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Connections with L Bounds on Curvature

Karen K. Uhlenbeck
Department of Mathematics, University of Illinois at Chicago Circle, Chicago, IL 60680, USA

Abstract. We show by means of the implicit function theorem that Coulomb
gauges exist for fields over a ball in R" when the integral I'? field norm is
sufficiently small. We then are able to prove a weak compactness theorem for
fields on compact manifolds with I? integral norms bounded, p > n/2.

Introduction

The variational problems for gauge fields arising in physics differ markedly from
many other geometric variational problems due to their gauge invariance. This
paper provides two technical tools for handling the gauge invariance. First
we show the local existence of a “good” gauge (called Lorentz, Hodge or Coulomb)
under very weak hypotheses. Secondly, we prove a global theorem on the weak
compactness of connections given integral bounds on their curvatures. These
technical theorems are very useful for both regularity theorems and direct varia-
tional methods. I am particularly indebted to C. Taubes, who pointed out some
very important generalizations of the original theorems. The strong form 2p =n
of Corollary 1.4 and Corollary 2.2 are essentially due to Taubes.

In Sect. 1, we present notation and state the theorems and a few immediate
applications. Detailed proofs are in Sect. 2 for the local results, and in Sect. 3 for
the global results.

1. Notation and Statement of the Results

In this paper, # is a vector bundle with compact structure group G over a compact
Riemannian n-dimensional manifold M. Assume the fibers # _= R’ carry an inner
product and that G = SO(/) respects this inner product. The bundle Aut # is the
automorphism bundle with fiber (Aut #), = G. The bundle Ad  is the Lie algebra or
adjoint bundle with fiber (Ad ) = ®, the Lie albebra of G. Assume the metric
on Aut x and Ad # are compatible with the usual metric on SO(?).

Let 2 be the space of smooth connections on n compatible with the structure
group. Every such connection D induces a connection on the Ad # bundle which
is also called D. In this case we have the Riemannian connection on the tangent
bundle TM; therefore De induces connections on all bundles associated to
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n and T M. Denote by the symbol D the induced operators (in the sense of exterior
differentiation). The space of connections is an affine space. Pick a base connection
D,eA. Then

W ={D=D,+ A:AcC*(M,Adn ® T*M)}.

Define as follows the Sobolev space of connections 27, the L connections. Here
L? is the Sobolev space of functions with k derivatives which are p integrable.

W = (D=D, + A:AcX(M,Ad n ® T*M)}.

Because of the affine structure, this definition does not depend on the choice of
D,e.
If D, e, thenits curvature or field is

F(D,)=D}eC*(M,Adn® T*M A T*M).
Lemma 1.1. For k=1 and 2p = dim M = n, the curvature map taking a connection
onto its curvature extends to a quadratic map
W — [P(M,Adn @ T*M A T*M).
Proof. It DeWY, D =D, + A, Ae [F(M,Ad n ® T*M).
F(D)=D*=F(D,)+ D,A+ [A, A].

This expression is quadratic in A, F(D,)eC* and A4— D A€’ is linear. Since
I < I where 1/g = 1/p—1/n by the Sobolev embedding theorem, then A —
[A4, A]e¥?* in the quadratic term. To get %/ = 7, we need 1/p = 2/q = 2/p — 2/n.
This explains the constraint 2p > n.

The C* gauge group Z = C* (Aut#) acts on the connections by conjugation.
Ifse2

s*(D)=s""oDos=s"'(D,+ A)s=D,+s 'Dys+s ' As.
The map on the affine section 4 is
A— s 'Dys+s" ' As.

The gauge group for a connection is logically the sections of Aut # with one more
derivative than A. This leads us to define the gauge group for A :

r, =17, (M,Autp).

k+1

For p(k+ 1)> dim M = n, this is a smooth manifold and Lie group [5]. Also,
by the Sobolev theorem, L?, (M, Autn) = C°(M, Aut #) and these gauge trans-
formations preserve the topological structure of the bundle #. Care must be taken
whenever the strict inequality does not hold. We state theorems for k either O or
1, only for convenience.

Lemma 1.2. For k=0 or 1, (k+ 1)p > dim M, the gauge group 2¥ _, is a smooth
Lie group under pointwise multiplication. The induced map

DP, X A AP

k+1
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is smooth. Furthermore, if D = s~ ODosfor D, DEQI" then se 9}, .
Proof. The Lie group structure is standard. The multiplication theorems in
Sobolev spaces give the smoothness of

A—s"'Dys+s! As.

If D=D,+ A and D= D, + A, then a gauge transformation carrying one to the
other satisfies

A=s"'D, s+ s 14s.

Use | ||, todenotea SobolevL”norm Then|[s™'Dys|, o= |40+ s s a0
Fork= 0 we are done since s~ ! is orthogonal with norm 1. If k = 1, we obtain the
same estimate for L, where q lies in the Sobolev range 1/n — 1/p + 1/g 2 0. Now
estimate D, se L? using the formula

Dos-:sA—}is

and the multiplication theorems LY ® L? — L?. This same type of estimate appears
over and over again in this paper and we assume familiarity with Palais [ 5, Chap. 9].

We can now state the main theorems. The notation || |, again means a
Sobolev L? norm, as it does throughout the paper.

Theorem 1.3. Let M =B", n=B"xR’, G compact, G= SO(/), 2p =n and
D=d+ A for AcI? (B" RZ x ®). Then there exists K(n) >0 and c(n) < o0 such
that if || F|n% = | A+ [4, A][|23 o S (n), then d + A=D is gauge equivalent
by an element seL5(B", G) = 9% to a connection d + A where A satisfies :

(i) d*A4=0
(i) [A], < cm)|F],,

There are more details in Chap. 1. Note that for 2p = n, the multiplication and
inversions involved in gauge transformations are not continuous. This borderline
case follows from a weak limit argument from that for 2p > n.

Regularity of solutions of Yang-Mills equations for connections De®?,
2p = dim M follows rather easily from such a theorem. Since [|F|"?%1 < o0, one

M
can restrict to a small disk [ |F["2dx < k(n). (The size of the disk is not uniform.
BVI
This is a dilation invariant integral and there always is such a disk. When 2p > dim
M, the size of the disk can be uniformly determined by Lemma 3.4 from ||F|?x1.)

Then apply Theorem 1.3. The system of equations consisting of the Yabrllg—Mills
equation d*dA + [A,dA] +[A4,[4,A4]]=0 and d*4 =0 is uniformly elliptic.
Now standard techniques apply (Morrey [4], Chap. 6). This technique applies to
coupled equations [7].

Corollary 1.4. If DeU? for 2p = dim M is a weak solution of the pure Yang—Mills
equations then D is locally equivalent over a cover {U} by gauge transformation
seLb (%, Aut n|%) to an analytic connection. If 2p > dim M, uniform estimates
depending on | |F|Px1 exist.

M
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The global theorem is the following. This is proved as Theorem 3.6.

Theorem 1.5 (3.6). Let 2p > dim M and D(i)e N, be a sequence of connections
with | |F(D(i))|?*1 < B. Assume M and G compact. Then there exists a subsequence

M
{i'} = {i} and gauge transformations s(i)€ 2% such that s(i')~ o D(i')°s(i") is weakly
convergent in W2 . The weak limit D satisfies | |F(D)[P=1 < B.

' M

2. The Local Theorem

For this section M = B" = {xeR":|x| < 1}. Then a trivialization n = M x R’ can
be fixed, and we use the parameters of this trivialization on all the associated
bundles. Let d be exterior differentiation.

WP ={d+ A: AcLE(B",® x R")}.
D1 =17, (B, G).
Define A7 = {DeWr: | |F|"2dx <x}.
Ix|s1

Theorem 2.1. Letn > p > n/2 and assume G compact. T hen there exists k = k(n) >0
and ¢ = c(n) such that every connection DY _is gauge equivalent to a connection
d + AeU, where A satisfies :

(@) d*4A=0.
(b) (x*A)=00nS"" ! =0dB"

2/n
© [l ze( 1 [Foypeax )

Jx|=1

@ [l zcn( [ (o)

Ix|=1

Before we give the proof, we state a corollary.
Corollary 2.2. Suppose AcL"?(B", R" x ®) and F(A)=F(d+ A)=dA+[4,A4]
satisfies

[ |F(A) M2 dx < x(n).
Ix|=1
Then there exists s€ LY (B", G) such that A =s™'ds + s~ ! As satisfies (a)—(c).
Proof. Approximate 4 by smooth 4, — 4 in L2(B", R" x ®) with | |F(4,)|"?
~ [x(=1

dx < x(n). Then we may apply Theorem 2.1 to the A,eLf(B",R" x ®). Since
Lemma 2.4 holds for p = n/2, we are finished.

The outline of the proof of Theorem 2.1 is straightforward. We show { _is
connected. The set of connections in Af | satisfying (a)—(d) of Theorem 2.1 is both

open and closed. This is quite different from the approach used for solving the
Dirichlet problem [8].

Lemma 2.3. A < A{ is connected n > p > n/2.
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Proof. Let D=d+ A. Define the one-parameter family D, =d + cA(ox) for
0 = 0 £ 1. Then the curvature F(D,) has the formula

F(D,)(x) = 0*(dA4)(0x) + [A(0%), A(0x)] = 5> F(D)(0x).
“ F(Da) H"/Z — j lF(DG)InIde: j‘ IF(D)ln/de.

n/2,0
Ix{=1 x| =0

This formula is perhaps easier to understand by observing that it comes from the
pull-back of D under the map x — ox. Clearly D e} for 0so=<1if2p=n
and De} . For fixed D, D, =d + 0 A(0) is a continuous curve in A .D, =D
and D, =d.

Lemma 2.4. The set of DeUY , satisfying (a)—(d) is closed for x sufficiently small
and n> p = n/2.

Proof. Let D,=d + A, —»d + ZEQI’I’ be a sequence of connections convergent in
A? such that D, is gauge equivalent to d 4 A,, where conditions (a)—(d) hold on A4,.
Choose A = weak limit of 4, in I7(B", R" x ®). Conditions (a)—(d) are preserved
under weak limits, provided we can show a gauge transformation from A4 to A
exists.

s;tds,+s; Y A;s,= A, or
ds,=s,A,— A5,
For 1/n—1/p +1/q =0, since s, is orthogonal,
ldsillyo < I 4illg0+ 1Al g0 S cll Al + 14,

Since G is compact, | s, |, , is uniformly bounded and we can pick a subsequence
s; —~sin L (B", G). The equation

is preserved under weak limits.
ds =sA — As.

From Lemma 1.2 se [%(B", G) = Z4%.
The next step is to show that (c) and (d) (which are closed conditions) are a
priori valid estimates on solutions to equations (a) and (b).

Lemma 2.5. There exists £(n) > O suchthat if || A||, , < #(n) and (a)—(b) are satisfied,
then for n>p = n/2

uAn,,,lgcm)( i Ireapa)

[x|=1
Proof. The pair of equations (d*A =0, dA+[A, A] = F(4)) form a non-hpgar
overdetermined elliptic system for which the Neumann bougdary condition
(x'A)|S"#1=0 is elliptic. By simple integration by parts, if d*A=0 and
(x-A)|S"~ ' =0, then
[ |VAPax+ | |APdx= | |d4ax

eS| |x|=1 x|=1
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Here V denotes the full derivative of the one-form A. This can be seen by noting
that

§laap-19aPn=3 - | (L)

l
HES! i7 xs1\0x

=Y —f xi<Ajaixin>dx=z § 1A4,7dx

i lxl=1 Jlxl=1

-3 A}aJ(Ax)dx

i,jlx]=1

SinceZAixi =0on|x|=1, ZAJ;(A X = Zk(x"Ak) <x’ )(x A)=0,
i L,j LJs
and the equality is proved. Elliptic systems are well-behaved on Sobolev spaces.
So if d*4 =0 and (x-A4)|S" ! =0, for the closed range n = p = n/2
A, =k ®@]da],,

From the equation F = dA4 + [ A4, A] for curvature

ldal,o = 1Fl 0+ 1413,.0-
The number g given by 1/p = 1/n + 1/q is identical in the Holder inequality

4130 = 1Al Al
and the Sobolev inequality
By

The last four inequalities combine naturally to give the inequality (putting the
quadratic estimate on the left)

(L= Kk )| Af,)] Al k)| F],,

It is sufficient to choose | A |, < £(n) = 1/2(k"(n)k’(n)) ™.
The next two lemmas are preparation for the openness result. Lemma 2.6
is probably well-known.

Lemma 2.6. There exists a linear operator P : L¥,(B") — L%(B") such that if fe L7, (B"),
P(f)eL%(B"), P(f)|S"~ ' =0and (x-dP(f) — (f) )lS" 1=0.

Proof. Let P(f) be the solution of an inhomogeneous heat equation 0 <r <1
with zero initial conditions at r = 1 multiplied by a smooth cut-off function ¢
with (0)=0, @(x) =1 near | x| = 1. Invert the heat operator with r as time, §"~*

= k”(n H A “p,l

4,0 =

as space.
P(f) = o[0/or —Ag]" S
P(f)],-, =0
The regularity theorem gives P(f)e L% (B" — {0}) for fe L% (B" — {0}) 2]

The equation for se 2% = L5 (M, G), the gauge transformation, is
d*A=d*(s 'ds+s 145 =0
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To get(x* A)| S"~ ! = 0 (assume for the moment x- 4| S~ * = 0), we use the Neumann
conditions (x ds)=3,s=0on §""*.
L2, = {(el2(B", R"® 6): x-A| "1 = 0},
= {seL5(B", G): (x ds)|S" ' =0}.

Lemma 2.7. Suppose d*A 0,d + AeW; = || A||, , < k(n). Then there exists ¢ > 0
such that for || 4], S e, A€Lf | the non- linear equation

d*(s tds+s 1A+ A)s) =

has a solution s(A)e 2% < 2% . The solution s depends smoothly on A€Lf |
Proof. Define the spaces LA as above.

L = (UeLL(B", 6): | Udx =0, x-dU|s" 0},
Bn
Pt ={Vel’(B,®): | Vdx=0}.

BYI
Then the operator

(U, ) > d*(e Vde' + e V(4 + A)eY)
is a smooth map
L@ L%, - 14
Moreover at (U, 1) = (0, 0), the self-adjoint linearization
Hy = d*(dy + [A4,y]) = d*dy + [A, d]

is an isomorphism from Ly to LE" if || A ||, , is sufficiently small. (For the same ¢ in
Holder and Sobolev inequalities as before,

L H@ 02 l[d*dv ][, — | 4], Z [[dir ]|, () = [ 4[], k" ().

Now we may apply the implicit function theorem to get the result.

Lemma 2.8. Suppose DeUY  is gauge equivalent to d+ A, where A satisfies
(a)—(d). Then if x is sufficiently small, there exists an open neighborhood of De Y
satisfying (a)—(d) of Theorem 2.1.
Proof. We show there is a neighborhood of d + 4 which satisfies (a)—(d) and pull
it back to a neighborhood of D by the gauge transformation taking D to d + A.
We would like to apply Lemma 2.7. However, we cannot assume x*A =0 on $" ',
First we use Lemma 2.6 to get the problem into a framework where we can apply
Lemma 2.7.

Let U= U(A) = P(x-A) where P is the linear operator constructed in Lemma
2.6. Make the gauge transforination

e Vd+A+ )V =d+e VdeU + e VdeV +e VAV =d+ A+ L.

Since I=e¢"YAe’ — A+ e Vde + e VAV and | Ulp, S¢lx-4], ., itis possible
to make || 1 H as small as we need by taking | 4], | sufficiently small. Since U = 0
on S !, de? “dUons" ' andx-Z=0ons"!
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We may now apply Lemma 2.7 to d 4+ 4 + 1. This completes the proof.

The proof of this Lemma 2.8 could be done more elegantly using boundary
value spaces. However, these are not as well-known as the methods of treating
the usual Dirichlet and Neumann boundary value problems. For this reason we
avoided them.

3. Construction of Global Gauge Transformations

In the previous section we proved an essentially local theorem, which we now
piece together. To do this, we work with connections presented in terms of the
local trivializations obtained from Theorem 2.1 in an open cover {#,} of M. We
extend a theorem on the equivalence of bundles with C° close overlap functions
from the topological category to the Sobolev category. We use this to go from the
local trivializations obtained in Theorem 2.1 to global gauge transformations.
A certain amount of effort was spent in finding a more elegant procedure; so
far this has failed.

Let M be a compact manifold and {#%,} a fixed finite set of smooth open
disk neighborhoods covering M. Then any set of continuous maps

gayﬁz%am%ﬂe G
satisfying the consistency conditions

9y p9p0= 1 on %ar\%ﬂ,
9o p9py =Gy, MU U U,

gives a topological description of a principle bundle. If the g,p are C maps
the bundle is smooth. We are interested in the intermediate Sobolev case g, ;€
L, U, G)for 2p > dim M.

Given the total space of a vector bundle in the abstract, the overlap description
is obtained from a set of trivializations (Gauss maps)

o, MU, =R x U,

Then g, ,(x) =0 ,(x,0, '(x, )): R’ >R’ for xe¥,nU, Here the inclusion G =
SO¢) < GL(/) in a fﬁ xed canonical representatlon 1s assumed, s0 g, (x)€G =
GL(/) = R’ x R’ is a natural identification.

Two sets of overlap functions g, , and 4, , can represent the same bundle
(or equivalently, they are the overlap functlons for different trivializations of the
same bundle). This is true if there exists a subcover ¥" < %, ,M < U ¥, and

a

P,V ,— G satisfying A, O‘gmﬁpﬁ .

We flrst prove a techmca] lemma. Fix a nelghborhood G of 1in G in the domain
of exp ! where exp: ® — G is the usual exponential map in the group. The notation
exp lyg 1mphes g€ G.

Lemma 3.1. Let G be a compact group with an equivariant metric. Then there
exists fo>0 such that if h,g,p€G,|exp™ " hg|<f, and |exp™'p|<f,, then
hpge G and

lexp™! hpg| < 2(|exp ™' hg| +|exp ™" p]).
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Proof. The map Q given by the formula

exp(Q(k, u)) =expkexpu
is defined and smooth for (k, u) in a neighborhood of 0 in 6. We have Q(0,0) =0
and [dQ(0,0)| = 1. Choose ¢ = {xe®:|x|<f,} such that |dQ(k,u)] <2 for
ke®,ue@. Since ¢ is convex, by the mean value theorem |Q(k, u)| < 2(|k| + |u|)
<fo.|u| =f, The lemma follows if we set k=exp ' (hg) and u=
Ad g(exp™! p).

Q(k, u) =exp~ ' (hg exp(Ad g(exp ™' p))) = exp™ ' (hgp).
| Ok, )| < 2(|exp~ " (hg)| + |Ad glexp™ ' p)|) = 2(|exp ™" hg| + |exp ™' p|).

In the following proposition, the finite open cover {#,} is fixed and has 7
elements {a} ={1,2,...,/}. We prove this proposition carefully so the proof
extends to the Sobolev category.

Proposition 3.2. Leth, ;U ,0U,~ Gandg, ;U, U, G be two sets of continu-
ous functions descrlbzng vector bundles over M Then there exists f, such that if
m= me/x)x lexp ™t h, J(x)g, ()| £ 1,
(@B)
the following holds : ety
There exists a smaller cover V", < U,, M =\ ) ¥, and continuous p,: V", —G

a
such that h, ;= p,g, ,p; ' on V" ,0V ;. Moreover, max|exp™' p | < c,m

x€¥ o
Proof. The proof is inductive on the number of elements in the cover.
To start the induction, let p, =1€G. Suppose we have constructed
U,,<U,and p,:U,,— G satisfying h, ;= p,g, ,p; ' on U, , U, for | Sa <k,

1 £ B £ k.Furthermore, assume M < ( U %a)k) U( U %a>and lexp~tp,| < cm.

ask a>k
If m is sufficiently small, we claim we may continue the construction from j =k
to j =k + 1. This will prove the proposition by induction.

Use theequationu; =exp~ ! (h;,0,9,,; jto define a continuousu;: %, ,NU; > &
for a<k=j—1. If m <f0/ck, we have |exp™!p,(x)| <ckm <f0 and
lexp™! h, (x)g, (x)| Sm < f,. Lemma 3.1 shows that u; exists and |ujx)| <
2(1 + ¢,)m = ¢;m. 1t follows algebraically from the cons1stency conditions that u; is

consistently defined on %, m( U %a,k).
ask
Choose a smooth C* partition of unity ¢; on M whichis 0 on %, — | %,,

ask

This can be done in such a way so that the sets
X,;=U,, interior {x: ¢,(x)=1}

cover M — | )%, Define p,=exp ¢, u;on @ljr\(U u£,, )| and p;=1 on
a>k ask
U~ \) %,, Then|exp™' p,(x)| = | @,(x)u;(x)| £2(1 +¢,)m = c,m. The continu-

ask
ous map p; and the sets %, ; have the listed properties for j = k + 1. Note that by
iteration ¢, , , =2(1 +¢,) can be explicitly computed.
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Corollary 3.3. Leth, ;, and g, , be two sets of Lf overlap functions on UNU
for2p>dim M, g, ﬂeLp (u, m% ,G), h, €5 (%, m% , G). Suppose

> o p
m= max |exp~'h,,(x)g,,x)| <],
@)
xeWUoNUp

Then the p, constructed in Proposition 3.2 satisfies p € L%,(7", G). Furthermore if
A, %, AU gloo Sm and | g, |2, 0%,,,<m for all pairs (o, B), then there
exists k(m') such that

“ exp” ' pal Va ['p,2 é k(m,)

(Note that restrict means both derivatives and integrals are restricted to the open
set named.)

Proof. We simply note that by the rules of multiplication and composition of
Sobolev I functions in the range 2p > dim M, that inductively

p;= exp((pj exp” t hj’a Py gq’j)

can be bounded in [5(%;, G). The bound could be made explicit in norms of
p,eC*M), p,ell (X, k,G),h el (U;nU,,G) and g, €U, U,,G).

It is now poss1ble to proceed w1th the main business of this section. Fix p>n/2
and assume | |F|Px1 < B is a fixed uniform I” bound on the curvature of a set of

M
connections. The next lemma refers back to the proof of Lemma 2.3.

Lemma 3.4. There exists a finite cover %, of M depending on p (2p > dim M) and
B such that B" = U ,. Under this coordinate identification f |F|? dx < «'(n).

Ix|<B"

Proof. Choose exponential balls about each point x,eM. If the balls are small
enough, the Riemannian norms in M compare umformly to the Euclidean norms.
Using the construction and dilation of Lemma 2.3, we can assume every x,e M
liesinaball | |F|Pdx <’ Since x is compact, a finite subcover of these coordi-
xeB"

nate geodesic patches cover- M. The choice is independent of D, but depends on
B,x"and 2p —n > 0.

Choose k' = k(n) of Theorem 2.1. Apply this theorem to any connection D
restricted to each %, of the cover if [|F(D)[?+1 < B. This theorem then essentially

M
chooses a trivialization o,(D):n|%,~ R’ x %U,. We have already used several
times that bounds on the connection forms give bounds on the gauge transforma-
tions, (or overlap functions) relating them (in Lemma 1.2 and Lemma 2.4). We
apply this to a sequence of connections.

Lemma 3.5. Let D(i) be a sequence of connections in W¢ and assume SF DG))+1 <B.

M
Then there exists a fixed open cover {%,} of M and trivializations o(i):
11|%a ~ R’ x U, which induce the connection forms a (i) (D(i)|@/a)0; V=d + AG, o).
T hese trivializations satisfy the properties
(a) Conditions (a)—(d) of Theorem 2.1 are satisfied by the A = A(i, ) on %,
(b) The overlap functions g, 4(i) = Gm(l')ﬁ’aﬂ(i)“1 are uniformly bounded in
13U, U,, G).
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(c) For a subsequence, we have weak convergence
A(', ) = Al) in L5 (%, ® x R")
Gagi) = g, p(00)in LE(U N U, G).

(d) The A(x) represents a connection D on n presented in terms of a trivialization
of n whose overlap functions are given by g, 4(0).
Proof. Condition (a) follows from Lemma 3.4, (b) from the computations in
Lemmas 1.2 and 2.4 which we will not repeat and (c) from weak compactness of
Lf (M) and I%,(M). Because the consistency conditions are preserved under weak
limits, it is clear A(x) represents a connection in a bundle presented in terms of
g, 5(o0). That this bundle is topologically n follows from Theorem 3.2. We go into
this in greater detail in the proof of our main theorem which follows.

Theorem 3.6 (1.5). Let 2p > dim M and D(i) be a sequence of connections in U}
such that | |F(D(i))|?*1 < B. Then there exists a subsequence {i'} = {i} and gauge

M
transformations s(i)e 4 = L5(M, Aut n) such that
s@) " eD()es(@’) = D in AL.

Proof. We assume the situation described in Lemma 3.5 has been constructed.
Renumber so i’ = i. Because [5(M) = C°(M) is a compact embedding for 2p > n,
9,40 = g, 4(©) (strongly) in CoU,nU » G). Therefore there exists a fixed j, such
that for oo > i>j we may apply Theorem 3.2 and Corollary 3.3 to g, (/) =g, ,
andg, ,i)=g,,-

There exists a cover of M by the open sets ¥" < %, such that for o0 2i>j,
p,(Helr(¥",,G)and

ga,ﬂ(i) = Pa(i) gu,p(j) pg(i)f L
Moreover, p (i)eI%(¥",, G) is bounded and converges to p (o) in C%(7,.G),
which is equivalent to p (i) = p (o) in IL(¥",, G).
Define the global gauge transformation s(i)e %% on %, by the formula
s(i) = o, ' (i) p, (i) 0, ()).
On#%,n U, the consistency condition
a, () p, () 0,(j) =05 (D) pyli) o))
is algebraically
P ()0, (Do) pg)~ " =, o, (i)

From the definition of the overlap functions this is precisely the condition we used
to choose p,(i).

P0G, 5N D)~ = g, 4(0).

We have still to show that s(i)”* D(i) s(i) is weakly convergent. The fixed
trivialization o (j):n|7", » R’ x " does lie in L% (although we have no bound
on norms because we have no natural choice of norm in the affine space A%). It
is sufficient to show that the induced connection forms in this trivialization over
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¥, converge weakly in I2(7,, R’ x ®). However,

a,(j)s(@)~ e D(i)osi) o, 1 (j)
is algebraically
p, (i) (i)eD(i)oa, ' (i) p, (i)
The trivializations o (i) were chosen to make o, (i)° D(i)° o, '(i)=d + A(, i) satisfy

weak convergence, (c) of Lemma 3.5. In our present trivialization, the connection
s(i)~ Yo D(i)° s(i) is now

p, (D)o + Al 1))op, (D) = d + p, (D) dp, () + py ' (i) Ale, D)p, (0.

Because A(«, i) is weakly convergent in % (¥, R’ x ®) and p, (i) in L2 (Y, G) by
the rules of multiplication, this connection converges weakly in L?(¥",, R’ x ).
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