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Borel Summability for a Nonpolynomial Potential
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Abstract. We consider the energy levels of a one-dimensional quantum system
in the rational potential jx2 ±gx4'/(l + otgx2). Their perturbation expansions in
g are shown to be Borel summable. The proof is flexible enough to allow simple
extensions to other nonpolynomial interactions.

I. Introduction

In recent years much attention has been devoted to the question of the Borel
summability of perturbation expansions for quantities of interest in various
quantum mechanical systems and quantum field models. Proofs of such a
summability property have been given, e.g. for the energy levels of anharmonic
oscillators [1] and for field-theoretic analogues, namely the Schwinger functions
of super-renormalizable models {φ\ and φ\ theories) [2]. The purpose of this
paper is to investigate the Borel summability of the perturbation expansion of the
energy levels in a one-dimensional model with a "singular" (nonpolynomial)
potential. Specifically, we shall consider the Hamiltonian

on the Hubert space L2(— oo, oo), where the "physical" range of the parameters g
and α is

(1.2)α > 0 in the " + " case,

α > 2 in the " — " case [in order that V~(x;g)-> + oo for x 2-»oo].
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It will be shown that the (asymptotic) perturbation expansion of the eigenvalues
Ef(g) in g at fixed α

GO

Ef(g)~ £ Eftng" (1.3)

is Borel summable to the true value Ef(g). Furthermore, it will clearly appear in
the course of the proof that our method can be applied to other rational (or simply
analytic) interactions.

As for the physical relevance of our choice of the specific interaction in
Eq. (I.I), a few words are in order. The potential V~(x; g) turns out to arise in a
certain laser model after reduction of the Fokker-Planck equation to a
Schrδdinger equation [3]. Moreover, both perturbative [4] and nonperturbative
[5] numerical calculations of the first energy levels have already been performed.
Let us mention that each coefficient Eftfι is a polynomial of degree (n— 1) in α with
rational coefficients, as is most easily seen by using a recursive method of
computation a la Bender and Wu [6] [see also Eqs. (III.9) and (III. 10)]. A remark
is appropriate at this point: in order to make practical perturbative calculations,
the expansion in g is not necessarily the best thing to use. For instance, in the large
α regime, a calculation relying on an expansion in g at fixed ccg (which resorts to
regular perturbation theory and is easily shown to have a nonzero convergence
radius) would certainly be more efficient.

Our viewpoint is different: we are primarily interested in the perturbation with
respect to the coupling constant g, because the interaction in Eq. (I.I) has the usual
"field theoretic" form V±(x; g) = ir±(gx2)/g, which makes the series in powers of g
an expansion in terms of Feynman graphs collected according to their number of
loops. In fact, our initial motivation for studying the Borel summability of the
expansion (1.3) was in trying to understand some unexpected feature which arises
when one looks for the asymptotics of the coefficients EQ n of the fundamental level
through the Lipatov (or instanton) approach [7]. We shall return to this point
later on.

As far as singular perturbation theory is concerned, we want to emphasize the
distinctive feature of the potential V±(x;g\ when compared to the polynomial
(e.g. anharmonic) or entire ones. What makes the expansion (1.3) a divergent series
for all nonvanishing g in the latter cases is the bad behaviour of the perturbation
relative to the harmonic term when x2-+oo. In our case, the perturbation
gx4/{l + ocgx2) is not worse than x2 at infinity. Rather, the singularity of V±(x; g)
at x2= — 1/ocg is responsible for a singularity of Ef(g) at g = 0 and for the
divergence of the expansion (I.3)1.

We shall prove that Ej(g) is an analytic function of g at least in the small sector
0<\g\<Rj, \&rgg\^θ (θ can be arbitrarily close to π), and that the perturbation
expansion (1.3) is Borel summable to that funtion there, in a sense which is made
precise in Eqs. (111.31) and (IIL33). Our proof relies on the singular perturbation
theory as developed mainly by Kato [8] and Simon [9-11]. There are two

1 That this expansion for the ground state energy EQ (g) actually diverges for all gφO, α > 0 follows
from the fact that the coefficients EQ „ are shown [7] to be larger in absolute value than the coefficients
EQ n\a = 0 corresponding to the well-known [6] pure anharmonic case. In the " —" case, this is no longer
true, but there is still strong numerical evidence [7] for the divergence of the perturbation expansion
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additional technical complications, specific to a perturbation which is not a
polynomial in the coupling constant: i) the "remainders" of the perturbation series
to be kept under control involve a larger number of terms, ii) the so-called
"quadratic estimates", which are of common use in the polynomial case [9-11], no
longer apply. The first problem is easily dealt with, whereas the second one
requires an "ad hoc" argument.

After some preparatory steps in Sect. II, all the relevant details of the proof are
given in Sect. III. Our results and a number of problems to be solved are discussed
in Sect. IV.

II. Preliminaries

We first notice that for all values of the parameters g and α satisfying Eq. (1.2), the
Hamiltonian H±(g) is a self-adjoint operator on the domain D{p2)nD{x2) with
compact resolvent. It has a purely discrete spectrum {Ef(g)} with a nonde-
generate, strictly positive ground state energy E^(g). All this follows directly from
standard theorems [8, l i b ] 2 .

For complex values of g, our strategy will be the following,
i) We first show that the H±(g) are well-defined operators as long as g keeps

away from the negative real axis, and form in fact an analytic family in the
technical sense of Kato [8, l i b ] (Lemma 1 below).

ii) In order to infer from that the announced analytic structure of Ej(g) in the
neighborhood of # = 0, we need a convergence property H±(g)-^H(0) as #->0
(arggφπ) in the norm resolvent sense, which insures the stability of the
eigenvalues of H(0) (Lemmas 2 and 3).

iii) Then a basic estimate (Lemma 4) allows us to deduce that the perturbation
expansion (1.3) is "strongly asymptotic" to Ef(g) (Theorem 1), and to conclude, via
a Watson-like theorem, that this expansion is Borel summable to Ej(g)
(Theorem 2).

Notice that, as a consequence of i), thanks to the Kato-Rellich theorem
[8, l ib ] , Ef(g) is analytic also in some neighborhood of the positive real axis
(origin excluded), although the perturbation expansion does not need to be Borel
summable in this whole region.

We now proceed to establish the

Lemma 1. The operators H±(g) defined in Eq. (I.I) with common domain
D = D(p2)nD(x2) form an analytic family in the cut plane ^ΞΞ(C\(— GO,0]. That is to
say:

α) H±(g) is closed V#e^,
β) H±(g) has a nonempty resolvent set V$e^,
γ) for each φeD, H±(g)φ is a vector-valued analytic function on c€.

Proof Let us write H±(g) in the form

2 Of course, it is essential that the potential V±{x; g) be positive for all physical values (1.2) of the
parameters
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Then the property α) is obvious since H±(g) appears as the sum of a closed

operator and a bounded one, viz. the self-adioint operator hi = - p 2 + I- + - \ x 2

with domain D and the multiplicative operator v±(g)=+x2/(x(l-\-ocgx2) which is
bounded (both point-wise and in norm) by l/cc2|g| if RegΞ^O and by l/α2 |Img| if

Notice also that the adjoint of H±{g) is H±(g*) with the same domain D.
Consider now

For each ge%>, this expression is clearly well-defined as a bounded operator if
the (g dependent) constant λ is suitably chosen. Indeed, the resolvent (HQ — λ)~1 of
the harmonic oscillator Hamiltonian converges to zero in norm when Λ,-* — oo, so
that \\v±{g){h^-λ)~ι\\<\ for -λ large enough, and [i + v±(g){h^ - A ) ' 1 ] ' 1 can
be defined as a bounded operator by means of a Neumann series. Then
lH±{g)-λ]R~(λ) = Rf{λ)lH±{g)-λ]=l by direct computation, which means
that Rf(λ) is nothing but the resolvent [H±(g) — λ]~1 and entails property β).

Finally, property γ) is equivalent to the statement that

+ + - 1 °? χ2

(ψ, H~(g)φ) = (w, h?;φ)+ ~ dxψ*(x)φ(x) ~ (H.3)
α _ oo 1 + ugx

is a complex-valued analytic function on ^ for each φeD and each
ψeL2( — oo, oo). But this is obvious on account of the absolute convergence of the
integral, q.e.d.

The previous lemma tells us nothing about the location of the spectrum of
H±(g) for nonreal positive values of g. We already know that the resolvent set
ρ(H±(g)) of H±(g) is not empty, but the proof above only shows the existence of
negative λeρ(H±(g)) which actually go to — oo when gr—>0. In order to establish
the stability property which we alluded to before, we have to make sure that
ρ(H±{g)) is not repelled to infinity as g-*0 and enjoys itself some kind of stability.
Such a guarantee is provided by the

Lemma 2. For any g in the cut plane Ή, the resolvent set ρ(H±(g)) contains the
negative real axis (— oo,0).

Proof. First, let us state an important property of the potential V±(x g) which will
play a crucial role also in the following. Consider the function

+ 2 _ 1 +

x2

Then, for any 0, 0 ^ # < π , the image Z 1 of the set {- oo<x<oo, O^argg^fl} by
this function is contained in a half-plane of the form Re(eίωW±)^:δ>0 with

|ω |< —. In our case, we have also ±lmW± ^ 0 . In fact, a simple inspection of the

function W±{z)=^±z/(1 +αz) shows that 7± consists of that inner part of the

circle intersecting the real axis at the points z=- and z = - ± - through respective
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\ >angles θ and π—#, which lies in the \Λ > complex plane. Hence
[lowerj

(11.5)

with

ω
± _ 0, *+ ί1 M + 1

if O < 0 < -

© ± = ± 1 ^ - * ' - i U - -
1 l\

+ •
2α

sinθ if —

(II.6)

Now, let g = |g|<?/θ be given with 0 ̂  θ < π. We claim that when the vector φ goes
through D, the set of expectation values (φ,H±(g)φ) is contained in a sector 5^ of
the complex plane whose opening angle is less than π. Actually, Eqs. (II.5) imply,
firstly:

±lm(φ,H±(g)φ)=±(φ,lmV±(x;g)φ)^O, (II.7)

and secondly, since cosω± > 0 :

; g)φ)^tgω±(φJmV±(x g)φ)

which define such a sector indeed [notice that, for the moment, we make no use of
the fact that <3± is strictly positive in Eq. (II.5)].

The same is true, of course, for — π<θ^0 (with sign reversals). Then, due to
the "sectorial" property we just derived for H±(g), together with its closedness, it
follows from a known theorem [12] that <C\S^ Cρ(H±(g)). Since, according to Eq.
(II.8), S^ does not intersect the negative real axis, we conclude that
(-^0)Cρ(H±(g)). q.e.d.

Then comes the property of norm resolvent convergence.

Lemma 3. Let {Ej(0)} be the spectrum {§,§,§,...} and ρ{H(0)) the resolvent set

(C\{£/0)} of ff(0). Then, for anyθ,0^θ<π

lim ||[l/±(gf)-A]-1-[iϊ(O)-A:-1||=O VλGρ(ff(0)), (II.9)
\9\->0

|arg^|^θ

the convergence being uniform in λ on compact subsets of ρ(H(0)).

Proof As a consequence of the resolvent formula (H — μ)~ι=(H — λ)~ι

•[i — (μ — λ)(H — A ) " 1 ] " 1 plus connectedness of ρ(H(0)), the full conclusion of the
lemma will follow if one can prove Eq. (II.9) for one λ not in ρ(H(Oj) and not in
ρ(H±(g)) as g-+0. In view of Lemma 2, it is therefore sufficient to establish Eq. (II.9)
for some negative λ. Now, one has

(11.10)
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where both factors in the last expression are bounded operators when A>0,
[this is obvious for the first one and readily seen for the second one, e.g. by using
the eigenvectors of H(0) as a basis for L2(— oo, GO)]. Hence, it is enough to show
that

(11.11)

is uniformly bounded in the sector |arg#|fgβ or, equivalently, that

SC\\φ\\ \/φeL2{- 00,00)
, + agx

for some C independent of g. In fact, Eq. (II. 11) needs to be proved only
the Schwartz space of C00 functions of fast decrease, since £f is known to be dense
in L2(— GO, GO). But this in turn is equivalent to

(11.12)
1 + agx

provided that the image of ^ by \_H±{g) + λ~\ x is contained in £f. Such a property
is true indeed, although we shall omit the proof here (it can be done, e.g. along the
lines of [13]). Now, Eq. (11.12) means that

(11.13)

or, since |1 + otgx2\ is bounded below uniformly in x and g:

+ F ± (x; g) + λ] (11.14)

for some positive b independent of g, |arg^f|^θ. Here, the inequality has to be
understood in the sense of positive operators from £P to Sf.

To prove Eq. (11.14), we start from the inequality

, (11.15)

which is obviously valid for all complex ^'s. By expanding, we find

+ 2(x2 + λ) Refa V^ + λ Reηp2 + \{rfp2x2 + ηx2p2).

(11.16)

Let us use the formal commutation relations [which we are allowed to do since
everything in Eq. (11.16) operates on £f~\ in order to recast the last term of the right
hand side in a more convenient form:

rfp2x2 + ηx2p2 = 2Rεηpx2p + (p - - p 2 - 4(Im?pc)2 -

Thus

(11.17)

(11.18)
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Now, let us choose η = εeιω± with ε > 0 and ω± given by Eqs. (IL6) (assuming
gθ). Then RQ(ηV±)^εδ±x2 according to Eqs. (Π.5), so that

± ^ 2 V± + λ)^ε(2δ±-ε)x4

+ 2ε[/l(cosco± +δ± — ε) — εsin 2co±]x 2

+ ε[/l2(2cosω± — ε) — cosω*]
± ^]p. (11.19)

Since δ±>0, cosω± >0, it is now evident that for sufficiently small ε and large λ
(both independent of g\), all terms of the right hand side are positive and

-s]xA. q.e.d. (11.20)

III. Proof of the Borel Summability

Equipped with Lemmas 1 and 3, we are entitled to apply standard asymptotic
perturbation theory [8, l ib ] , which tells us that the (nondegenerate!) eigenvalues
Ej(O)=j + ̂  of H(0) (/ = 0,1,2,...) are stable with respect to the perturbation
±gx4~/(l+agx2). This means that i) for each;, there is a Rf such that the spectrum
of H±(g) has exactly one point in the disk \E — Ej(0)\<\ when \g\<Rf, |arg#|^0
(0gβ<π), ii) this point Ef{g) is a nondegenerate eigenvalue of H±(g). Moreover,
the corresponding eigenvector Ωy{g) can be represented as

± (III.l)

and converges to Ω-(0) as |#|->Ό, |argg|:g#. As a by-product of ii) plus Lemma 1,
for any Θ<π, each Ef(g) is an analytic function in the sector 0 < \g\ < Rf, |arg#| ^ θ
(by the Kato-Rellich theorem [8, l ib]) 3 .

We can now write:

(Ωj(0),H±(g)Ωf(g))

where

^ ( Π L 3 )

and use formulas (III.l) and (III.2) as a starting point for the study of the
perturbation expansion of Ef(g). In fact, it is sufficient to study separately the
numerator and the denominator in Eq. (III.2): if the expansions of these two
functions can be shown to be Borel summable, then according to general theorems
[14], this property will be transmitted to Ej(g). Consider first the denominator:

D(g) = (Ω(0),Ω(g)) (IΠ.4)

(we temporarily omit the superscripts + and the index j).

3 We stress that, because Rf may depend on θ, this does not imply that Ef{g) is analytic in a small
cut disk 0<\g\<rf, a rg^φπ
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Since H(g) = H(0)±gU{g), in order to build up an expansion of D(g) in powers
of g, we have first to expand Ω(g) in powers of U(g) by using the resolvent formula
(11.10):

N i

)= Σ ( + 0)V §
n = 0 Zπ iJE-j- 1/2| = 1/2

1 = 1/2

(we have put Rg{E) = \_H(g) — E~] 1), and then to expand U{g) itself in powers of g:

M

U(g)= Σ (~α#)*

where

By proceeding inductively on n, one easily deduces from Eq. (III.6) an expansion
of lU{g)R0(E)Y up to the order gN~n, which is needed in Eq. (III.5):

r = 0
mi + ... + mn — r

+(-<x0)"- + 1 Σ J Σ χ4+2raii?o(£)
p = l I

l̂ m i + . . . 4- Wp = N — n

Thus:

where the vectors

ΩΛ = (TirΣ(±α) r Σ
^ π |£-j-l/2| =

mi + ... + m n - i = r

are obviously well defined at each order n, and the remainder

"Σ Σ f"
\E-j-ί/2\

mi + . . . -\-mp — Ή — n

•R0(E)x4+2m>R0(E)...

±- § dERg(E)lU(g)Ro(E)T+1\Ω(0)
2π |£-j-i/2| = i/2 J

has to be kept under control.
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Inserting Eq. (III.9) into Eq. (IΠ.4), we find

Dig)- Σ (Ω(0),Ωn)g"
n=0

S\g\N+1\\RN+1(g)\\ (ΠL12)

[we choose the normalization ||Ω(O)|| = 1], so that our task amounts to bound
\\RN+I(g)\\ in the sector \g\<Rp | arg#|^θ. First of all, the resolvent Rg{E) is
uniformly bounded on the product of this sector with the circle \E—j— 1/2| = 1/2 as
a consequence of Lemma 3. Thus, Eq. (III.l) implies

l ^ c , Σ « N + ί ~ n Σ Σ p
ιi = O p=ί mi^O \E-j-lJ2\ =

m i + . . . + mp — N — n

+ C2 sup
IJS-J-l/2|

Σ

II lU(g)Ro(E)r+1Ω(0)\\. (111.13)

In this expression, the factors between brackets are not bounded operators
[although £2(0) is of course in the domain of their products]. We would like
however to "factorize the norm" in order to get a more useful estimate. This can be
achieved by means of the following trick. We transform each bracket into a
bounded operator by inserting suitable powers of x2 both at the right and at the
left, in such a way that these powers cancel out between two successive factors. Of
course, in so doing an overall power of x2 will be pushed in front of £2(0), but this is
harmless since £2(0) (an exponentially decreasing Hermite function) is in the
domain of any power of x. More precisely, we rewrite the last term of Eq. (III. 13) in
the form

\[U(g)Ro(E)

Π

+1 Ω(0)\\

(III. 14)

where the n-dependence of the constant term (cn)2n has been so chosen as to
optimize the forthcoming bounds. We now anticipate the fact (to be proven below)
that for suitable c, the new factors between brackets are bounded operators, and
deduce

N+ί

Π
w = l

where

(111.15)

(111.16)
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Since for all x, \U{g)\^dgx
4 with

l l f | a r g 3 l = f ' (III 17)
/sin|argfli| if f<|arg0|gθ k ' '

we obtain

\\lU(g)R0(E)-]N+1Ω(0)\\^(d/+iωN+1 f l \\M0JE)\\, (111.18)
n=ί

where M0>n(E\ and more generally Mmtn(E), is defined by

m = 0,l,...; n = l , 2 , . . . (111.19)

(with the convention 0° = 0).
In a completely similar way, using \Um(g)\^dgx

4' + 2m, we can obtain for the
other terms of Eq. (III. 13) bounds involving only the Mm n(E)\

g
ί = 1

| | M m p + 1 ; M l + ... + mί)_1 + p (£) | | ft IIAί0 > ί +i(£)ll (ΠI.20)
q = N-n + p+1

It remains to majorize the Mm n(E) themselves. This will be done on the basis of the
following estimate, which constitutes the crucial ingredient of our method.

Lemma 4. There are constants a and c depending only on j (not on m and n) such
that for allm = 0,l,..., n = l , 2 , . . . and E, \E-j-l/2\ = l/2:

[H(0) - E] + [(c(n + m))2{n + m) + x 4 ( " + m ) ] [ Jί(0) - E]

^a2x8 + 4ml{c{n- l)2(n'l) + x4{n~ ^, (111.21)

where the inequality has to be taken in the sense of positive operators on the Schwartz
space £f.

The proof is postponed to the appendix.
Exactly as in the proof of Lemma 3 ([//(0) — E] is a bijection from £P to Sf\ we

immediately infer from Eq. (111.21) that | |φ| | ^α||Mm,„(£)<?|| for all φ e ^ , thus for
all φeL2(— oo, oo) by continuity, and conclude that Mm n(E) is a bounded operator
with (m, ̂ -independent norm:

\\Mmn(E)\\^-, m = 0,l,.. ; n = l,2,. . . . (111.22)
a

Using this in Eqs. (111.18) and (111.20) and returning to Eq. (IIL13), we get:

ι ^ c x Σ *N+ί~n Σ 2N-n+*{dβr
p+i

n=0 ρ=ί

{~) +C2ωN+1l-±\ (111.23)
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because the sum over the m/s contains (Λ7 — n + p— 1)!/(Λ7— n)\(p— 1)! <2N n+p

terms. Then, since a< 1, dg^ί:

) l l ^ c i ω w + 1 & ) W Σ « w + 1 " " - Σ
2V+ 1 ΛΓ+ 1

Σ «*

where

(111.24)

(111.25)

Only <% defined in Eq. (III. 16) remains to be estimated.
One has:

ωN = [_{cN)2N + || x2N£2(0) | | 2 ] 1 / 2 , (111.26)

and a straightforward evaluation (e.g. using the creator-annihilator formalism)
gives:

(111.27)

(111.28)

Ji

so that (assuming c ̂  8):

ωN S const (ciVf ^ constΓ(Λ7 + ί/2)(ec)N.

Inserting Eqs. (111.24) and (111.28) into Eq. (111.12), we finally obtain:

D{g)- ,\N+ 1 | Λ | JV+ 1

(111.29)

In exactly the same way one can show that the numerator N(g) = (£2(0), U(g)Ω{g)) in
Eq. (III.2) fulfills the conditions:

N(g)-

(111.30)

(with the same c and s) for suitably defined vectors Ωn. Now, according to general
properties (Theorems 3 and 6 of [14] see also [11]), a rational combination like
(III.2) of two functions N(g) and D(g) obeying the "strong asymptotic" conditions
(III.29) and (111.30) obeys itself these conditions, with the same parameter ecs. This
leads us to our main result:

Theorem 1. Let θ be given, 0<θ<π. Then each energy level Ef(g) of the
Hamiltonian (LI) is analytic in a sector 0<\g\<Rf, |arg#|:gfl, and its perturbation



542 G. Auberson

expansion is "strongly asymptotic" there:

(β)- Σ E

n = 0

N = 0,l,2,..., (111.31)
where

^ ,
sm|arggf|

c
On account of Eq. (111.25), we have σ, = 2e —Max(α, 1) with the estimates (A.8)

#
and (A. 15) for a- and c,, J

In particular, Eq. (111.31) immediately implies

\EfJ^AfΓ{n + \){σ)\ n = 0,l,2,.... (111.32)

An investigation a la Lipatov (as well as a numerical one) [7] reveals that the
actual coefficients E^n exactly saturate the bound (III.32) in the limit n-^oo,
although the "true" constant σ0 is (as expected) considerably less than an
estimation based on Eqs. (A.8) and (A.15), which gives σo = 700Max(α, 1).

As for the Borel summability of the perturbation expansion, the full content
of Theorem 1 [not only Eq. (111.32)] is needed in order to establish that ΣEfng

n is
n

Borel summable to the true function Ef(g). Actually, such a property then follows
from Watson's theorem [15]. More precisely, within the notation of [14],
Eq. (111.31) just means that Ef(g) belongs to "FF" classes of Borel summable
functions:

Ef(g)eW-(θ-^Rf,σj) for all 0, §<θ<π. (111.33)

Hence, Theorem 2 of that reference directly applies and allows us to conclude:
00 1

Theorem 2. The Borel transform Ey(t) = £ -—Eynt
n (holomorphic in the disk

n=o n

\t\<l/σj) has an analytic continuation to the half-plane Ref>0, and is bounded
there by:

\Ef{t)\^BfeW/RJ Vί, |argί|^θ (111.34)

for any 0 < f (By and Ry may depend on θ).

As is well known, this theorem in turn provides a justification for possible
summation procedures of the perturbation series based on the inversion formula

Ef(g)=]dte-tEf(tg).
o

IV. Discussion

We have shown that each eigenvalue Ey(g) of the nonpolynomial Hamiltonian
(I.I) admits a perturbation expansion which is not only asymptotic, but even
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strongly asymptotic, and therefore Borel summable to Ey(g). In particular, we
have not observed any difference at this level between the " + " case and the " — "
case. It turns out that if one tries to improve the rigorous estimates (III.32) by
looking for the asymptotics of the perturbation coefficients E^n through the
Lipatov method, such a similarity disappears [7] : in one case (+) one finds a
genuine ίnstanton (and derives a reliable large order behaviour), in the other one
( —), there is no instanton at all (and a modified functional technique has to be
devised in order to get the large n behaviour). Such a phenomenon, which is likely
to occur for many rational interactions, remains to be understood.

Considering now the analyticity domain of the Borel transform Ey(t)
(Theorem 2), we have no indication that it can be significantly enlarged. Actually,
the possibility of an extension to a sector of opening angle larger than π [which
would require the analytic continuation of Ey(g) to a "second sheet" of the
complex g-plane in the vicinity of the origin] is not supported by numerical
analysis [16]. Instead, the latter suggests rather a domain of the form Reί > — 1/oy
As to whether the constant Ry in Theorem 2 can be pushed to infinity (this in
particular would allow the Borel summation to apply for all positive g\ it amounts
to whether Ey(g) is actually analytic in the whole cut plane. We have made no
attempt in this work to investigate such global analytic properties of Ey(g). In this
respect, let us notice that the method used by Loeffel and Martin [17] in the
anharmonic case, which essentially consists in controlling the motion of the zeros
of the wave function, cannot be applied in a straightforward manner to our case
(the power of the Symanzik scaling argument is partly lost).

One easy result is worth mentioning however. We assert that the function
EQ(Q) necessarily has complex singularities in the cut g-plane, at least for a certain
range of values of the parameter a. This can be seen through the following
argument, which uses as an additional input the (readily found) expressions of the
first three coefficients: E~Λ = -3/4, £~2=-21/8-r-(15/8)α, E Q > 3 = - 3 3 3 / 1 6
+ (45/2)α — (105/16)α2. Assume that E$(g) can be continued analytically to the
whole cut plane. Then, the resolvent R~ (λ) = lH~(g) — λ]~1 being a compact
operator [an easy consequence of Eq. (II.2)], this analytic continuation is still an
eigenvalue of H~(g), according to a known theorem [18]. Hence, due to the
positivity property — ImF~(x; g)/Img^.O [Eq. (II.5)], it follows that —EQ(Q) is a
Herglotz function. But Eΰ(g) — EQ(CO) is also a Stieltjes function, as a consequence
of Theorem 1 and a simple perturbative argument in 1/g. Therefore, the coeffi-
cients (—l)"Eo>n (n=l,2, . . . ) are the moments of a positive measure

ImEQ (— |#| + iε) and must satisfy (amongst other conditions) the inequality

π I
(Eόt2)2 = Eo,1^0,3- Inserting the expressions given above, we find that'this
inequality is violated for 2.28 ̂ α^2.74, and conclude that our assumption cannot
be correct in this range-.4

Finally, a few words regarding the proof of Borel summability are in order.
Our method relies on two main ingredients: Lemmas 2 and 3, the validity of which
requires some geometrical properties of the range of values of the potential V(x g),

4 Such a result implies that the direct use of Pade approximants in order to sum up the perturbation
expansion of EQ(Q) cannot be put on firm grounds
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and the inequalities (111.21), which apply as soon as the potential, as well as its
derivatives, enjoy some polynomial boundedness properties. Clearly enough, both
ingredients are quite flexible in this form and, after suitable adjustments, they
should permit the treatment of other rational (or even more general) potentials,
including those involving more than one degree of freedom. In this way one can
hope to apply our method to a large class of (properly restricted) interactions.

Appendix

Proof of Lemma 4. Given H0 =
establish the two inequalities:

\x2 and E=j+ l/2 + \eίβ, let us first

a
( H 0 - E * ) ( H 0 - E ) ^ ~ - x 4 for some (/ dependent) a>0.

The first one is an immediate consequence of the spectral theorem:

(H0-E*)(H0-E)= 1/2- Pk=-
4

V/

(A.2)

(A.3)

[where Pk denotes the orthogonal projector onto Ωfc(0)].
As for the second one, we have

(ff0 - E*)(H0 -E) = H2- 2(j 0 + j 2

since Ha>h. On the other hand

so that

Thus, for any u, 0 < u < 1

u 1

4 X + 4

>"x4-
1 - M

- cosβ)(H0 -

(A.4)

(A.5)

(A.6)

ί-U

4(H0-E*)(H0-E), (A.7)

where we have used inequality (A.I) as a "feedback". Hence we obtain Eq. (A.2)
with

α2 = sup

T^Γ + 2 ' + 2

(A.8)
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Consider now the left hand side of Eq. (111.21). Because of Eq. (A.2) we can write

x**]{H0 - E) ̂  ~ (cqfx4 + (Ho - E*)x4%H0 - E)

(q = n + m).
Furthermore

(Ho - E*)x4"(H0 -E) = (

and, using ReE Ξ + 1 , q^ί:

( H o - £*)x4«(tf0- E)^x*i + A - 0 ' + l)x4 < ! + 2 -ψq2x4q.

(A.9)

We then get rid of the middle term by inserting the inequality x2 ^ f (ρx4/q2 + q2/ρ),
valid for any ρ > 0:

y n Q LJ )X \Xl Q J-J/^Z \~~7

(A.12)

Denoting by J(x) the difference between the left hand side and the right hand side
of Eq. (111.21), we deduce from Eqs. (A.9) and (A. 12)

(A.13)

(A.14)

-a2(c(n-l))2{n~1]x4m"

or, by putting } ; Ξ X 4 / C V :

Δ\

with

~

The truth of inequality (111.21) now depends on whether the polynomial δ(y) can
be made positive for y^O by some (n,m)-independent choice of the two free
parameters ρ and c. It turns out that this is achieved by so adjusting ρ and c as to
equalize (in absolute value) the first three coefficients of δ(y), namely by choosing
ρ = ( l-5α 2 )/2(/+l)and:

1 - "" ' *' ' (A. 15)

Indeed, we have then

l-4\
\n + m

2(n-l)

ym
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For n= 1, the last term is in fact absent, so that

, " m = ° <A.!7)

For n^2, noticing that 4[(rc- l)/(n + m)~]2(n~1)S l/(m+ 1) Vm = 0 , 1 , . . . , we obtain

n+m n+m-1

ym+ί

^ . 1

m + 1

(A.18)

and the proof is complete.
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