Derivations Vanishing on $\boldsymbol{S}(\infty)^{\star}$

Robert T. Powers ${ }^{1}$ and Geoffrey Price ${ }^{2}$
1 Department of Mathematics E1, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Department of Mathematics, Indiana University-Purdue University, Indianapolis, IN 46223, USA

Abstract

Let $S(\infty)$ be the group of finite permutations on countably many symbols. We exhibit an embedding of $S(\infty)$ into a UHF-algebra \mathfrak{A} of Glimm type n^{∞} such that, if δ is a *-derivation vanishing on $S(\infty)$ and satisfying $\tau \circ \delta=0$, where τ is the unique trace on \mathfrak{A}, then δ admits an extension which is the generator of a C^{*}-dynamics.

1. Introduction

In [4] Goodman showed that if G is a locally compact group, and δ is a closed *-derivation on $C_{0}(G)$ commuting with the action of G as left translations on the algebra, then δ is a generator of a strongly continuous one-parameter group of *-automorphisms on $C_{0}(G)$. In a more recent paper, [5], Goodman and Jørgensen consider closed ${ }^{*}$-derivations on a C^{*}-algebra \mathfrak{A} commuting with a strongly continuous representation α_{G} of a compact group G on \mathfrak{H}. They define a *-derivation δ to be tangential to α_{G} if it has the aforementioned property (i.e., $\delta \circ \alpha_{g}=\alpha_{g} \circ \delta$, for all $\left.g \in G\right)$ and if \mathfrak{A}^{α}, the C^{*}-algebra of fixed elements of \mathfrak{A}, lies in the kernel of the derivation. Under certain restrictions on the system (α, G, \mathfrak{Z}) (e.g., \mathfrak{A} is abelian, or the action of G on \mathfrak{A} is ergodic) they prove that a derivation tangential to α_{G} is, in fact, the infinitesimal generator of a strongly continuous one-parameter group of automorphisms.

Suppose now that \mathfrak{A} is a UHF (uniformly hyperfinite) C^{*}-algebra of Glimm type n^{∞} : i.e., $\mathfrak{A}=\bigotimes_{k \geqq 1}^{*} B_{k}$, where each B_{k} is a full $n \times n$ matrix algebra over the complex numbers \mathbb{C}. Define $S(\infty)$ to be the group of finite permutations on the symbols of \mathbb{N}, the positive integers. Then there exists a natural embedding of $S(\infty)$ into \mathfrak{A} such that, if G is any compact group, and α_{G} a strongly continuous representation of product type, then $S(\infty)$ lies in the C^{*}-algebra \mathfrak{A}^{α} of fixed points of α_{G} (see [8]). Motivated by the results of [5], we show the following: if δ is a

[^0]symmetric *-derivation vanishing on $S(\infty)$ and satisfying $\tau \circ \delta=0$, where τ is the (normalized) trace on \mathfrak{A}, then δ extends to a generator $\hat{\delta}$ on \mathfrak{A} whose associated one-parameter group is of product type.

2. Derivations Vanishing on $S(\infty)$

We shall make use of the following notation throughout. For n a fixed positive integer, let B_{1}, B_{2}, \ldots be a sequence of $n \times n$ matrix algebras over \mathbb{C}, where B_{k} has identity I_{k} and matrix units $\left\{e_{i j}^{k}: 1 \leqq i, j \leqq n\right\}$ satisfying $e_{i j}^{k} e_{p q}^{k}=\delta_{j p} e_{i q}^{k}$. Let \mathfrak{A} be the UHF-algebra formed as the infinite tensor product $\mathfrak{A}=\bigotimes_{k \geqq 1} B_{k}$. We write I for the identity of \mathfrak{A}. For finite subsets Λ of \mathbb{N}, there exists a canonical embedding $L_{A}: \bigotimes_{k \in \Lambda} B_{k} \rightarrow \mathfrak{A}$ which carries $\bigotimes_{k \in A}^{\bigotimes} y_{k}$ into $\left(\bigotimes_{k \in \Lambda}^{\bigotimes} y_{k}\right) \otimes\left(\bigotimes_{k \in \mathbb{N} \backslash \Lambda}^{\otimes} I_{k}\right)$, and extends by linearity. Denote the image of L_{Λ} by \mathfrak{H}_{Λ}. (Whenever there is no danger of confusion we shall identify $\bigotimes_{k \in A} B_{k}$ with its image \mathfrak{A}_{Λ} in \mathfrak{A}. In particular, we regard the algebras B_{k} as embedded in \mathfrak{A}.) For finite disjoint subsets $\Lambda, \Lambda^{\prime}$ of $\mathbb{N}, \mathfrak{A}_{\Lambda}$ and $\mathfrak{A}_{A^{\prime}}$ are commuting subalgebras. For m a positive integer, let Λ_{m} denote the subset $\{1,2, \ldots, m\}$ of \mathbb{N}, and denote $\mathfrak{A}_{\Lambda_{m}}$ by \mathfrak{A}_{m}. Then clearly $\mathfrak{A}_{1} \subset \mathfrak{A}_{2} \subset \ldots$, and the union $\mathfrak{H}_{0}=\bigcup_{m=1}^{\infty} \mathfrak{A}_{m}$ is a uniformly dense subalgebra of \mathfrak{A}. We call \mathfrak{H}_{0} the subalgebra of local elements of \mathfrak{A}. We refer the reader to [6] for the general theory of infinite tensor products of C^{*}-algebras.

Let τ be the unique normalized trace on \mathfrak{H}, i.e., τ is the unique state on \mathfrak{H} satisfying $\tau(x y)=\tau(y x), x, y \in \mathfrak{A}$. If $e_{i j}^{k}$ is a matrix unit of B_{k}, then $\tau\left(e_{i j}^{k}\right)=\delta_{i j} / n$; furthermore, for $x \in \mathfrak{A}_{\Lambda}, y \in \mathfrak{H}_{\Lambda^{\prime}}$, and $\Lambda, \Lambda^{\prime}$ disjoint, $\tau(x y)=\tau(x) \tau(y)$. τ is a product state $\left(\tau=\bigotimes_{k \geqq 1} \tau_{k}\right.$, where τ_{k} is the normalized trace on $\left.B_{k}\right)$, hence [7, Theorem 2.5], a factor state, i.e., $\pi_{\tau}(\mathscr{H})^{\prime \prime}$ is a factor in the associated GNS representation $\left(\pi_{\tau}, H_{\tau}, \Omega_{\tau}\right)$. For convenience we shall write $\pi_{\tau}=\pi, H_{\tau}=H, \Omega_{\tau}=\Omega$. That π is a faithful representation follows from the fact [3, Theorem 5.1] that \mathfrak{H} is simple.

We now describe an embedding ϱ of the group $S(\infty)$ of finite permutations on the symbols of \mathbb{N} into the group of unitary elements of \mathfrak{A}. We write e for the identity element of $S(\infty)$, and define $\varrho(e)=I$. Let $t=(k l) \in S(\infty)$ be a transposition $(k \neq l, k, l \in \mathbb{N})$, and define $\varrho(t)$ to be the operator $\varrho(t)=\sum_{i, j=1}^{n} e_{i j}^{k} \otimes e_{j i}^{l}$. Note that $\varrho(t)$ is self-adjoint and that $[\varrho(t)]^{2}=I=\varrho\left(t^{2}\right)$, hence $\varrho(t)$ is unitary. Moreover, suppose $x \in \mathfrak{A}_{0}$, then x is a linear combination of elements of the form $e_{i_{1} j_{1}}^{p_{1}} \otimes \ldots \otimes e_{i_{r} j_{r}}^{p_{r}} . \mathrm{A}$ straightforward calculation gives, for $t=(k l)$,

$$
\begin{equation*}
\varrho(t)\left[e_{i_{1} j_{1}}^{p_{1}} \otimes \ldots \otimes e_{i_{r} j_{r}}^{p_{r}}\right] \varrho\left(t^{-1}\right)=e_{i_{1} j_{1}}^{t\left(p_{1}\right)} \otimes \ldots \otimes e_{i_{r} j_{r}}^{t\left(p_{r}\right)}, \tag{1}
\end{equation*}
$$

where $t(p)$ is the image of $p \in \mathbb{N}$ under the permutation t. In particular, Eq. (1) indicates that the mapping $x\left(\in B_{p}\right) \mapsto \varrho(t) x \varrho\left(t^{-1}\right)$ is an isomorphism between B_{p} and $B_{t(p)}$.

Let $q \in S(\infty)$, then q may be written as a product of transpositions $q=t_{1} t_{2} \ldots t_{s}$. We define $\varrho(q)=\varrho\left(t_{1}\right) \ldots \varrho\left(t_{s}\right)$. To see that this is well-defined, suppose $q=e$ $=t_{1} \ldots t_{s}$. Making repeated use of (1), we have, for $u=\varrho\left(t_{s}\right) \varrho\left(t_{s-1}\right) \ldots \varrho\left(t_{1}\right)$,

$$
\begin{align*}
& u\left\{e_{i_{1} j_{1}}^{p_{1}} \otimes \ldots \otimes e_{i_{r} j_{r}}\right\} u^{*}=\varrho\left(t_{s}\right) \ldots \varrho\left(t_{2}\right)\left\{\varrho\left(t_{1}\right)\left[e_{i_{1} j_{1}}^{p_{1}} \otimes \ldots \otimes e_{i_{r} j_{r}}^{p_{r}}\right] \varrho\left(t_{1}^{-1}\right)\right\} \varrho\left(t_{2}^{-1}\right) \ldots \varrho\left(t_{s}^{-1}\right) \\
& =\varrho\left(t_{s}\right) \ldots \varrho\left(t_{2}\right)\left\{e_{i_{1} j_{1}}^{t_{1}\left(p_{1}\right)} \otimes \ldots \otimes e_{i_{r} j_{r}}^{t_{1}\left(p_{r}\right)}\right\} \varrho\left(t_{2}^{-1}\right) \ldots \varrho\left(t_{s}^{-1}\right) \\
& =\ldots \\
& =e_{i_{1} j_{1}}^{t_{s} \ldots t_{1}\left(p_{1}\right)} \otimes \ldots \otimes e_{i_{r} j_{r}}^{t_{s} \ldots t_{1}\left(p_{r}\right)} \\
& =e_{i_{1} j_{1}}^{e\left(p_{1}\right)} \otimes \ldots \otimes e_{i_{r} j_{r}}^{e\left(p_{r}\right)} \\
& =e_{i_{1} j_{1}}^{p_{1}} \otimes \ldots \otimes e_{i, j_{r}}^{p_{r}} . \tag{2}
\end{align*}
$$

Hence for all $x \in \mathfrak{H}_{0}$, Eq. (2) yields $u x u^{*}=x$. By norm continuity, the same holds for all $x \in \mathfrak{A}$. Since \mathfrak{H} has trivial center, however, and since u is unitary, $u=\lambda I$, for some $\lambda \in \mathbb{C},|\lambda|=1$. But u is a product of operators of the form $\varrho(t)=\varrho((k l))=\sum_{i, j=1}^{n} e_{i j}^{k} \otimes e_{j i}^{l}$, hence clearly $\lambda=\tau(u)>0$. Thus $\lambda=1, u=I=\varrho(e)$, and ϱ is well-defined.

The faithfulness of ϱ is apparent from Eq. (1), and thus we have
Lemma 1. The mapping ϱ of $S(\infty)$ into the unitaries of \mathfrak{A} is a faithful group representation.

In what follows, we shall identify $S(\infty)$ with its embedding $\varrho(S(\infty)$) in \mathfrak{A} given above. Under this identification, the map $\operatorname{Ad}: S(\infty) \rightarrow \operatorname{Aut}(\mathfrak{N})$ defined by $\operatorname{Ad}(p)(x)$ $=x^{-1}, p \in S(\infty), x \in \mathfrak{U}$, forms a group of inner automorphisms of \mathfrak{U}. Moreover, if x is local, i.e., $x \in \mathfrak{M}_{l}$ for some $l \in \mathbb{N}$, and $p(k)=i_{k}, 1 \leqq k \leqq l$, an application of Eq. (1) yields $\operatorname{pxp}^{-1} \in \mathfrak{A}_{A}$, where $\Lambda=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$. By [9, Lemma 2.1], \mathfrak{H} is asymptotically abelian with respect to this group action.

If G is a compact group, and $g \mapsto \alpha_{g}^{\prime} \in \operatorname{Aut}(\mathrm{M})$ is a strongly continuous representation of G as *-automorphisms on an $n \times n$ matrix algebra M , then define corresponding representations $g \mapsto \alpha_{g}^{k} \in \operatorname{Aut}\left(B_{k}\right)$ as follows: if $\left\{e_{i j}: 1 \leqq i, j \leqq n\right\}$ are matrix units for M , and if $\alpha_{g}^{\prime}\left(e_{i j}\right)=\sum_{s, t=1}^{n} \beta_{i j s t} e_{s t}$, define $\alpha_{g}^{k}\left(e_{i j}^{k}\right)=\sum_{s, t=1}^{n} \beta_{i j s t} e_{s t}^{k}$. We may then construct a strongly continuous group of product automorphisms $\left\{\alpha_{g}: g \in G\right\}$ of \mathfrak{A} by forming the tensor product $\alpha_{g}=\bigotimes_{k \geqq 1} \alpha_{g}^{k}$. Let $t \in S(\infty)$ and let $g \in G$; then it is clear, using (1), that $\alpha_{g}\left(t x t^{-1}\right)=t \alpha_{g}(x) t^{-1}$, all $x \in \mathfrak{A}$. Thus $\left(t^{-1}\right)\left(\alpha_{g}(t)\right)$ is a central unitary element of \mathfrak{M}, and since \mathfrak{H} has trivial center, we must have $\alpha_{g}(t)=\lambda t$, some $\lambda \in \mathbb{C},|\lambda|=1$. But $\tau=\tau \circ \alpha_{g}$, by the uniqueness of the trace on \mathfrak{N}, and a slight modification of the argument preceding Lemma 1 shows that $\tau(t)>0$, so that $\tau(t)$ $=\tau\left(\alpha_{g}(t)\right)=\lambda \tau(t)$, or $\lambda=1$. Thus $\alpha_{g}(t)=t$, all $t \in S(\infty)$, and therefore $S(\infty) \subset \mathfrak{H}^{\alpha}$, the subalgebra of \mathfrak{A} of fixed elements of α_{G}. Hence if δ is any derivation vanishing on \mathfrak{H}^{α}, then certainly $\delta p=0$, all $p \in S(\infty)$, and thus we are led by [5] to consider symmetric *-derivations δ on \mathfrak{Q} [i.e., $D(\delta)$ is a dense *-subalgebra of $\mathfrak{A l}$, and $\delta\left(x^{*}\right)$ $=(\delta x)^{*}$, all $\left.x \in D(\delta)\right]$ which vanish on $S(\infty)$. If we impose the restriction $\tau \circ \delta=0$, then it follows (Theorem 6) that δ has an extension $\hat{\delta}$ which is a generator.

As a preliminary to proving this we make a definition and establish some results on strong convergence in $\pi(\mathfrak{H})^{\prime \prime}$.

Definition 1. Let $r>m$ be non-negative integers, then define $S_{r, m} \subset S(\infty)$ to be the subgroup [of order $(r-m)!$] of permutations which fix the symbols of $\mathbb{N} \backslash\{m+1, \ldots, r\}$.

Lemma 2. Let x be a fixed element of \mathfrak{A}. Define, for $r>0$,

$$
x_{r}=(1 / r!) \cdot \sum_{p \in S_{r, 0}} p x p^{-1}
$$

Let (π, H, Ω) be the GNS construction for τ. Then the sequence $\left\{\pi\left(x_{r}\right)\right\}$ has a strong limit in $\pi(\mathfrak{A})^{\prime \prime}$, and st- $\lim _{r \rightarrow \infty} \pi\left(x_{r}\right)=\tau(x) \pi(I)$.

Proof. Without loss of generality we may assume x to be self-adjoint. Furthermore, we may assume x to be local, i.e., $x \in \mathfrak{A}_{0}$. For suppose $x \in \mathfrak{A}$, and st- $\lim _{r \rightarrow \infty} \pi\left(x_{r}^{\prime}\right)$ exists for all $x^{\prime} \in \mathfrak{H}_{0}$. If $x^{\prime} \in \mathfrak{H}_{0}$ is chosen such that $\left\|x-x^{\prime}\right\|<\varepsilon$, for given $\varepsilon>0$, then one easily checks that $\left\|\pi\left(x_{r}\right)-\pi\left(x_{r}^{\prime}\right)\right\|<\varepsilon$, and the strong convergence of $\left\{\pi\left(x_{r}\right)\right\}$ will follow by continuity. So assume $x=x^{*} \in \mathfrak{H}_{l}$, for some $l \in \mathbb{N}$.

We begin by showing that $\left\{\pi\left(x_{r}\right) \Omega\right\}$ is a Cauchy sequence. Let $r \geqq s$, then, since x_{r}, x_{s} are self-adjoint,

$$
\begin{aligned}
\left\|\pi\left(x_{r}\right) \Omega-\pi\left(x_{s}\right) \Omega\right\|^{2} & =\left\|\pi\left(x_{r}-x_{s}\right) \Omega\right\|^{2} \\
& =\tau\left(\left[x_{r}-x_{s}\right]^{2}\right) \\
& \tau\left(x_{r}^{2}\right)-2 \tau\left(x_{r} x_{s}\right)+\tau\left(x_{s}^{2}\right) .
\end{aligned}
$$

Let $N(r ; l)$ be the set of those $p \in S_{r, 0}$ which permute all of the symbols of Λ_{l} into the set $\{l+1, \ldots, r\}$. For such $p, \operatorname{pxp}^{-1} \in \mathfrak{H}_{\{l+1, \ldots, r\}}$, and therefore, since $x \in \mathfrak{H}_{A_{i}}$, $\tau\left(p x p^{-1} x\right)=\tau\left(p x p^{-1}\right) \tau(x)=\tau(x)^{2}$. Furthermore, one may check by a counting argument that $\lim _{r \rightarrow \infty}[\# N(r ; l) / r!]=1$. Then

$$
\begin{aligned}
\tau\left(x_{r}^{2}\right) & =\left(1 /(r!)^{2}\right) \cdot \sum_{p, q \in S_{r, 0}} \tau\left(p x p^{-1} q x q^{-1}\right) \\
& =\left(1 /(r!)^{2}\right) \cdot \sum_{p, q \in S_{r, 0}} \tau\left(\left[q^{-1} p x p^{-1} q\right] x\right) \\
& =(1 / r!) \cdot \sum_{p \in S_{r, 0}} \tau\left(p x p^{-1} x\right) \\
& =(1 / r!) \cdot \sum_{p \in N(r ; l)} \tau\left(p x p^{-1} x\right)+(1 / r!) \cdot \sum_{p \in S_{r, o l N(r ; l)}} \tau\left(p x p^{-1} x\right) \\
& =(\# N(r ; l) / r!)[\tau(x)]^{2}+(1 / r!) \cdot \sum_{p \in S_{r, o} \backslash N(r ; l)} \tau\left(p x p^{-1} x\right) .
\end{aligned}
$$

The sum $(1 / r!) \cdot \sum_{p \in S_{r}, \bigcirc \backslash N(r ; l)} \tau\left(p x p^{-1} x\right)$ is bounded in absolute value by $\|x\|^{2} \cdot[r!-\# N(r ; l)] / r!$, hence it tends to 0 as $r \rightarrow \infty$, and therefore $\lim _{r \rightarrow \infty} \tau\left(x_{r}^{2}\right)$ $=\tau(x)^{2}$. Similarly, $\quad \lim _{s \rightarrow \infty} \tau\left(x_{s}^{2}\right)=\tau(x)^{2}=\lim _{r, s \rightarrow \infty} \tau\left(x_{r} x_{s}\right), \quad$ thus $\quad \lim _{r, s \rightarrow \infty}$ $\left\|\pi\left(x_{r}\right) \Omega-\pi\left(x_{s}\right) \Omega\right\|=0$.

Let $y, z \in \mathfrak{U}_{0}$, then employing a convergence argument similar to the one above, one shows that the sequences $\left\{\pi\left(x_{r}\right) \pi(y) \pi(z) \Omega: r \in \mathbb{N}\right\}$ and $\left\{\pi(y) \pi\left(x_{r}\right) \pi(z) \Omega: r \in \mathbb{N}\right\}$ are Cauchy in H and that their limits coincide. Letting $y=I$ in the first sequence, one sees that the uniformly bounded (by $\|x\|$) sequence of operators $\left\{\pi\left(x_{r}\right)\right\}$ converges on all vectors in the dense subset $\pi\left(\mathfrak{A}_{0}\right) \Omega$ of H, and therefore has a strong limit in $\pi(\mathfrak{A})^{\prime \prime}$. Again using uniform boundedness, we have $\lim _{r \rightarrow \infty} \pi(y) \pi\left(x_{r}\right) \xi=\lim _{r \rightarrow \infty} \pi\left(x_{r}\right) \pi(y) \xi$, all $\xi \in H, y \in \mathfrak{H}_{0}$, hence

$$
\text { st- }-\lim _{r \rightarrow \infty} \pi\left(x_{r}\right) \in \pi\left(\mathfrak{A}_{0}\right)^{\prime} \cap \pi(\mathfrak{A})^{\prime \prime}=\pi(\mathfrak{H})^{\prime} \cap \pi(\mathfrak{H})^{\prime \prime}=\{\lambda \pi(I): \lambda \in \mathbb{C}\} .
$$

Thus

$$
\begin{aligned}
{\text { st }-\lim _{r \rightarrow \infty}}^{\pi\left(x_{r}\right)} & =\lim _{r \rightarrow \infty}\left\langle\pi\left(x_{r}\right) \Omega, \Omega\right\rangle \cdot \pi(I) \\
& =\lim _{r \rightarrow \infty} \tau\left(x_{r}\right) \cdot \pi(I) \\
& =\lim _{r \rightarrow \infty}(1 / r!) \cdot \tau\left(\sum_{p \in S_{r, 0}} p x p^{-1}\right) \cdot \pi(I) \\
& =\tau(x) \cdot \pi(I) .
\end{aligned}
$$

This completes the proof of the lemma.
We describe a generalization of the "averaging map" defined in Lemma 2. Let \mathfrak{A}_{m}^{c} be the commutant of \mathfrak{A}_{m} relative to \mathfrak{A} (i.e., $\mathfrak{U}_{m}^{c}=\left\{y \in \mathfrak{A}: x y=y x\right.$, all $\left.x \in \mathfrak{A}_{m}\right\}$). In particular, if $t \in S_{r, m}$, then $t x t^{-1}=x$, for all matrix units $x \in \mathfrak{A}_{m}$, by Eq. (1), so that $t \in \mathfrak{A}_{m}^{c}$. Hence $S_{r, m}$ lies in \mathfrak{A}_{m}^{c}. Let $y \in \mathfrak{X}_{m}^{c}$, and for $r>m$, form the operator

$$
y_{r, m}=[1 /(r-m)!] \cdot \sum_{p \in S_{r, m}} p y p^{-1} .
$$

Then clearly $y_{r, m} \in \mathfrak{A}_{m}^{c}$, and the sequence $\left\{y_{r, m}: r>m\right\}$ is uniformly bounded in norm by $\|y\|$. Arguing as in Lemma 2, one shows that the sequence $\left\{\pi\left(y_{r, m}\right): r>m\right\}$ converges strongly to an operator $\bar{y} \in \pi(\mathfrak{H})^{\prime \prime}$, and for all $z \in \mathfrak{H}_{0} \cap \mathfrak{A}_{m}^{c}, \bar{y} \pi(z)=\pi(z) \bar{y}$, hence $\bar{y} \in \pi\left(\mathfrak{A}_{0} \cap \mathfrak{U}_{m}^{c}\right)^{\prime}=\pi\left(\mathfrak{A}_{m}^{c}\right)^{\prime}$. Clearly, $\bar{y} \in \pi\left(\mathfrak{U}_{m}\right)^{\prime}$ (since $y_{r, m} \in \mathfrak{A}_{m}^{c}$, all $r>m$), so that $\bar{y} \in \pi\left(\mathfrak{U}_{m}^{c}\right)^{\prime} \cap \pi\left(\mathfrak{U}_{m}\right)^{\prime} \cap \pi(\mathfrak{U})^{\prime \prime}$. Since \mathfrak{H} is generated by \mathfrak{I}_{m}^{c} and $\mathfrak{X}_{m}, \pi\left(\mathfrak{H}_{m}^{c}\right)^{\prime} \cap \pi\left(\mathfrak{U}_{m}\right)^{\prime}$ $=\pi(\mathfrak{H})^{\prime}$, thus $\bar{y} \in \pi(\mathfrak{H})^{\prime} \cap \pi(\mathfrak{l})^{\prime \prime}=\{\lambda \pi(I)\}$. Arguing as before, one now shows that $\bar{y}=$ st- $\lim _{r \rightarrow \infty} \pi\left(y_{r, m}\right)=\tau(y) \cdot \pi(I)$.

Let $\left\{f_{i j}: 1 \leqq i, j \leqq n^{m}\right\}$ be matrix units for the $n^{m} \times n^{m}$-dimensional matrix algebra \mathfrak{Y}_{m}. By [2], any $x \in \mathfrak{A l}$ may be written uniquely in the form $x=\sum_{i, j=1}^{n^{m}} f_{i j} y_{i j}$, where the $y_{i j}$ lie in \mathfrak{A}_{m}^{c}. For $r>m$ define $x_{r, m}=[1 /(r-m)!] \cdot \sum_{p \in S_{r, m}} p x p^{-1}$. Then

$$
\begin{aligned}
{\mathrm{st}-\lim _{r \rightarrow \infty}} \pi\left(x_{r, m}\right) & =\mathrm{st}-\lim _{r \rightarrow \infty}[1 /(r-m)!] \cdot \sum_{p \in S_{r, m}} \sum_{i, j=1}^{n^{m}} \pi\left(p f_{i j} y_{i j} p^{-1}\right) \\
& =\mathrm{st}-\lim _{r \rightarrow \infty}[1 /(r-m)!] \cdot \sum_{i, j=1}^{n^{m}}\left[\pi\left(f_{i j}\right) \sum_{p \in S_{r, m}} \pi\left(p y_{i j} p^{-1}\right)\right] \\
& =\sum_{i, j=1}^{n^{m}} \pi\left(f_{i j}\right) \tau\left(y_{i j}\right) \\
& =\pi\left\{\sum_{i, j=1}^{n^{m}} f_{i j} \tau\left(y_{i j}\right)\right\} .
\end{aligned}
$$

By [2, Lemma 2], $\sum_{i, j=1}^{n^{m}} f_{i j} \tau\left(y_{i j}\right)=\phi_{m}(x)$, where ϕ_{m} is the conditional expectation of the trace τ onto \mathfrak{A}_{m}. Hence st- $\lim _{r \rightarrow \infty} \pi\left(x_{r, m}\right)=\pi\left(\phi_{m}(x)\right)$. Thus we have
Lemma 3. Let $x \in \mathfrak{H}$, and for fixed m define $x_{r, m}$ as above. Then the sequence $\left\{\pi\left(x_{r, m}\right): r>m\right\}$ has a strong limit in $\pi(\mathfrak{H})^{\prime \prime}$, and there exists a unique element $\phi_{m}(x) \in \mathfrak{A r}_{m}$ such that

$$
\pi\left(\phi_{m}(x)\right)=\mathrm{st}-\lim _{r \rightarrow \infty} \pi\left(x_{r, m}\right)
$$

The mapping $\phi_{m}: \mathfrak{U} \rightarrow \mathfrak{A}_{m}$ is the conditional expectation of the trace onto \mathfrak{H}_{m}. Proof. The above argument shows that the conditional expectation ϕ_{m} has the required properties. Uniqueness follows from the faithfulness of π.

Lemma 4. Let Δ be a dense linear subset of \mathfrak{A}. Then ϕ_{m} maps Δ onto \mathfrak{A}_{m}.
Proof. Let $x \in \mathfrak{A}_{m}$, and for given $\varepsilon>0$, choose $y \in \Delta$ such that $\|x-y\|<\varepsilon$. Since $\left\|\phi_{m}\right\|=1$, by [2, Lemma 2], $\left\|x-\phi_{m}(y)\right\|=\left\|\phi_{m}(x)-\phi_{m}(y)\right\| \leqq\|x-y\|$. Hence $\phi_{m}(\Delta)$ is dense in \mathfrak{U}_{m}. But since ϕ_{m} is linear and \mathfrak{U}_{m} is finite-dimensional, $\phi_{m}(\Delta)=\mathfrak{V I}_{m}$.
Lemma 5. Let δ be $a *$-derivation with dense domain $D(\delta) \subset \mathfrak{A}$ which satisfies $\tau \circ \delta \equiv 0$. Let \mathscr{D} be the *-subalgebra of \mathfrak{H} consisting of all elements $A \in \mathfrak{A l}$ such that there exists a sequence $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq D(\delta)$ satisfying:
(i) $\left\{A_{n}\right\}$ and $\left\{\delta A_{n}\right\}$ are uniformly bounded sequences in \mathfrak{H}.
(ii) $\left\{\pi\left(A_{n}\right)\right\}$ and $\left\{\pi\left(\delta A_{n}\right)\right\}$ are strongly convergent sequences in $\pi(\mathfrak{R})^{\prime \prime}$.
(iii) $\pi(A)=$ st- $\lim _{n \rightarrow \infty} \pi\left(A_{n}\right)$, and there exists an $A^{\prime} \in \mathfrak{A}$ such that $\pi\left(A^{\prime}\right)=$ st- $\lim _{n \rightarrow \infty}$ $\pi\left(\delta A_{n}\right)$.

Define a linear operator $\delta^{\prime}: \mathscr{D} \rightarrow \mathfrak{U}$ by $\delta^{\prime} A=A^{\prime}$, then δ^{\prime} is a well-defined *-derivation on \mathfrak{A} extending δ and satisfying $\tau \circ \delta^{\prime}=0$.

Proof. Clearly, \mathscr{D} is a linear set containing $D(\delta)$. Suppose A and B are elements of \mathfrak{A} with corresponding sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ satisfying the conditions of the lemma. Then by (iii) and the faithfulness of π there exist unique elements A^{\prime}, B^{\prime} of \mathfrak{Z} such that $\pi\left(A^{\prime}\right)=$ st- $\lim _{n \rightarrow \infty} \pi\left(\delta A_{n}\right)$ respectively, $\pi\left(B^{\prime}\right)=$ st- $\left.\lim _{n \rightarrow \infty} \pi\left(\delta B_{n}\right)\right]$. Using (i) one verifies easily that the sequences $\left\{A_{n} B_{n}\right\},\left\{A_{n} \delta B_{n}\right\},\left\{\left(\delta A_{n}\right) B_{n}\right\}$ are uniformly bounded, hence so is $\left\{\delta\left(A_{n} B_{n}\right)\right\}$, since $\delta\left(A_{n} B_{n}\right)=\left(\delta A_{n}\right) B_{n}+A_{n}\left(\delta B_{n}\right)$. Let $M=\sup _{n}\left\{\left\|A_{n}\right\|\right\}$, and suppose that $f \in H_{\tau}$. Then applying the strong convergence of the sequences $\left\{\pi\left(A_{n}\right)\right\}$, $\left\{\pi\left(B_{n}\right)\right\}$, one has

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\left[\pi(A B)-\pi\left(A_{n} B_{n}\right)\right] f\right\| & \leqq \lim _{n \rightarrow \infty}\left\{\left\|\left[\pi(A B)-\pi\left(A_{n} B\right)\right] f\right\|+\|\left[\pi\left(A_{n} B\right)-\pi\left(A_{n} B_{n}\right) f \|\right\}\right. \\
& \leqq \lim _{n \rightarrow \infty}\left\{\left\|\left[\pi(A)-\pi\left(A_{n}\right)\right](\pi(B) f)\right\|+M\left\|\left[\pi(B)-\pi\left(B_{n}\right)\right] f\right\|\right\} \\
& =0,
\end{aligned}
$$

so that st- $\lim _{n \rightarrow \infty} \pi\left(A_{n} B_{n}\right)=\pi(A B)$. Similarly, one verifies that the sequence $\left\{\pi\left(\delta A_{n} \cdot B_{n}\right)\right\}\left[\right.$ respectively, $\left.\left\{\pi\left(A_{n} \cdot \delta B_{n}\right)\right\}\right]$ converges strongly to $\pi\left(A^{\prime} B\right)$ [respectively, $\left.\pi\left(A B^{\prime}\right)\right]$ and therefore the sequence $\left\{\pi\left(\delta\left(A_{n} B_{n}\right)\right)\right\}=\left\{\pi\left(\delta A_{n} \cdot B_{n}\right)+\pi\left(A_{n} \cdot \delta B_{n}\right)\right\}$ converges strongly to $\pi\left(A^{\prime} B+A B^{\prime}\right)$. Thus $A B \in \mathscr{D}$.

Now suppose $A \in \mathscr{D}$ with corresponding sequence $\left\{A_{n}\right\} \subseteq D(\delta)$. Then the sequences $\left\{A_{n}^{*}\right\}$ and $\left\{\delta\left(A_{n}^{*}\right)\right\}\left(=\left\{\left(\delta A_{n}\right)^{*}\right\}\right)$ are uniformly bounded. To see that $\left\{\pi\left(A_{n}^{*}\right)\right\}$ converges strongly to $\pi\left(A^{*}\right)$ it suffices to check, by the uniform boundedness of $\left\{A_{n}^{*}\right\}$, that $\lim _{n \rightarrow \infty} \pi\left(A_{n}^{*}\right) f=\pi\left(A^{*}\right) f$ for all f in the dense subspace $\pi(\mathscr{H}) \Omega_{\tau}$ of H. Let $f=\pi(z) \Omega_{\tau}, z \in \mathfrak{A}$; then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\left[\pi\left(A^{*}\right)-\pi\left(A_{n}^{*}\right)\right] f\right\|^{2} & =\lim _{n \rightarrow \infty}\left\langle\pi\left(A^{*}-A_{n}^{*}\right) \pi(z) \Omega_{\tau}, \pi\left(A^{*}-A_{n}^{*}\right) \pi(z) \Omega_{\tau}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle\pi\left(z^{*}\right) \pi\left(A-A_{n}\right) \pi\left(A^{*}-A_{n}^{*}\right) \pi(z) \Omega_{\tau}, \Omega_{\tau}\right\rangle \\
& =\lim _{n \rightarrow \infty} \tau\left(z^{*}\left(A-A_{n}\right)\left(A^{*}-A_{n}^{*}\right) z\right) \\
& =\lim _{n \rightarrow \infty} \tau\left(\left[A^{*}-A_{n}^{*}\right] z z^{*}\left[A-A_{n}\right]\right) \\
& \leqq \lim _{n \rightarrow \infty}\left\|z z^{*}\right\| \cdot \tau\left(\left[A^{*}-A_{n}^{*}\right]\left[A-A_{n}\right]\right) \\
& =\lim _{n \rightarrow \infty}\left\|z z^{*}\right\| \cdot\left\|\pi\left(A-A_{n}\right) \Omega_{\tau}\right\|^{2}=0 .
\end{aligned}
$$

Similarly, one verifies that st- $\lim _{n \rightarrow \infty} \pi\left(\delta A_{n}^{*}\right)=$ st- $\lim _{n \rightarrow \infty} \pi\left(\left(\delta A_{n}\right)^{*}\right)=\pi\left(A^{\prime}\right)^{*}$.
To see that δ^{\prime} is well-defined, suppose st- $\lim _{n \rightarrow \infty} \pi\left(A_{n}\right)=0$ and st- $\lim _{n \rightarrow \infty} \pi\left(\delta A_{n}\right)=B$. In particular, $\pi\left(\delta A_{n}\right)$ converges weakly to B, hence for all f, g in the dense subspace $\pi(D(\delta)) \Omega_{\tau}$ of H_{τ} we have, letting $f=\pi(z) \Omega_{\tau}$, [respectively, $\left.g=\pi\left(y^{*}\right) \Omega_{\tau}\right], z, y \in D(\delta)$,

$$
\begin{aligned}
\langle B f, g\rangle & =\lim _{n \rightarrow \infty}\left\langle\pi\left(\delta A_{n}\right) \pi(z) \Omega_{\tau}, \pi\left(y^{*}\right) \Omega_{\tau}\right\rangle \\
& =\lim _{n \rightarrow \infty} \tau\left(y\left[\delta A_{n}\right] z\right)=\lim _{n \rightarrow \infty} \tau\left(z y\left[\delta A_{n}\right]\right)=\lim _{n \rightarrow \infty}-\left(\tau\left([\delta(z y)] A_{n}\right)\right. \\
& =\lim _{n \rightarrow \infty}-\left\langle\pi\left(A_{n}\right) \Omega_{\tau}, \pi(\delta[z y]) * \Omega_{\tau}\right\rangle=0 .
\end{aligned}
$$

Thus $B=0$, by continuity, and δ^{\prime} is well-defined. Clearly, δ^{\prime} extends δ.
Again let $A, B \in \mathscr{D}$, with corresponding sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$. Then $A B^{*}$ has corresponding sequence $\left\{A_{n} B_{n}^{*}\right\}$, and

$$
\begin{aligned}
\pi\left(\delta^{\prime}\left[A B^{*}\right]\right) & =\operatorname{st}-\lim _{n \rightarrow \infty} \pi\left(\delta\left[A_{n} B_{n}^{*}\right]\right) \\
& =\operatorname{st}-\lim _{n \rightarrow \infty}\left\{\pi\left(\delta A_{n}\right) \pi\left(B_{n}^{*}\right)+\pi\left(A_{n}\right) \pi\left(\delta\left[B_{n}^{*}\right]\right)\right\} \\
& =\operatorname{st}-\lim _{n \rightarrow \infty}\left\{\pi\left(\delta A_{n}\right) \pi\left(B_{n}\right)^{*}+\pi\left(A_{n}\right) \pi\left(\left[\delta B_{n}\right]^{*}\right)\right\} \\
& =\pi\left(\left[A^{\prime}\left(B^{*}\right)+A\left(B^{\prime}\right)^{*}\right]\right) \\
& =\pi\left(\left(\delta^{\prime} A\right) B^{*}+A\left(\delta^{\prime} B\right)^{*}\right),
\end{aligned}
$$

hence $\delta^{\prime}\left(A B^{*}\right)=\left(\delta^{\prime} A\right) B^{*}+A\left(\delta^{\prime} B\right)^{*}$, by the faithfulness of π, and therefore δ^{\prime} is a *-derivation. Finally, note that for $A \in \mathscr{D}$,

$$
\begin{aligned}
\tau\left(\delta^{\prime} A\right) & =\left\langle\pi\left(\delta^{\prime} A\right) \Omega_{\tau}, \Omega_{\tau}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle\pi\left(\delta A_{n}\right) \Omega_{\tau}, \Omega_{\tau}\right\rangle \\
& =\lim _{n \rightarrow \infty}(\tau \circ \delta)\left(A_{n}\right)=0,
\end{aligned}
$$

so that $\tau \circ \delta^{\prime}=0$. This completes the proof of the lemma.

Corollary. Let δ be a*-derivation on $\mathfrak{A l}$ vanishing on $S(\infty)$ and satisfying $\tau(\delta x)=0$, all $x \in D(\delta)$. Then there exists a generator $\hat{\delta}$ which extends δ, i.e., $D(\delta) \subset D(\hat{\delta})$, and $\left.\hat{\delta}\right|_{D(\delta)}=\delta$.

Proof. Let δ^{\prime} be the extension of δ given in the lemma above. We show $\mathfrak{A}_{0} \subset \mathscr{D}$ [$\left.=D\left(\delta^{\prime}\right)\right]$. To see this, let $x \in D(\delta)$, let m be a positive integer, and form the sequence of operators $\left\{x_{r, m}: r>m\right\}$, where $x_{r, m}$ is defined as in Lemma 3. Clearly, $\left\{x_{r, m}: r>m\right\}$ is a uniformly bounded sequence contained in $D(\delta)$; moreover,

$$
\begin{aligned}
\delta\left(x_{r, m}\right) & =[1 /(r-m)!] \sum_{p \in S_{r, m}} \delta\left(p x p^{-1}\right) \\
& =[1 /(r-m)!] \sum_{p \in S_{r, m}} p(\delta x) p^{-1} \\
& =(\delta x)_{r, m}
\end{aligned}
$$

and it is immediate that the sequence $\left\{(\delta x)_{r, m}: r>m\right\}$ is also uniformly bounded. By Lemma 3, $\pi\left(\phi_{m}(x)\right)=$ st- $\lim _{r \rightarrow \infty} \pi\left(x_{r, m}\right)\left[\right.$ respectively, $\left.\pi\left(\phi_{m}(\delta x)\right)=s t-\lim _{r \rightarrow \infty} \pi\left((\delta x)_{r, m}\right)\right]$, hence by the preceding lemma, $\phi_{m}(x) \in D\left(\delta^{\prime}\right)$ and $\delta^{\prime}\left(\phi_{m}(x)\right)=\phi_{m}(\delta x)$. Since $\phi_{m}: D(\delta) \rightarrow \mathfrak{A}_{m}$ is onto, by Lemma 4, the preceding equation implies $\delta^{\prime}: \mathfrak{A}_{m} \rightarrow \mathfrak{U}_{m}$, for all m. Thus \mathfrak{H}_{0} is a dense set of analytic elements for δ^{\prime}.

Since $\tau \circ \delta^{\prime}=0, \delta^{\prime}$ is closable, by [1, Theorem 6]: denote its closure by $\hat{\delta}$. Then $\delta \subset \delta^{\prime} \subset \hat{\delta}$, and $\hat{\delta}$ is a closed *-derivation with a dense set of analytic elements, hence [1, Theorem 6], $\hat{\delta}$ is a generator.

Finally we can prove
Theorem 6. Let δ be a symmetric *-derivation on \mathfrak{A} which vanishes on $S(\infty)$ and satisfies $\tau \circ \delta=0$. Then δ has an extension $\hat{\delta}$ which is a generator of a strongly continuous one-parameter group $\left\{\beta_{t}: t \in \mathbb{R}\right\}$ of product automorphisms of the form $\beta_{t}=\bigotimes_{k \geqq 1} \beta_{t}^{\prime}$.

Proof. By the corollary to Lemma $5, \delta$ has an extension to a generator $\hat{\delta}$. We have only to show that the associated one-parameter group $\left\{\beta_{t}\right\}$ has the desired form.

First note that $\hat{\delta}: B_{1} \rightarrow B_{1}$ (since $\mathfrak{A}_{1}=B_{1}$ and $\hat{\delta}: \mathfrak{A}_{m} \rightarrow \mathfrak{A}_{m}$ for all m), so that B_{1} consists of analytic elements for $\hat{\delta}$. Let $p \in S(\infty)$, then $\delta p=\delta p=0$. Hence for $x \in B_{1}$, $p \in S(\infty), p x p^{-1}$ is entire analytic for $\hat{\delta}$ and

$$
\begin{align*}
\beta_{t}\left(p x p^{-1}\right) & =\sum_{n \geqq 0}\left(t^{n} / n!\right)\left[(\hat{\delta})^{n}\left(p x p^{-1}\right)\right] \\
& =\sum_{n \geqq 0}\left(t^{n} / n!\right) p\left[(\hat{\delta})^{n} x\right] p^{-1} \\
& =p\left\{\sum_{n \geqq 0}\left(t^{n} / n!\right)\left[(\hat{\delta})^{n} x\right]\right\} p^{-1} \\
& =p \beta_{t}(x) p^{-1} . \tag{3}
\end{align*}
$$

Letting $p=I[=\varrho(e)]$, Eq. (3) gives $\beta_{t}: B_{1} \rightarrow B_{1}$. Now suppose $x=e_{i j}^{1} \in B_{1}$ and $\beta_{t}\left(e_{i j}^{1}\right)$ $=\sum_{r, s=1}^{n} \alpha_{i j r s}(t) e_{r s}^{1}$. Letting $p=(1 k) \in S(\infty)$ and applying both Eqs. (1) and (3), we have

$$
\begin{aligned}
\beta_{t}\left(e_{i j}^{k}\right) & =\beta_{t}\left(p e_{i j}^{1} p^{-1}\right) \\
& =p \beta_{t}\left(e_{i j}^{1}\right) p^{-1} \\
& =\sum_{r, s=1}^{n} \alpha_{i j r s}(t) e_{r s}^{k} .
\end{aligned}
$$

Hence $\beta_{t}: B_{k} \rightarrow B_{k}$, all k, and under the obvious identification $B_{1}=B_{2}=\ldots$, we have $\beta_{t \mid B_{1}}=\beta_{t \mid B_{2}}=\ldots$. Thus $\beta_{t}=\bigotimes_{k \geqq 1} \beta_{t}^{\prime}$, where $\beta_{t}^{\prime}=\beta_{t \mid B_{1}}$, and the proof is complete.

Acknowledgements. The authors are grateful to Fred Goodman for showing us a preprint of [5] and for improving our original proof of the results of Corollary 5. We wish to thank Palle Jørgensen for correspondence, and the referee for helpful suggestions.

References

1. Bratteli, O., Robinson, D.W.: Unbounded derivations of C^{*}-algebras. II. Commun. Math. Phys. 46, 11-30 (1976)
2. Elliott, G. : Derivations of matroid C^{*}-algebras. Invent. math. 9, 253-269 (1970)
3. Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc. 95, 318-340 (1960)
4. Goodman, F.: Translation invariant closed *-derivations. Pac. J. Math. 97, 403-413 (1981)
5. Goodman, F., Jørgensen, P.E.T.: Unbounded derivations commuting with compact group actions. Commun. Math. Phys. 82, 399-405 (1981)
6. Guichardet, A. : Produits tensoriels infinis et représentations des relations d'anticommutation. Ann. Sci. École Norm. Sup. 83, 138-171 (1967)
7. Powers, R.T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math. 86, 1-52 (1966)
8. Price, G. : Extremal traces on some group-invariant C^{*}-algebras (to appear)
9. Størmer, E.: Symmetric states of infinite tensor products of C^{*}-algebras. J. Funct. Anal. 3, 48-68 (1969)

Communicated by H. Araki

Received July 14, 1981

[^0]: * Work supported in part by NSF

