5 '̂) for each spacelike cone £f. It has recently
been shown (without making any assumptions on charge-carrying fields) that all
particle states in a massive, Poincare covariant theory fulfill these conditions [17].

We believe that the infrared minimal states constitute the smallest set of states
which is stable under Poincare transformations and which contains charged states
with optimal localization properties relative to the vacuum. Therefore we propose
to consider this set as the physical state space of quantum electrodynamics. But we
recall that this choice of states is merely a convention, which we adopt here
because on the one hand these states exhibit the basic features of quantum
electrodynamics, and on the other hand they are a convenient starting point for a
general structural analysis.

In conclusion let us mention two other possibilities of choosing a physical state
space which have been discussed in the literature. The first one amounts to picking
from each charge class a particular representation and then taking their direct
sum. This is what one does in a field-theoretic setting if one generates the physical
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states from the vacuum by means of a fixed Coulomb-field ψc. If the localization
properties of the field ψc (i.e. the functions cμ) are held fixed, it is, however, difficult
to exploit locality in the analysis of the physical state space. Therefore we consider
here states with arbitrary localization properties. This forces us to deal with many
inequivalent representations, but if these representations belong to a fixed charge-
class, we know how they are related, and this is an important additional piece of
information embodied in our setting.

The second alternative consists in selecting states which have a specific
background field. That such a choice might have its virtues has been pointed out
by Kraus et al. [18]. The basic idea in this approach is to add to the vacuum state
a background field which is sufficiently strong such that the radiation fields which
are produced in collisions can be regarded as small perturbations of it. All states in
such an infra-vacuum representation π 0 of 9ί are expected to induce quasi-
equivalent representations of the algebra generated by the incoming or outgoing
electromagnetic field, respectively. So, in a sense, the asymptotic radiation fields
are, in these representations, decoupled from the momenta of the charged
particles, and one may hope that this simplifies their description in collision
processes [18].

Charged states could be obtained in this setting by applying the Coulomb-field
operators ψc to the vector representing the infra-vacuum. We conjecture that the
corresponding representations π are equivalent to the infra-vacuum representation
π 0 on the algebras 2I(^') for arbitrary spacelike cones Sf,

π\M{9")^π0lSBL{#")9 (3.4)

because the background field should make it impossible to discriminate the
asymptotic flux-distributions of these representations. (It is only the total electric
flux on which the background field has no effects.) Hence with regard to the
localization properties of the representations π, one would be in a situation similar
to that discussed in [17] for massive theories, so from this point of view this
scheme also looks attractive.

Unfortunately, one does not yet have sufficient control on the properties of the
infra-vacuum representations π 0 to take them as a starting point for an analysis of
the infrared problems in quantum electrodynamics. Moreover, it is to be expected
that a discussion of the asymptotics of the charged particles (the infra-particle
problem [19]) will be more difficult in these representations than in the infrared
minimal representations, because one has to take into account the response of the
charged particles to the background field. In view of these difficulties we have
chosen to restrict our attention to the infrared minimal states, because they
describe the most transparent idealizations of actual experimental situations.

4. Scattering Observables

In this section we want to show how one can extract from the defining properties
of the infrared minimal states information about the structure of the observables
at asymptotic times. This question is intimately related to the infrared-problem,
and we want to clarify here some of the basic facts concerning this matter.
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Our main result in this context is that asymptotic electromagnetic fields Fin

and F o u t can be defined as LSZ-type of limits of suitable local observables in all
infrared minimal representations. For the proof of this assertion it is essential that
there exist representations in a given charge-class which are localized in spacelike
cones. This fact enables us to extend the results of [12] (where the existence of
asymptotic electromagnetic fields has been established for the vacuum repre-
sentation π0) to all representations of interest.

Let F = F*e2I be any local observable such that πo(F) connects the vacuum
with a single photon state. In addition we assume that the function x-+ctx(F) = F(x)
is smooth in the norm-topology on 9ί and that its Fourier-transform is sufficiently
regular at the origin in a sense made precise in [12]5. Then we define for each ίelR

Ft(f)=-2t ldωf{n)d0F{t,t n)9 (4.1)

where dω = dω(ή) is the normalized, invariant measure on the unit sphere S2, /(n)
is a real, smooth function on S2 and d0 denotes differentiation with respect to the
time-translations. The observables Ft(f) are designed to approximate the asymp-
totic electromagnetic fields in the limit of large t. In order to improve the
convergence of these sequences it is necessary to take suitable time-averages of
Ft(f\ as for example ( | ί |>l)

Λ ί + ln|ί |

m ! d t ' F λ f ) - ( 4 2 )

It then follows from [12] that these sequences converge for ί-> ± oo (in the sense of
strong resolvent convergence) in the vacuum representation to asymptotic fields
which have all properties expected from a smoothed-out, free massless field.
Actually, this has only been demonstrated for the case / = 1, but the argument in
[12] is valid for arbitrary smooth functions / Amongst the properties of the
asymptotic fields which are of relevance here we mention that

5- lim πo(Fί(/))Ω = ̂ 1 ) . / f | - ) πo(F)Ω, (4.3)

where £ ( 1 ) is the projection onto the single-photon space Jf(

o

υ and P is the
momentum operator in the vacuum representation. Furthermore,

s- lim πo(eίFtif) eίFίif>) e " i F t i f ) " iF'tifΊ) = ζ • 1, (4.4)
ί-> ± 00

where ζ is a phase-factor. Hence the exponentials of the asymptotic fields have the
familiar Weyl-commutation relations.

In order to establish the existence of these limits for all infrared minimal
representations π we proceed as follows: first we pick some pointed, spacelike cone
Sf with apex at the origin of Minkowski space and a representation π^e [π] which
is equivalent to π 0 on 21(5 '̂). Then we exploit the simple geometrical fact that there
exists some open set Σ c S 2 such that fi\+(i, t-Σ)C&" for each bounded region
Θ1CV_ and sufficiently large positive t. Hence if we choose in the defining relation

5 Since the representations of interest are locally normal with respect to π 0 these two conditions can
be met by extending the local algebras, if necessary



State Space of QED 61

(4.1) any function / with support in Σ and an observable F e S l ^ J it follows that
Ft(f)e SΆ(6^f) for large t. Because of the equivalence of π^ and π 0 on *&(£f') it is then
clear that the strong limit

s-lim nJeiFt{f)) (4.5)
ί->00

exists. Moreover, since the representation π^ is invariant under translations this
result extends to observables F which are localized in arbitrary bounded regions
$ClR4. By the same token one finds that for functions /,/ ' with support in Σ the
commutation relations (4.4) hold in the representation π^ with the same ζ as in the
vacuum representation. Hence we have established the existence of outgoing
electromagnetic fields in the representation π#,, whose momentum transfer is,

however, restricted to the set <̂ p: — e ±Σ>, as can be seen from relation (4.3). Now

I IPI J
we exploit relation (2.2) relating the representations within a charge-class: if
FESΆ(Θ) we have by construction e i F t ( / ) e2I($+ V+) for positive ί, and since
π^e[π] it follows from relations (2.2) and (4.5) that the limit

s-lim π(eiFtif)) (4.6)
ί-> oo

exists if supp/cΣ. This argument holds for each choice of the cone £f, and it is
then clear that the limit (4.6) exists for smooth functions / which have support in
sufficiently small regions generating some covering of S2.

After having established the existence of asymptotic fields Fou\f) for these
special functions we will now extend this result to / = 1 the corresponding fields
F0Ui(l) = F0Ut can then be used to generate the local algebras of the outgoing
electromagnetic field. Since it is not clear to us whether the limit (4.6) exists i f / = 1,
we define F o u t by exploiting the linearity of Fou\f) in / and the c-number
commutation relations of free fields. In order to illustrate this idea let us assume

n

for a moment that F o u t exists. Then, if £ / . = 1 is a partition of unity for a covering
of S2, we could write 1

eίF°ut = ζ' - e

iFoxlt{fί).. .eiF°ut(fn), (4.7)

where ζ' is some phase-factor. Now if the regions in the covering of S2 are
sufficiently small then each operator on the right hand side of (4.7) exists, and we
can interpret this relation as the definition of eιF°u\ We must only verify that this
definition is consistent, i. e. that it does not depend on the choice of the partition of
unity.

According to these remarks we define eiF°ut as the limit

s-lim π(C' e l F t ( / l ) . . .β i F t ( / n ) ), (4.8)
ί->oo

where ζ is given by

and ω 0 is the vacuum state. Using the commutation relations (4.4) for functions
/, / ' which both have support in a sufficiently small region Σ C S2 as well as the fact
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that because of locality

(4.10)

if t is large and /,/ ' have disjoint supports, it is easy to prove that the limit (4.8)
n

indeed does not depend on the chosen partition Σfi=l
1

We now define a net $->g o u t(0) 6 of von Neumann algebras in π(5I)~ by setting
for each double cone Θx and sufficiently regular observables F

i F t }". (4.11)

The algebras for arbitrary regions Θ are then obtained by addivity. Applying the
arguments in [12] it is straightforward to verify that the net Θ-^^0U\Θ) is local and
covariant with respect to the action of the translations U(x). Moreover, if
Θ C V+ + a we get by construction

(4.12)

and if Θ C V_ + b it follows from locality that

(4.13)

which is Huygens' principle. (These are the structural relations anticipated in
Sect. 2.) Hence we get

Theorem 4.1. Let (π, 3tf) be an infrared minimal representation. Then there exists a
local, covariant net $->go υ t($) on Jf which is generated by the outgoing (free)
electromagnetic field and satisfies

i) Sout(0)Cπ(2I(F++α)Γ if ΘCV++a.
ii) a r ( 0 ) c π(2I(F+ + b))' if ΘcV_+b.

(A similar statement holds for the incoming field.)

Let us now turn to a discussion of the asymptotic observables which are
sensitive to the massive particles. According to the general ideas of Araki and
Haag [20], it should be possible to obtain these observables as time-limits of
suitable averages of almost local observables Ce9ί, such as

ί3 Jd3ι;/ι(v) C(ί,ί v), (4.14)

where h is a function which has support in the region |v| < 1, and C annihilates the
vacuum state, i.e. ωo(C*C) = 0. Unfortunately, we are not aware of a rigorous
argument establishing the existence of any reasonable limit of these sequences in
quantum electrodynamics, and it is conceivable that one has to proceed in a rather
indirect way in order to gain control on the limits (as in the case of the
electromagnetic field).

One may, however, expect from the asymptotic localization properties of the
observables (4.14), as well as from the fact that outgoing massive particles will
eventually enter each cone V+ + a, that for any reasonable definition of the algebra

6 An unambiguous, but more clumsy notation would be $°ut(
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9W0Ut of all massive observables at positive asymptotic times in a representation π
one has

9JΪ0UίC (}π(yί(V++a))-. (4.15)
a

This relation and Huygens' principle imply that 9Ji0Ut C go u", where

g-°ut= (J %0Ut(Θ). Hence we obtain for the algebra 9rout = g o m uaR o u t of all outgoing
Θ

observables the inclusion

gjout <-gout- y gout/# ( 4 < 1 6 )

It follows from this relation that the algebra 2I0Ut is reducible if gout~ has a center
(which is to be expected if π is an infrared-minimal representation [22]). In that
case the asymptotic observables 2Γut do not yield a complete characterization of
the physical states, and the same is true for 9Iin. Hence a scattering matrix cannot
uniquely be fixed in quantum electrodynamics by the condition that it induces a
mapping of the outgoing observables onto their respective incoming counterparts.
These difficulties are related to the well-known fact that there does not exist an
asymptotic position operator for the charged particles in quantum
electrodynamics.

There should, however, exist for each αeIR4 sufficiently many observables in
9ί(F+ + a) in order to completely determine the properties of the outgoing massive
particles in the states of interest. In fact, it seems to be a reasonable assumption
that all observables in an irreducible infrared-minimal representation π, which are
commensurable with π(2I(F+ +α)), are contained in go u t(F_ + α ) ~ 7 . This property,
which may be regarded as a weak form of asymptotic completeness, guarantees
that the algebra π(2I(F+ +a))~ contains the full information about the outgoing
massive particles. For later reference we give the following

Definition. Let π be an infrared minimal representation, π has the property of weak
asymptotic completeness if

πmV+))' = %°ΛV-Γ and π(2I(F_))' = δ i n (F + Γ

In order to substantiate this concept we will now show that weak asymptotic
completeness holds for the vacuum representation (π0, jf0). In the proof we will
make the assumption that in quantum electrodynamics there exist only massive
charged particles and that in collisions of low-energy photons (with total energy
below the pair creation threshold) no infrared-clouds of photons are produced.
More precisely: all vectors in J^o with total mass below some sufficiently small
threshold mass μ > 0 should belong to the Fock spaces of incoming and outgoing
photons respectively, i.e.

Eμjr0Cl&nΩ]nl%mtΩ]9 (4.17)

where Eμ denotes the projection onto the vectors in M"o with total mass smaller
than μ. From this assumption we get

7 The inclusion go u t(F_ +a)Cπ{SΆ(V+ -\-a))' always holds because of Huygens' principle
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Proposition 4.2. π 0 has the property of weak asymptotic completeness.

Proof. It has been shown in [12] that the subrepresentation of the outgoing
electromagnetic field on [5°ut£2] is equivalent to the Fock-representation.
Therefore we can apply the arguments in [21] establishing the timelike duality
relation

(%out(v+) Eouty=%ouχv_y £ o u \

where Eoute%ouU is the projection onto [$ 0 U tΩ]. Now if Xen(M(V+)yC%out(VJ
then E o u t X E o u t 6(5 o u t (F + ) £o u ty and consequently there exists some
X 0 U t eg 0 U t (F_Γ such that Eo u t X E o u t =X o u t £ o u t .

In order to see thatX=X o u t we proceed as follows: according to relation (4.17)
the vector

(X -Xout)Ω = (X - Eout X 0 U t ) ί 2 - ( l - E0Ut)'XΩ

has a minimal mass which is larger than μ, and the same holds for (X* — Xo u t*)ίλ
Therefore the Fourier transform of

ί-K(t) = (β, [π o(α fμ)) 9 (X -X o u t )] Ω)

(where αf are the time-translations) vanishes in ( —μ,μ). If in addition Ae(ΐΆ(V+)
then K{t) vanishes for £>0 which implies that its Fourier-transform K(ω) is the
boundary value of an analytic function, hence K(ω) vanishes everywhere. It then
follows that (X— Xout)ί2 = 0, and since the vacuum is separating for πo(2I(F+))' we
arrive a tX=X 0 U t . This shows that πo(9I(F+)y = S°ut(F_)", and by an analogous
argument we get πo(9ί(F_)y = g i n (F + )~. QED.

Because of this result we expect that weak asymptotic completeness holds for
all irreducible infrared-minimal representations in quantum electrodynamics, and
we will later make use of this hypothesis. We conclude the present section with
some remarks on the infra-particle problem in quantum electrodynamics [19]. A
detailed analysis of this subject can be found in [22] and we want to refine some of
these results in the present setting.

First we recall that in each factorial positive energy representation π of a local
net there exist unique translation operators U(x) whose generators have joint
spectrum with a Lorentz invariant lower boundary [7]. Moreover, if π is an
infrared minimal representation one has U(x)<^0UtU(x)~1 = go u t, and consequently
there exist translation operators (7^ut(x)e go u t~ inducing the same action on g o u t as
U(x) [10]. Using the fact that g o u t is generated by a free massless field it is then
easy to prove

Proposition 4.3. There exists a unique decomposition

where x->(7|u t(x)ego u t" and X-*U^\X)G^OUV are continuous, unitary represen-
tations of the translations. The spectrum of the generators of U^Xx) is equal to V+

in each subrepresentation of 5°ut, and the spectra of U^(x) and U(x) have the same
Lorentz invariant lower boundary.

(For an explicit construction of C/«ut(x) see [22].)
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Let us focus now on representations (π, 3^\ where states consisting of a single
charged particle and any number of photons appear. Thinking of quantum
electrodynamics it is reasonable to assume that the states in Jf which are attached
to an arbitrarily small neighbourhood of the lower boundary
Hm = {p:p2 = nι2,p0>0} of s p ^ contain this particle and that by adding suf-
ficiently many photons to these states one obtains all states in jtf* with masses
below some threshold mass M>m. This means that

^ M ^ C [ S i n - £ m + ^ ] n [ g o u t - E m + ^ ] (4.18)

for any δ >0, where Eλ denotes the projection in Jf onto the states with total mass
smaller than λ. It is then an immediate consequence that the lower boundary of

is isolated from the rest of the spectrum.

Proposition 4.4. Let U^\x) be the translations defined in the preceding proposition.
Then

(This property of U°^\x) has been noticed first in [22].) These results show that
energy and momentum of the outgoing photons and charged particles, re-
spectively, are commensurable observables. Moreover, the charged particles have
a definite mass m. It is also noteworthy that

C C ( * ) e O W + + « ) Γ (4.19)
a

if weak asymptotic completeness holds for π, hence the charged particles have all
properties expected on physical grounds.

The famous infra-particle problem in quantum electrodynamics consists now
in the fact that every state on 21 describing particles which carry an electric charge
also contains photons. This implies that these particles do not correspond to a
discrete eigenvalue of the full mass-operator P 2 , they are infra-particles [19]. The
fact that there is no way of removing all photons from these states can be
expressed using the concept of charge-classes: there exists no representation in the
charge-class of π where the mass-operator has a discrete eigenvalue. This suggests
the following general characterization of representations including infra-particles.

Criterion. An infrared-minimal representation π includes an infraparticle of mass
m if

i) s p ^ ^ 1 (respectively sp<3Q) contains the hyperboloid Hm with discrete
weight.

ii) the translations ύiί1 have continuous spectrum about Hm in each repre-
sentation π1elπ].

That electrically charged particles appear as infra-particles in a field-theoretic
setting can be understood from the following heuristic argument: each charged
particle with mass m and momentum about p produces an electric flux-
distribution, which at sufficiently large distances from the particle (such that one
can apply classical physics) has the form

/ x em2 (p2 + m 2 ) 1 / 2() V W
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where n denotes the direction in which one looks. Thus charged single particle
states with different momenta produce different asymptotic flux-distributions. On
the other hand it follows from locality that all states in a factorial representation π
of 21 have the same asymptotic flux-distribution φπ. Therefore each state
describing a charged particle with momentum about q must (for almost all q) also
include some radiation field which adds to the asymptotic flux-distribution φq of
the bare particle to give the net flux-distribution φπ fixed by the representation.
Since the radiation field carries some (though arbitrarily small) energy, it is clear
that no such state can have a precise mass.

From the same argument it follows also that if one changes the momentum of a
charged particle by a local operation from q to p say, one inevitably produces also
some radiation field which induces the asymptotic flux-distribution φq(ή) — φp(n).
This is exactly what one expects from classical electrodynamics.

Finally we remark that one can determine the asymptotic momentum of a
charged particle by measuring the electric flux emanating from it. One must only
wait long enough, until all hard photons have separated from the particle such
that its momentum stays essentially constant. Then the electric flux-distribution
should have the form (4.20) in a large region about the particle (provided no
background radiation field is present), and from this one can read off the
momentum of the particle. The fact that one can determine the asymptotic
momentum of a charged particle far away from its actual localization region,
indicates that this observable should be commensurable with all other asymptotic
observables which are sensitive to this particle. Hence the asymptotic momentum
should be an element of the center of 9Jϊoυt (respectively Wn). This is consistent
with the conjecture made in [22] that in a situation where all massive particles
carry an electric charge, $R0Ut and Wn should be Abelian algebras generated by the
asymptotic particle momenta.

We emphasize that in these qualitative arguments only Gauss' law, locality and
the coherence of states within a sector have been used. This indicates that the
above features of electrically charged particles are independent of the detailed
dynamical structure of quantum electrodynamics, so that one may hope to
establish them rigorously in the present general setting.

5. Radiation Fields

After this survey of the structure of the scattering observables in quantum
electrodynamics, we are now in a position to determine the relation between the
representations within a charge-class. We shall see that these representations
describe states which differ only by some radiation field, so in particular they carry
the same electric charge. This shows that the heuristic ideas which led us to the
concept of charge-classes are consistent.

Now let (π, Jf) be any positive energy representation. If (π1 ? J ^ ) is an element
of the charge-class of π there exists some isometry V from Jf̂  onto ffl such that

V π1(A) = π(Λ)'V for Ae9I(F+), (5.1)

and using the invariance of π and πι under translations we get H π ^ ) ! ! = ||π(,4)||
for each Ae 9X. Thus we may consider πx as a representation of π(9ί)5 and we can
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drop in the following the symbol π. Then we proceed in analogy to [2] : first we
replace ( π ^ / j ) by some equivalent representation y acting on ^

y(A)=V-π1(A) V~1 for Ae<Ά. (5.2)

From relation (5.1) we get

y(A) = A if Ae%{V+), (5.3)

and the in variance of π1 under translations implies that

yax(A)=Uy{x) y{A) Uy{x)-\ (5.4)

where x-*Uy{x) is some continuous unitary representation of the translations on
J^. Then we define a transported representation xy of $ί by

= Γ{x)-ί'y(A)'Γ{x) for AeM, (5.5)

where Γ(x)= Uy(x)- £/(x)~\ and U(x) denotes the translation implementing ax. It
is obvious that the unitaries Γ(x) satisfy the cocycle equation

Γ(x + y) = Γ(x).*x(Γ{y)) (5.6)

and that x-»Γ(x) is strongly continuous. Moreover, it follows from relations (5.3)
to (5.5) that xy(A)=A if Ae(Ά{V+ +χ\ and consequently

Γ(x)6 9ϊ(7+)'n2ϊ(K++xy. (5.7)

So for each representation γ with the properties (5.3) and (5.4) one can construct a
cocycle Γ satisfying (5.6) and (5.7). Conversely, given Γ it follows from (5.5) that
one can reconstruct y by

y(A) = n-limΓ{x)Ά'Γ(x)-\Ae^, (5.8)
X

where x tends to the infinite past, i.e. x 0 + |x|—• — oo.
Let us now assume that weak asymptotic completeness holds for the repre-

sentation π. Then 9Ϊ(F+)' = %0Ut{V_)~, hence the cocycle Γ has values in the algebra
(J 5o u t(F_ +α)~ generated by the outgoing free electromagnetic field. This means,
a

in view of relation (5.8), that all states in the representation y can be obtained from
the states in the representation π by changing their outgoing radiation fields. We
summarize these results in the following

Proposition 5.1. Let (π,J4?) be an infrared minimal representation for which weak
asymptotic completeness holds. Then each strongly continuous, unitary cocycle Γ on
2/e for which

) ( y) ()x{(y))9

ii) x^Uy(x) = Γ(x) - U{x) fulfills the spectrum condition,
iii) Γ(x)eg o u t(F_Γ if x^V_

induces a representation ye[π] given by
iv) y(A) = n-\imΓ{x) A Γ(x)~\AeVl

X

for x tending to the infinite past. In fact, each representation πx e [π] is equivalent to
a representation y obtained this way.



68 D. Buchholz

We remark that this result can be used to give a characterization of the
superselection sectors belonging to [π] in terms of the cohomology-classes of the
cocycles Γ 8 .

In conclusion we want to demonstrate that there exist uncountably many
disjoint irreducible physical representations carrying a given electric charge. This
substantiates the statements made in the Introduction. To simplify the discussion
we will restrict our attention to representations of zero electric charge which are
induced by the well-known asymptotic coherent photon states. (So these states can
be defined on the algebra of the interacting electromagnetic field.) For the
construction of these representations we will use the formalism developed above
and exhibit suitable cocycles Γo in the vacuum representation (π0, j ^ 0 ) .

Let F o υ t be any outgoing free electromagnetic field-operator which is affiliated
to $ 0 U t (F_Γ. Then for each ε > 0

iJdte-εi a-t(FOVit)

Wε = e° eg 0Ut(K_Γ (5.9)

is a unitary operator, and one can define the cocycle

Wε-ax(W;1)e$°"t(V_Γv%°»\V_ +x)~, (5.10)
which is clearly unitary and strongly continuous in x. It is easy to verify that the
corresponding representation yε is given by

yε(A)=WεΆ'W;1 for Ae<Ά, (5.11)

hence it is unitarily equivalent to the vacuum representation. Yet if one proceeds
to the limit ε^O and chooses an operator Fout such that HCfiΓ-ifi l ) " 1 Fo u tί2||
tends to infinity (which implies that (Ω, WεΩ) tends to zero), then the resulting
representation y0 turns out to be disjoint from the vacuum representation.

For the proof establishing the existence of y0 the following remarks may
suffice: since F o u t is a free field one can show by an explicit calculation that for
each X G R 4 the limit s-\imΓε(x)Ω exists, the convergence being uniform on

bounded regions of R4. Taking also into account that Γε(x)AΩ = A'Γε(x)Ω for
>4e3I(7+)n2l(F+ +x) (because of Huygens' principle) as well as \\Γε(x)\\ = 1 it then
follows that

s-\imφ) = Γ0(x) (5.12)

exists. Hence Γo is a continuous, unitary cocycle, and since Γ0(x)e$out(V_)~ if
xeV_ one can define

yo(A) = n-\imΓo{x)Ά'Γo{x)~\Ae(Ά (5.13)

for x tending to the infinite past, which is the desired representation.
It follows from the cocycle equation for Γo and the defining relation (5.13) that

the translations in the representation y0 are given by U0(x) = Γ0(x) U(x) where

8 Γ and Γ belong to the same cohomology-class if Γ'(x)=V Γ(x) (xx(V *) for some unitary
Kego u t(F_)~. The corresponding representations y and γ' are then equivalent
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U(x) are the translations in the vacuum representation. Since Γo is continuous it is
also clear that x-»L/0(x) is continuous, and using the fact that the spectrum
condition holds for U(x) and that

l/0(x) = s-limΓβ(x) £/(*) = s-lim WεU(x)W;\ (5.14)

one finds that s p ^ 0 C V+.
In order to verify that γ0 is irreducible one proceeds as follows: first one

extends y0 by continuity to the algebra g o u t generated by the outgoing elec-
tromagnetic field. Using the onumber commutation relations for these fields it
then follows that for each field F o u t which is affiliated to go u t($)

yo{eiF'-) = ζ' eiF-\ (5.15)

where

ζ'=\\me^ > (5.16)
ε->0

is a phase-factor. Hence y0 acts like a coherent state representation on the
outgoing electromagnetic fields, so in particular yo(δ°ut($)) = S°ut($) f° r each
bounded region Θ. From this one gets yo(9I)~ D S°ut~, and since γo(^(V+)) = <Ά{V+)
one arrives at

yo(9I)'c9I(7+)'nS°u t(7_)'. (5.17)

It then follows from the weak asymptotic completeness of the vacuum repre-
sentation (Proposition 4.2) and the fact that 91(7+)~ is a factor that y0 is
irreducible.

Now if y0 would be equivalent to the vacuum representation there would exist
a unitary operator FΓ 0ego u t(7_Γ such that yo(Λ)= W0AW~ί for AeSΆ. [This
follows again from weak asymptotic completeness and the fact that yo(A) = A if
v4e9ί(7+).] As a consequence the vacuum state ω 0 and the coherent state ωo°yo

would both induce the Fock-representation of the algebra g o u t [12]. But using
relation (5.15) and (5.16) one can exclude this possibility if IKff-ΐε l ) " 1 F0UtΩ||
tends to infinity for ε->0 [23], hence with such a choice of F o u t the representation
y0 is disjoint from the vacuum representation. By a similar argument one can also
show that two representations y0 and y'o, say, are disjoint if they are built from
operators F o u t and F o u t , respectively, for which ||(if—ie I ) " 1 •(F ) U t-f"o u t)Ω||
tends to infinity if ε->0. It is then clear that there exist uncountably many disjoint
representations in the charge-class of the vacuum representation.

6. Conclusions

Using the concept of charge-classes we have characterized a set of states which
seems to be appropriate for a general discussion of the structure of quantum
electrodynamics. In contrast to the conventional field-theoretic settings, where one
selects in some arbitrary way a separable space of states, we have taken into
account an uncountable number of superselection sectors. As was demonstrated,
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this enlargement of the state-space has conceptual as well as technical advantages.
In particular, one gains some flexibility in choosing the localization properties of
charged states.

Amongst the various questions which have not been answered in this analysis
let us mention the two perhaps most interesting ones: first, it would be desirable to
understand better the structure of the asymptotic observables Wn and 9Jlout which
are associated with the massive particles. This would help to clarify the question as
to which concepts are appropriate for the description of charged particles at
asymptotic times [22]. As was indicated, the solution to this problem seems to
depend only on Gauss' law and not on the detailed dynamical structure of
quantum electrodynamics.

The second question which deserves further study is related to the concept of
charge-classes. In order to see that the labels of these classes have, as expected, the
meaning of a charge, one should show that there exists a composition law of
charge-classes (charges can be added) and that to each charge-class there exists a
conjugate class (to each charge there exists an opposite charge). A solution of this
problem would generalize the fundamental results of Doplicher et al. [2] (see also
[17]) on the superselection structure of theories with short-range forces to the case
of quantum electrodynamics.
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