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Abstract. We show that for the classical two-dimensional nonlinear σ-model
on a Riemannian symmetric space of dimension m and rankp, there exist p
independent series of higher local conservation laws, and we reduce the field
equations of the model to a system of nonlinear partial differential equations
possessing an associated Lax pair and involving m + p independent variables.

1. Introduction

This is the third in a series of papers devoted to analyzing the structure of classical
two-dimensional nonlinear σ-models on Riemannian symmetric spaces M = G/H.
These are field theories of geometric nature which generalize the nonlinear
σ-models on the spheres SN~1 = SO(N)/SO(N—1) [1] or the complex projective
spaces (CPN~1 = SU(N)/S(U(ί)xU(N-i)) [2]. Our current interest in them
mainly stems from the possibility to study systematically the differential geometric
roots of integrability properties.

In our first paper [3,1], we introduced a general formulation of the nonlinear
σ-model on a Riemannian homogeneous space (see also [4,5]), and we proved it
to possess the so-called dual symmetry if (and only if - cf. [6]) the homogeneous
space is a symmetric one. This hidden dynamical symmetry yields a linear Lax
representation of the nonlinear field equations and leads to an infinite series of
nonlocal conservation laws, thus generalizing the corresponding well-known
features of the SN~1 prototype model [7] or the CP*'1 model [2].

In our second paper [3, II], we used certain structural properties of symmetric
spaces to clarify the relation between the principal nonlinear σ-model on a Lie
group G and the nonlinear σ-models on the symmetric quotient spaces M = G/H
for G, and to show that instantons are fixed points of the dual symmetry.

Our present work deals with the derivation of higher local conservation laws
for the nonlinear σ-model on an arbitrary Riemannian symmetric space M = G/H,
generalizing the corresponding well-known higher local conservation laws for the
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SN-1 prototype model [1] or the CPN-1 model [8]. As usual, these conservation
laws are the coefficients in a power series expansion for a certain one-parameter
family of continuity equations, to be extracted from the dual symmetry in a
suitable way. For the SN-1 prototype model, this was originally done [1] via a
one-parameter family of Backlund transformations, or equivalently, of matrix
Riccati equations, and both methods have been generalized to various other types
of nonlinear σ-models [9-13]. However, the equations used there do not have an
intrinsic geometric meaning and hence do not match with the general geometric
structure, nor do they, in our opinion, produce all the relevant information.

Fortunately, we can dispense with these additional ingredients and instead, we
exhibit directly a one-parameter family/of α-valued fields α(y) which serves as the
generating functional of the aforementioned one-parameter family of local
continuity equations : this is simply the α-component in a certain decomposition of
the one-parameter family of G-valued fields g(y) which results from applying the
dual symmetry to the original G-valued field g. (Here and throughout this paper, α
denotes a fixed maximal abelian subspace of m, m being the tangent space of
M = G/H at the distinguished point ° = 1H; cf. Sect. 2.) The differential equations
for the #(y) then lead to differential equations for the α(v) which, when expanded in
powers of y, can be solved recursively to yield the desired conservation laws.
Moreover, it is clear that at each step of the recursion, we obtain p scalar
conservation laws rather than just a single one, where by definition, p = dim α is the
rank of M.

Although in principle, this program can be carried through in any gauge, we
have found it essential in practice to work in the so-called partial reduction gauge
(PR gauge) given by1

kξ = g~^Dξg takes values in α.

This gauge condition on the original G-valued field g may always be imposed, as
follows from (the infinitesimal version of) the polar coordinate decomposition
theorem for symmetric spaces (cf. Sect. 2), and it is local. Together with the
structure of the recursion relations, this implies the conservation laws to be local.
Moreover, the whole construction shows them to be invariant under global
symmetry transformations as well as under residual gauge transformations, i.e.
gauge transformations preserving the PR gauge condition.

As yet another interesting consequence of the interplay between the structure
of symmetric spaces and of nonlinear σ-models, let us mention the fact that for
solutions of the field equations, we can fix the gauge completely and work in the
so-called reduction gauge (R gauge). More precisely, the corresponding additional
gauge condition on the original G-valued field g (which, by the way, is nonlocal)
removes the gauge freedom completely up to global residual gauge transfor-
mations. This reduction procedure leads to a definition of the so-called reduced
system as a system of nonlinear partial differential equations in m + p variables, or
if one also exploits the conformal in variance of the theory and introduces
normalized coordinates to eliminate two more degrees of freedom, in m + p — 2
variables, where w = dimM, p = rankM. These reduced systems, at least for rankl

1 Actually, the PR gauge condition is slightly more restrictive cf. Sect. 3
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spaces (such as the spheres SN~1 and the complex projective spaces CPN~1) and in
normalized coordinates, can be viewed as generalizations of the sine-Gordon
equation. Unfortunately, except in a few very special cases (M = S2 ^(CP1, M = S3,
M = CP2 - cf. [1,14]), it remains unclear whether these differential equations -
possibly after an appropriate transformation of variables - can be derived from a
Lagrangian and hence define a field theory. Still, the existence of a Lax pair,
together with the examples and with the fact that they possess higher local
conservation laws - namely just the ones for the original σ-models, leads us to
conjecture that they actually define completely integrable systems which can be
solved by the inverse scattering method.

The organization of the paper is as follows: In Sect. 2, we give a brief account
of the basic concepts and facts from the theory of Riemannian symmetric spaces.
Section 3 reviews the formulation of the classical two-dimensional nonlinear
σ-model on such a space, and Sect. 4 is devoted to the reduction procedure. In
Sect. 5, we recall the definition of the dual symmetry and describe the technique of
extracting local conservation laws, while in the final Sect. 6, we illustrate our
results, together with the general mathematical machinery, for the example of the
nonlinear σ-models on the complex Grassmannian SU(N)/S(U(p) x U(q)) and on
the real Grassmannian SO(N)/SO(p)xSO(q) (N = p + q, p^q).

2. Riemannian Symmetric Spaces

For our analysis of nonlinear σ-models on Riemannian symmetric spaces, we shall
introduce, first of all, a certain amount of terminology and notation which we have
freely assembled from the previous papers [3] and from the books of Helgason
[15] and Kobayashi and Nomizu [16]. Despite the risk of boring the reader, we
believe this to be necessary because we will use considerably more detailed
information than is contained in [3] and because we have found it convenient to
modify some of the notation also, it may be difficult for the reader to extract the
relevant facts from the enormous amount of information contained in the
mathematical literature [15,16].

Throughout this paper, M = G/H will denote a Riemannian globally symmetric
space, and without much loss of generality [3, II], we shall assume it to be either of
the compact type or of the noncompact type. This means that we may take G to be
a connected semisimple Lie group with Lie algebra g and H C G to be a closed
subgroup with Lie algebra I) C g such that the group of linear transformations on g
of the form Ad(/ι), heH, is compact. For simplicity, we also assume G to be simply
connected if M is of the compact type and to have finite center if M is of the
noncompact type; then in both cases, H itself will be compact and connected [15,
pp. 320/321 and 252/253]. We write σ for the involutive automorphism of G which
defines the symmetry around the distinguished point °eM (= the left coset
H = 1H of 1 e G) and σ for the involutive automorphism of g which is the derivative
of σ at 1 e G, so that

σ(expX) = expσ(X) for Xeg; (2.1)

recall that the term "involutive automorphism" simply means that

for gl9g2eG (2.2)
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for σ and

σX2~\ for Xi9X2eg (2.3)

for σ. Then H is precisely the fixed point set of σ, ί) is precisely the fixed point set of
σ, and m, the eigenspace of σ belonging to the eigenvalue — 1, can (and will) be
identified with the tangent space T0M of M at the distinguished point ° e M
moreover, the first formula in (2.3) yields the direct decomposition

g = t)©m with σ^ + l o n f ) , σ= — l o n m , (2.4)

and the second formula in (2.3) is equivalent to the by now familiar commutation
relations

[t),I)]Cί), [ί),m]cm, [m,m]Cί). (2.5)

Furthermore, there exists an Ad (G)-in variant nondegenerate symmetric bilinear
form ( , •) on g (satisfying f)J_m) which restricts to an Ad (H)-in variant positive
definite symmetric bilinear form ( , ) on m in fact, we may just choose ( , ) on g
to be some negative (positive) multiple of the Killing form of g if M is of the
compact (noncompact) type [15, pp. 231 ff.]. (For an analysis of the situation on a
more general class of homogeneous spaces, see [6].) Of course, using the respective
actions of G on (the tangent bundles of) G and M by left translations, the forms
( , ) on g and on m can be uniquely extended to a bun variant pseudo- Riemannian
metric on G and to a left invariant Riemannian metric on M, respectively both of
these will also be simply denoted by ( , ). Thus M becomes a Riemannian
manifold whose geodesies turn out to be given by the projection of certain one-
parameter subgroups of G to M; more precisely, for #eG, gH = mεM, and Xem,
the geodesic y = y(t) on M starting at y(0) = meM with initial velocity γ(0)
= gXeTmM is given by y(t) = gQxp(tX)H for ίeR Thus the exponential mapping

Exp:τn-»M (2.6)

for M at o in the sense of Riemannian geometry [15, pp. 32/33 and 55-58] and the
exponential mapping

exp:g->G (2.7)

for G in the sense of Lie group theory are simply related by

for Xem; (2.8)

in particular, M is complete, and Exp maps m onto M. If M is of the noncompact
type, Exp is even a global diffeomorphism of m onto M [15, pp. 252/253].

Now let us fix once and for all a maximal abelίan subspace α in m (p = dima
being the rank of M) together with a maximal abelίan subalgebra ϊ in g (r = dimϊ
being the rank of G), and write

Z/ = normalizer of α in H = {heH/Ad(h)a = a}

L = centralizer of α in H = {heH/Ad(h) = 1 on α} (2.9)

I = centralizer of α in ί) = {Xeί)/ad(X) = 0 on α} .
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The geometric interpretation of the subspace α comes from the fact that Exp(α) is
a maximal flat totally geodesic submanifold of M - the direct analogue of a
maximal torus [15, pp. 224/225 and 245-249]. Both Lf and L are closed subgroups
of H which have the same Lie algebra I, and the discrete factor group L'/L -
conveniently viewed as a finite group of linear transformations on α - is the Weyl
group W(M) of M [15, pp. 284 and 401/402]. Also, we define the inhomogeneous or
affine Weyl group IW(M) of M to be the semidirect product of W(M) with the
discrete group of translations in α by vectors on the lattice

{Xe α/Exp(X) = °} = {Xe a/exp(X)eH} = {Xe α/exp(2X) = 1} (2.10)

in α [15, pp. 321/322]. [Observe that this lattice is trivial, and IW(M)= W(M\ if M
is of the noncompact type.] Now letting p denote the orthogonal complement of I
in ί) and n denote the orthogonal complement of α in m with respect to the form
( , ), we arrive at the orthogonal direct decomposition

(2.11)

and the corresponding decomposition of elements Xe$ will be written in the form

X =X^ +Xm =X, +X, +Xa +Xn . (2.12)

The commutation relations (2.5) can then be further specified as follows:

[U]cl, . [l,p]cp, [p,p]clφp

[U] = {0}, P,n]cn, [p,α]cn, [p,n]Cα0n (2.13)

[α,α] = {0}, [α,n]cp, [n,n]clθp.

Using a superscript c to denote complexifications and extending the form ( , ) in
a complex bilinear way, so that (2.5) and (2.11)-(2.13) continue to hold (with the
obvious notational modifications), we see that gc is semisimple, and ΐ is a Cartan
subalgebra of gc [15, p. 259], so that we can define the corresponding system A of
(nonzero) roots α on f [15, pp. 165ff.] and the corresponding system Σ of
(nonzero) restricted roots λ = ΰ on αc [15, pp. 263/264] : We view roots α as linear
forms on ϊc and restricted roots λ = α as linear forms on αc, where the bar denotes
restriction of linear forms from f to αc then α will be imaginary (real) on I and
λ = oί will be imaginary (real) on α if M is of the compact (noncompact) type. The
multiplicity m(λ) of a restricted root λeΣ is the number of roots αezl whose
restriction α is just λ. The set Σ of restricted roots gives rise to two important
subsets of α of measure zero, namely

D°(M) = {Xe a/λ(X) = 0 for some λe Σ} , (2. 14)

which is the union of finitely many hyperplanes in α, and

D(M) - {Xe a/λ(X)e πϊE for some λe Σ} , (2. 1 5)

which is the union of finitely many families of evenly spaced affine hyperplanes in
α; the latter is called the diagram of M [15, p. 295]. The complement a\D°(M) of
D°(M) in α decomposes into a finite number of connected components called Weyl
chambers, while the complement α\D(M) of D(M) in α decomposes into a countable
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number of connected components called Weyl cells. [Observe that D(M) = D°(M),
and the cells are identical with the chambers, if M is of the noncompact type.] As it
turns out, the Weyl group of M is generated by the reflections in the walls of the
Weyl chambers and just permutes these, while the affine Weyl group of M is
generated by the reflections in the walls of the Weyl cells and just permutes these
[15, pp. 288/289 and 321/322]. We also write α° (αs) for D°(M) [D(M)] and αr° (αr)
for its complement. Then under the smooth map

Hxa-^m
(2.16)

of Hxa onto m [15, pp. 246-248 and 294/295], Hxa°s respectively Hxa°r is
mapped to what is called the singular set m° respectively the regular set τn° in m,
and similarly, under the smooth map

Hxa-+M
(2.17)

) = h Exp(X)

oϊ Hxa onto M [15, pp. 246-248 and 294/295], Hxas respectively Hxar is
mapped to what is called the singular set Ms respectively the regular set Mr in M.

With all this notation, we can state the

Polar Coordinate Decomposition Theorem for Symmetric Spaces

a) Fix a Weyl chamber α+ in α. Then every point Zem can be written in the form

(2.18)

with heH and an element Xe a which is uniquely determined up to the action of an
arbitrary element of the Weyl group W(M), and is uniquely determined if in addition,
Xea+. Moreover, if Z is regular, i.e. Zem°, then h is uniquely determined up to
multiplication from the right by an arbitrary element of L', and of L if in addition,
Xεa+. Thus the smooth map

H/Lxa->m
(2.19)

of H/L x α onto m induced by (2.16) restricts to a local diffeomorphίsm

H/Lxa°r-*m°r (2.20)

and even to a global diffeomorphism

α+— τn°. (2.21)

_ b) Fix a Weyl cell c+ in α, contained in some Weyl chamber α+ in α, whose closure
c+ contains the origin. Then every point meM can be written in the form

m = Exp( Ad(Λ)Y) = h Exp(X) (2.22)

with heH and an element Xe α which is uniquely determined up to the action of an
arbitrary element of the affine Weyl group IW(M) of M, and is uniquely determined
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if in addition, Xec+. Moreover, if m is regular, i.e. meMr, then h is uniquely
determined up to multiplication from the right by an arbitrary element of L', and of
L if in addition, Xec+ . Thus the smooth map

H/L x α->M
(2.23)

(hL,X)^Exp(Aά(h)X) = h Exp(X)

of H/Lx α onto M induced by (2.17) restricts to a local diffeomorphism

H/L x αr->Mr (2.24)

and even to a global diffeomorphism

c+— Mr. (2.25)

For proofs, see [15, pp. 246-248, 285, 293-295, 323/324, and 401-403].
For the sake of definiteness, let us also introduce a basis Kί9 ...,Kp of α and

extend it to a basis Kί9...9 Kp, Kp+ 19 . . . , Kr of ϊ of course, these basis vectors are
assumed to be orthonormal with respect to the form ( , •) on g, i.e. we have

•(£„£,)= +1 for l^i

(Ki9KJ=+i for p + l^ί^r (compact type), (2.26)

(Kt, K ) = - 1 for p + 1 ̂  i ̂  r (noncompact type) .

In other words, with respect to the Killing form Kill of gc, we have

Kill(K/9 Kύ = - c2 for 1 ̂  i ̂  p (compact type) ,

i? Kt) = + c2 for 1 ̂  i ̂  p (noncompact type) , (2.27)

-c2 for

where c>0 is some suitable constant. This basis of f is further extended to a
Cartan basis of gc by introducing root vectors Eαegc, αe Δ9 such that defining
Kαef, αeJ, by

for all KeF, (2.28)

the commutation relations for gc read

for all Ketc ,

KΛ, (2.29)

if α

(with AΓαj3 = 0 if a + βφA), while the orthogonality relations with respect to the
Killing form are

Eα) = 0 for all Kείc,

Kill(Eα,E_α) = l, (2.30)

= 0 if
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[15, pp. 166 and 176/177]. Moreover, positivity of roots and of restricted roots -
and hence the system Δ+ CA and the system Σ+ CΣ - is defined in terms of the
given basis of ϊc by the usual "lexicographic ordering" [15, pp. 172/173 and
259/260], and the Weyl chamber α+ appearing in the theorem above will then
always be assumed to be that subset of α on which all the positive (restricted) roots
take positive values [15, p. 292]. In these terms, the orthogonal direct decom-
position (2.11) is given by

δ=0 α=0

PC= Σ CCEα + ̂ α) (2.31)

α Φ O

α Φ O

Moreover, for positive integers n and all Keα, the linear transformation ad(K)n

takes pc to pc respectively to nc and nc to nc respectively to pc if n is even
respectively odd explicitly, it is given by

Eα ± (— l)"σEα). (2.32)
<xeA + aeA +
ά Φ O / αΦO

This shows that if K is regular, i.e. if Keα°, then for any integer n (positive or
negative), ad(K)n is an invertible linear transformation on the space pc©nc which
acts according to (2.32) and commutes with the action of Ad(L) and ad(I), i.e.

for heL,
(2.33)

for Zel, Xepc®nc.

3. Formulation of Nonlinear σ -Models

With the notations and conventions of Sect. 2, we shall now review briefly the
formulation of the classical two-dimensional nonlinear σ-model on M, where as
usual [3, 1], the field q = q(x) taking values in M = G/H is (locally) lifted to a field
g = g(x) taking values in G, subject to the natural gauge equivalence

There exists a field
x f ^ h = h(x) taking values /0 Λ .) = qΛχ)<>' „ u ^ * (3-1)) i i v / ln H such that v y

under H. Still following [3, 1], we consider the (left translated) derivative field
g~ 1dμg (taking values in g) and split it into its vertical part, which is the gauge field
Aμ (taking values in t)), and its horizontal part, which is the (left translated)
co variant derivative field kμ = g~1Dμg (taking values in m):

/cμ EE g- iDμg = (g~ ldμg)m . (3.2)
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We also introduce the Noether current2 jμ (taking values in g):

ίμ=-Dμgg-1 (3.3)

[cf. (2.12) for the notation]. Indeed, it follows from the Ad (H)-m variance of the
direct decomposition g = ί)θ™ [cf. (2.11)] that under gauge transformations
g-^ghjμ is invariant, Aμ transforms as a gauge field, and kμ is covariant (ί.e.jμ-*jμ9

Aμ-^h~iAμh + h~1dμh, and kμ-^h~1kμh\ which motivates the introduction of an
ίf -covariant derivative for the latter :

Then as a consequence of the symmetric space structure of M, the identities

v-] = - [fcμ, fcj ,

v]=0, (3.5)

hold for any field configuration; in fact, according to (2.5), the first respectively
third equation is just the vertical part (f)-comρonent) respectively horizontal part
(m-component) of the identity

and the proof of the second equation is similar. Moreover, following [3, II], we
introduce a field β = Q(x) taking values in G, as follows :

ί (3.6)

Obviously, β is gauge invariant, and we obtain

J^±QΓ%Q. (3.7)

In the following, we shall often subject the field g = g(x) to gauge transfor-
mations g->gh with fields h = h(x) taking values in LCH rather than in all of H,
and we shall refer to these as residual gauge transformations (because they
preserve a certain gauge condition to be specified in the next section). Under these
circumstances, it is convenient to further decompose the fields Aμ and kμ as
follows :

Aμ=(Aμ\ + (Aμ)v, kμ=(kμ)a + (kμ)n (3.8)

[cf. (2.12) for the notation]. Indeed, it follows from the Ad(L)-invariance of the
direct decomposition cj = I©pφα0n [cf. (2.11)] that under residual gauge trans-
formations g-^gh, (kμ)a is invariant, (Aμ\ transforms as a gauge field, and
(Aμ)p9 (kμ)n are covariant [i.e. (kja-*(kja, (A^-*h~l(A^h + h~ld^ and
(Aμ)p-^h~1(Aμ)ph, (kμ)n-^h~1(kμ)nh], which motivates the introduction of an

2 For the proof of the fact that (3.3) does indeed define the Noether current of the nonlinear σ-model
on M, as defined by the action functional (3.10), with respect to the global symmetry transformation
Q-^Q^ d-*9o9 with space-time-independent group elements #0eG, see [6]
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L-covariant derivative for the latter :

Dμ(Av)f = dμ(Av\ + [(4Λ, (Λv)p] ,

Wn = Wn + [(M>(UJ

The classical two-dimensional nonlinear σ-model on M is defined in terms of
its action functional

μg, D»g) , (3.10)

which by the usual variational principle leads to the field equations

D^g-D^g^D^g^. (3.11)

These imply that jμ is conserved and kμ is covariantly conserved, i.e.

3/ = 0, (3.12)

Dμfc" = 0, (3.13)

and conversely, both (3.12) and (3.13) imply (3.11) [6].
In terms of (local) coordinates ξ,η which are complex coordinates in the

Euclidean case and light-cone coordinates in the Minkowski case [3, 1], the
definition (3.2) implies

the identities (3.5) take the form

Ft, = aμ, - dηAξ + iAξ, AJ = - [kf, /g ,
3^-^ + 217^=0, (3.15)

Dξkη-Dηkξ=0,

the action functional (3.10) can be rewritten as

S =±ldξdη(dξq, dηq)=tfdξdη(Dξg,Dηg), (3.16)

the field equations (3.11) read

D^-Djff 0-^,0=0, (3.17)

or equivalently,

1W - 0,0 ίΓ1 1)^=0, (3.18)

the conservation law (3.12) is

dj, + djζ=Q, (3.19)

and the co variant conservation law (3.13) becomes

Dξkη=0, (3.20)
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or equivalently,

Dηkξ = Q. (3.21)

On various occasions, we shall find it convenient to decompose the first identity in
(3.15) into its I-part and its p-part [cf. (2.13) and (3.9)] :

dξ(Aη\ - dη(Aξ\ + l(Aξ\, (An\-\ + \_(Aξ\, (AJJt = - [kt /g, , (3.22)

Dξ(Aη\ - Dn(Aξ\ = - [kξ, kn\ . (3.23)

Similarly, we can decompose the covariant conservation laws (3.20) and (3.21) into
their α-part and their n-part [cf. (2.13) and (3.9)] :

^U+K4UW =°> (3 24)
Dξ(kη)n + [(Aξ\, (kη)J + \{Aξ\, (kη)n-]n = 0 , (3.25)

3,(feί)« + [KV(*€U = 0, (3.26)

Dη(kξ)n + ί(Aη\, (kξ)J + l(Aη\9 (kξ)n-]n = 0 . (3.27)

4. The Reduction Procedure

The formulation of nonlinear σ-models given in Sect. 3, where the M- valued field q
is lifted to a G- valued field g, obviously has a high amount of redundancy which,
however, can be reduced, and eventually even be removed altogether, by imposing
suitable gauge conditions. To explain how this is done, we shall restrict our
attention to field configurations which are regular in the sense that on the domain
of space-time under consideration, the fields kμ take values in the regular set m° in
m. [Note that due to the Ad (H)-m variance of the singular set m° and the regular
set m° in m, this requirement is gauge invariant, i.e. it is really a requirement on the
field q rather than just on the field g. Note also that m° being open and dense in m,
the points x satisfying fcμ(x)em° constitute a domain - i.e. an open subset - in
space-time which is also dense if the field q = gH is "sufficiently generic", and our
assumption simply means that we focus attention on this domain only.] This is the
typical restriction to be expected in a derivation of local conservation laws for
nonlinear σ-models, because the SN~1 prototype model [1] already shows that
such conservation laws involve rational (rather than polynomial) functions of the
fields and their derivatives, so one has to impose some condition which keeps the
denominators away from zero.

With these preliminaries out of the way, and fixing a Weyl chamber α+ in α, we
shall now introduce the partial reduction gauge, or briefly PR gauge, and the
reduction gauge, or briefly R gauge 3, as follows :

First, part a) of the polar coordinate decomposition theorem for symmetric
spaces implies that for arbitrary (regular) field configurations, we can impose the

3 To be more precise, we should speak of the PR^ gauge and the Rξ gauge because obviously, there is
also a PR^ gauge and an R^ gauge [obtained by replacing kξ by kη in (4.1)] which, however, will not be
needed in this paper
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PR gauge condition, which reads

kξ takes values in α°, (4. la)

or even

kξ takes values in α+ . (4.1b)

In other words, we claim that the given M-valued field q can always (locally) be
lifted to a G- valued field g satisfying (4.1). Indeed, if to begin with, it has been
(locally) lifted to a G-valued field g' in some arbitrary way, then applying the
inverse of the diffeomorphism (2.21), followed by projection onto the first
component and then by some (local) section of the bundle H-+H/L, to k'ξ, we see
that (locally) there exists an fl-valued field h such that under the gauge
transformation g'-^g = g'h, we have k'ξ-^kξ = h~ίk'ξh with kξ taking values in α° or
even in α+. This argument also shows that the PR gauge is a local gauge because
obviously, the fields h and g are local functionals of the original field g'4. On the
other hand, it is only a partial gauge because the condition (4. la) respectively
(4.1b) still leaves us with the freedom to perform gauge transformations g-^gh with
arbitrary Z/-valued respectively L-valued fields h; this is the motivation for the
term " 'residual' gauge transformations" (for the latter) introduced in Sect. 3.

From our regularity assumptions, we see that in the PR gauge, &d(kξ) -
considered as a field of linear transformations from n to p and/or from p to n -
takes values in the invertible linear transformations because λ(kξ)ή=Q for all
restricted roots λe Σ. Therefore, we can define a field φ (taking values in n) by

φ = *d(kξΓ
l(Aξ\9 (4.2)

and it follows from (2.33) that under residual gauge transformations g-+gh, φ is
co variant (i.e. φ-*h~1φh\ which motivates the introduction of an L-co variant
derivative for φ :

^. (4.3)

Then for solutions of the field equations, we have the algebraic equations

(^)P=[M]> OU=°> 4)

(^=0, (kη)n=Dηφ,

the flatness condition

θξ(Aη)} - dη(Aξ\ + \_(Aξ\, (Aη\-\ = 0 , (4.5)

and the following system of partial differential equations :

3A=° (4.6)

DηDξφ(=5}DζDnφ = [(£„)„, lkξ, </.]] + [£>„</>, [% </»]]„ . (4.8)

4 For an extensive discussion of locality properties of gauges, though in a somewhat different
context, see [17]



Higher Local Conservation Laws 239

For the proof, observe first that in the PR gauge, (3.26) becomes (4.6) and (3.27)
[after application of ad^)"1] becomes the equation (̂ )p = 0. From (3.22)
respectively (3.23), and using (2.13) respectively (2.13) and (2.33), we then derive
(4.5) respectively [after application of ad^)"1] the equation (kη)n = Dηφ. Inserting
all this into (3.24) respectively (3.25), we finally obtain (4.7) respectively (4.8), where
we have used (2.13), (4.6), Jacobi's identity and the product rule to write

ID,Φ, ίkξ,

As we shall see below (in Sect. 5), the Eqs. (4.6) and (4.7) are precisely the zeroth
and the first local conservation law for the nonlinear σ-model !

Next, the flatness condition (4.4) implies that for (regular) solutions of the field
equations, we can go one step further and impose the R gauge condition, which
comprises (4.1) and in addition5

(Λf ),=(), «),=0. (4.9)

In other words, we claim that the given M-valued field q can always (locally) be
lifted to a G- valued field gR satisfying (4.1) and (4.9). Indeed, if to begin with, it has
been (locally) lifted to a G- valued field g satisfying (4.1), then the system

dξh
R = hR(Aλ

ξ * (4.10)
dηh

R = hR(Aη\

of differential equations, whose compatibility condition is precisely (4.5), defines an
L- valued field hκ such that under the residual gauge transformation g-*gR

= g(hRΓ \ we have kξ-^kf = kξ and (Aξ\-+(Af\ = 0, (Aη\-*(A$\ = 0. This argument
also shows that the R gauge is a nonlocal gauge because due to the appearance of
path-ordered exponentials in the solution of (4.10), the fields hR and gR are
nonlocal functionals of the original field g5. On the other hand, it is nearly a
complete gauge because the conditions (4.1a) respectively (4.1b) and (4.9) only
leave us with the freedom to perform global gauge transformations gR-+gRh0 with
space-time-independent group elements h0eLf respectively h0eL.

From our previous analysis, we now see that in the R gauge, the local gauge
freedom has been completely eliminated, and with the help of a geometric identity,
the field equation for the nonlinear σ-model has been reduced to a system of
partial differential equations for certain fields kf = kξ, (kR)a = (kη)a (taking values in
α) and φR = hκφ(hR)~1 (taking values in n), namely:

3Λ = °» (4.11)

Π ΦR = [(/yo, [fcp </>*]] + [_dnφ\ [fe,, ψ*]]n . (4.13)

5 All quantities referring to the reduction gauge will carry an upper index R
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This reduced system, which involves dimM + rankM independent degrees of
freedom (because dimp + 2dimα = dimM + rankM) and is globally Ad(L)-
invariant, can be viewed as a generalization of the well-known reduced systems [1,
13,14,18-20], at least for rankl spaces (such as the spheres SN~1 and the complex
projective spaces (CP^"1), where in normalized coordinates, the number of
independent degrees of freedom reduces to dimM—1. Even there, however, we
have not been able to find a Lagrangian from which to derive the system
(4.11)-(4.13) by the usual variational principle, and hence promote it to the status
of a genuine field theory. Actually, guided by the examples M = S2 = CP1, M = S3,
and M = CP2 [1,14], we believe that this is impossible, but that it becomes
possible after performing an appropriate transformation of variables (which is yet
to be found) and rewriting the reduced system as a system of partial differential
equations in the new variables. In any case, it seems that much work remains to be
done in this direction.

5. Dual Symmetry and Local Conservation Laws

The basis for all the known conservation laws - whether local or nonlocal - in
nonlinear σ-models is the dual symmetry [1, 3, 7]. This is a transformation which
associates with each solution q=gH of the field equations an entire one-parameter
family of solutions q(y) = g(y)H of the field equations with the same action S(q(y))
= S(q), where yelR, yΦO, as follows [3, 1] : Define g(y)=U(y)g, where the G- valued
field U(y) is the solution of the following compatible system of differential
equations :

Then

Ay =

(5.2)

and the G-valued field g(y} is the solution of the following compatible system of
differential equations [to be compared with (3.14)]:

-
From the corresponding transformation laws for the jμ9 Aμ9 and kμ, it follows that

under gauge transformations g^>gh, U(y) is invariant and g(y} is covariant (i.e.
C7(y)->(7(v) and g(y}-+g(y)h\ and both are uniquely determined up to multiplication
from the left by a space-time-independent, but (in general) y-dependent normali-
zation factor IΓ^eG. For convenience, we choose a reference point x0 in space-
time around which the given solution q = gH - and hence any of the transformed
solutions q(y) = g(y)H - is regular in the sense described at the beginning of Sect. 4
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(i.e. around which the fields kμ - and hence any of the transformed fields k(y} - take
values in the regular set m° in m), and put U(y) = U(y\x0). Then we relate the values
of this normalization factor for 7 > 0 and for γ < 0 by requiring [3, II]

U(-y) = σ(U(yϊ)Q or equivalently g(~v) = σ(gM); (5.4)

note that due to the differential equations (5.1), (5.3), this condition holds
everywhere if it holds at x0. Moreover, we require that for y near 1,

0) = ί or equivalently g(y\x0) = g(x0), (5.5)

and for γ near 0 as well as for y near oo

= g(x0Γ
ί or equivalently g(y\x0) = l. (5.6)

Now on the hand, the nonlocal conservation laws are known [3, 1, 7] to arise
from a series expansion of the gauge invariant, y-dependent conservation law

around the point γ = ί [in powers of w = (y — l)/(y + l) around w = 0]; moreover,
the normalization condition (5.5) guarantees that for y near 1, j(y} [cf. (5.2)] is
covariant under global symmetry transformations q->g0c[9 g~*g0g with space-time-
independent group elements #0eG. On the other hand, the known examples
[1, 8-13] suggest that two series of local conservation laws should arise from an
asymptotic series expansion of some similar gauge invariant, y-dependent con-
servation law

W + 0/^ = 0 (5.8)

around the point y = 0 (in powers of y around y = 0) and around the point y = oo (in
powers of y" 1 around y~ 1 ==0); moreover, the normalization condition (5.6)
should guarantee that for y near 0 and for y near oo, J(y} is invariant under global
symmetry transformations q ̂ g0q, g-^g0g with space-time-independent group
elements g0eG. The two series should then correspond to each other under the
usual interchange γ<-*γ~\ ζ+-*η, so that without loss of generality, we may (and
shall) concentrate on the first of them (obtained by expanding around y = 0).

In the following, we want to show that all this is indeed the case, and in fact, it
turns out that

Jf = + dξa
(y} , J(y} = - dηa

M , (5.9)

where the field a(y} is the "horizontal abelian part" (α-component) in a
decomposition

g(y) = Qxp(a(y))hκ exp(/(y)) exp(ωω) (5.10)

of the field g(y} which is obtained as follows :
First, since we are interested in an expansion around y = 0, the leading

singularity in the system (5.3) of differential equations for the field g(y) comes from
the y~lkξ term, and it seems reasonable to simplify this term as much as possible
by going to the PR gauge. More precisely, we assume that on the domain of space-
time under consideration, the original solution q = gH of the field equations is
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regular in the sense explained at the beginning of Sect. 4, and we impose the PR
gauge condition (4.1); then ad(fcξ) - considered as a field of linear transformations
from n to p and/or from p to n - takes values in the invertible linear
transformations because λ(kξ) φO for all restricted roots λe Σ. Next, we define hκ to
be the unique L- valued field which satisfies (4.10) and the normalization condition

thus in particular, g-+gκ = g(hR)~ί is the residual gauge transformation leading
from the PR gauge to the R gauge. (For more details, we refer to Sect. 4.) Now
using the fact that the map

g = α0I0(n0p)->G
(5.12)

(a, /, ώ)ι->exp(α) exp(/) exp(ώ)

is a diffeomorphism from an open neighbourhood of 0 in g onto an open
neighbourhood W of 1 in G, we may assume without loss of generality that on the
domain of space-time under consideration, there exist uniquely determined fields
a(y\ ίω, and ώω taking values in α, I, and n®ρ, respectively, such that

g(y\hR)-ί=Qχp(a(y))Qxp(ϊM)^p(ώ(y)). (5.13)

[Indeed, W being an open neighbourhood of 1 in G, the points x satisfying
g(y\x)hR(x)~ 1 E W for γ near 0 constitute a domain - i.e. an open subset - in space-
time which, according to the normalization conditions (5.6) and (5.11), contains
our reference point xoί and our assumption simply means that in addition to our
previous regularity condition, we focus attention on this domain only.] Finally, we
define fields a(y\ l(y\ and ω(y} taking values in α, I, and n0p, respectively, by setting

l(y) = M(hRΓ ̂  = (hR)~
(5.14)

ω(y) = Ad(Λ*Γ 'ω(v) = (hR)~ WW .

From the corresponding transformation laws for the g(y) and for hR [cf. (4.10)], and
from the Ad (L)-in variance of the direct decomposition g = α©l0(n©p)
[cf. (2.11)], it follows that under residual gauge transformations g-^gh, a(y\ ΐ(y\ ώ(y)

are invariant and l(y\ co(y) are co variant (i.e. α(y)-»αω, ?(y)->ί(y), ω(y)->ώ(y) and
/M-^/Γ1/^, ω(y)-+h~1ω(y)h), which motivates the introduction of an L-covariant
derivative for the latter :

^ ^ . (515)

,ω(^].

Moreover, the normalization conditions (5.6) and (5.11) guarantee that for γ near
0, all the fields g(y\ a(y\ ϊ(y\ ώ(y\ hR

9 l(y\ ω(y) are invariant under global symmetry
transformations q^g0q, g->g0g with space-time-independent group elements
#0eG, while the normalization condition (5.4) is equivalent to
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Our next step is to insert the decomposition (5.10) into the system (5.3) of
differential equations and to isolate the term containing the derivatives of a(y\ To
this end, we compute

)) exp( - ωω)

( - /(y))) exp(/(y)) + exp( -

+ dμa
(y) - exp(ω(y)) g(γ}~ ldμg

(y} exp( - ω(y))

and apply the formula for the derivative of the exponential map (2.7) [15, p. 105],
which - when combined with the chain rule - states that for any g-valued field X,

k factors (5.17)

Using (4.10) and (5.2), (5.3), this gives

a-r,,_ l-exp(-ad(/<»))
ad(/ω)

_ l-exp(-ad(F)) l-

~ y ' + ^ω

(5.18a)

or writing out the power series,

r)= Σ - -- V - r

(5.18b)

One of the main motivations for performing the decomposition (5.10), with the
given ordering of the factors, comes from the observation that in this way, the
singular behaviour of the fields g(y} near γ = 0 - which is already obvious from (5.3)
- becomes completely concentrated in the α-component, where it just appears as a
simple pole, and in the I-component, where it is irrelevant because it can in
principle be gauged away via a y-dependent residual gauge transformation;
moreover, as a reflection of the fact that we are working in the PR gauge, it turns
out that the other components vanish at y = 0. These properties are formally
expressed by disregarding the I-component of (5.10) and making a power series
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expansion Ansatz of the form

flω= £ yV10, ωω= Σ y»ω<»> (5.19)
n = - l n= + l

for the other components, where in order to satisfy (5.16),

,_> Λ , ω(n) takes values in p for n even,
α(M) = 0 for n even, (n) , . f ' (5.20)

ω(n) takes values in n for n odd .

From the corresponding transformation laws for the a(y) and ω(y\ it follows that
under residual gauge transformations g-^gh, the α(M) are invariant and the ω(w) are
co variant (i.e. a(n}-+a(n} and ω(n)-+h~ lω(n)h\ which motivates the introduction of an
L-co variant derivative for the latter :

Dμω^ = dμω^ + l(A^9 ω(w)] . (5.21)

Moreover, all the coefficient fields a(n\ ω(π) are invariant under global symmetry
transformations q-+g0q, g~+g0g with space-time-independent group elements

00eG
Inserting (5.19) and (5.2) into (5.18), discarding the I-component, and collecting

the coefficients of the various powers of y, we obtain the following two series of
equations [where we have also exploited (4.4) in order to eliminate

ζ-Series

V-υ

m=Λ>
^^(^v+c^.fcd. (5 23 °)
V1' mτd, -

Ds<°w + [ω<1)' UW + 1>(2)> k

V2)

 m=dl -
 <2> - ω ( 1 > > < »

1>>[ω(1),[ω(1Uj]] (5.23.2)

etc., and for general n ̂  2,

) = - D^<"> - V "Σ
modl k = l nι,...,«k f i = l

MI + ... +rik + l =

+ Σ Σ -[CB .̂....̂ ^^]...]
fc=l «!,... ,«fc=l ^*

MI + ... +Mk = n

ω^>,...,[ω^,[ω«,kί]]...]. (5.23.n)
nι, . . . ,n k ,/=l
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η-Series

(5.25.1)

(5.25.2)

etc., and for general n ̂  2,

H-l n-1
/ \ -̂i ττ-(

k — 1 HI ,..., njff I== 1
n i ~ l~. . . + H/C -f Z = π

π 1 n 1 -j

fc=l H ι , . . . , π k = l t

As we shall see, this system of equations can be solved recursively: We start from
the observation that (5.22) and (5.24) constitute a system of differential equations
for the field α(~υ whose compatibility condition is the zeroth local conservation
law (4.6), while (5.23.0) and (5.25.0), together with the restriction imposed by (5.20),
are solved by

ω(1) = ad(fc(,)~1(^)P (5.26)

[cf. (4.2)]. More generally, the subsidiary condition (5.20) implies6 that all terms
appearing in the nih equation (in both series) belong to m respectively to ί) if n is
odd respectively even. Thus splitting this equation into its α-component and its
n-component if n is odd, and into its I-component (which is trivial) and its
p-component if n is even, we obtain the following series of equations [where we
have also exploited (5.26) in order to eliminate (Aξ)p in favor of ω(1)]:

ξ-Series

Λ (I) l r ( l ) π ( l ) / ~ π /^ΪT7'^

(5.27.2),

6 Here, we use the fact [easily proved from (2.5) by induction on k] that for integers n1 ?..., nk, nk+1

and elementsX("l\ ... ,X(^k\X(^\ί} of 9 withX^ent respectively ί) for nt odd respectively even, we have
[X?0, ...,pΓΪIk),A'(

k

lϊ^l)]...]eτn respectively ϊ) for n t + ...+nk + «fc+ι odd respectively even
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etc., and for general w^2,

V°=- "Σ "Σ TϊzπiiV0. ....[ê y0]...].

Σ Σ 7j^[ω(^...,[ω<"*Uω«/c,]]...;]α, (5.27.Π).
k=l «ι,..., nfc, i = l IΛ~Γ U !

ni 4- ... + nk + Z = n+ 1

-"Σ "Σ
f c = l m , . . . , n k , Z = l

etc., and for general n^2,

w-l n-1 ι
Λ ,,(«) _ _ V V Γr/ι(nι)

°na — L L f t J _ i ϊ ϊ L ,...,

(5.27.«)n

nι + ...+fi k + / = n + l

if n is odd, and

D^>- V "Σ TΓ
Λ = ι πι,...,π k,/=ι

«ι + ... + nk + / = w

+ Σ Σ 7ϊ5lTΓ[«)( l),...,[ω("*),[ω(l'>fc4]]...]4 (5.27.n)p
k = l n ι , . . . , n k , Z = l ^ f C - h l j ϊ J

«ι + ...+«k + / = »+!

if n is even, where

cΛt ! = -*;, c k f / =l for ί^2. (5.28)

(5-29.1).

(5.29.1)n

p (5.29.2),

(nι) Γr/)(Mk) D rnί'Π 1

"Σ "Σ ^M"0,...,^^,^]...]., (5.29.n)β
k = l «ι,..., «k=l ^*

nι+ ... +nk = n- 1

" "

(5-29.n)n
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if n is odd, and

A,«(n>= - "Σ "Σ
k=l m ..... n k , ί=l

"Σ i [ω("l),...,[ω(»*),^...]p (5.29.n)p

if n is even.
It is now obvious that the ^-series of Eqs. (5.27), together with the subsidiary

condition (5.20), can be satisfied identically if we simply define dξa
(n} (in terms of

ω(1), . . . , ω(n)) and ω(π) (in terms of ω(1), . . . , ω(n~ υ) by repeated application of (5.27).
Moreover, we see (by induction on n) that dξa

(n) and ω(n) are linear combinations of
terms which result from repeatedly applying any of the following four operations,
in any possible order, to (Aξ)p :

a) The L-covariant ξ-derivative Dξ.
b) The transformation ad(fe^)"1.
c) The commutator [•>•]•
d) The projection to α, n, I or p.
Of course, there are various additional restrictions: For example, the last

projection (to be performed after having taken all commutators) has to map onto
the right subspace (e.g. never onto I), and the total number of ^-derivatives never
exceeds n— 1. However, we have not been able to find a closed expression for these
terms. Finally, we do except the //-series of Eq. (5.29) to be satisfied as a
consequence of the field equations, but lacking the aforementioned explicit
expression, we have no way of checking this directly (except in the lowest few
orders7), and lacking an independent justification for the validity of our Ansatz
(5.19), (5.20), we have no a priori guarantee that this is so, either. [To illustrate this
last point, note that if we had also made a power series expansion Ansatz of the
form

/<?>= £ //<»>
«=o

for the I-component, where in order to satisfy (5.16),

/("> = 0 for n odd,

we would have obtained /(0) = 0, but the equations for Dξl
(2} and Dnl

(2) would not
be compatible, thus leading us to a contradiction.] Thus there is still a gap in our
derivation of the rth local conservation law - which is simply the compatibility
condition

dηdξa
(n) = dξdηa

(n) (5.30)

7 We have, however, checked (5.29.l)n, (5.29.2)p, (5.29.3)n and also (5.29.l)β - the latter by proving it
to be compatible with (5.27. l)α; cf. (4.7)
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for the Eqs. (5.27. n)β and (5.29. n)β, with n = 2r-1 - for general r, r^2,7 and this is
why we have deliberately avoided the usual terminology of" 'infinite series' of local
conservation laws".

We want to emphasize, however, that this gap is common to all the various
existing methods of deriving local conservation laws for nonlinear σ-models
[1, 8-13], and that our method has the advantage of displaying at least the first
higher local conservation law for the nonlinear σ-model on an arbitrary
Riemannian symmetric space in an amazingly simple and explicit form, namely
[cf. (4.2), (4.7), (5.26),(5.27.1)α,(5.29.1)0, (5.30)]:

l(A&, U€)p])β = dξ(kη)a. (5.31)

6. Examples

In this last section, we want to give examples which illustrate the general concepts
and constructions of Sects. 2-5, and we shall concentrate on the real Grassmann
manifolds SO(N)/SO(p)xSO(q) and the complex Grassmann manifolds
SU(N)/S(U(p)x U(q)\ where N = p + q and p^q. First, we write down explicitly
the basic decomposition (2.11) of the corresponding Lie algebra and exhibit the
first higher local conservation law (5.31) in a different form. As before, this
conservation law is manifestly invariant under residual gauge transformations, but
in some cases, it can be restated in a form which is manifestly invariant even
under general gauge transformations: Apart from the rankl spaces, i.e. the
spheres SN~ί = SO(N)/SO(N-l) and the complex projective spaces (DP*'1

= SU(N)/S(U(ί) x U(N—i)\ where our conservation law reduces to the usual one
[1, 8], this applies to the real rank2 Grassmannians SO (N)/SO(2) x SO(N-2) as
well as to the complex rank2 Grassmannians SU(N)/S(U(2)xU(N-2)). Here,
algebraic simplifications occur because for a positive definite hermitean (2 x 2)-
matrix, one can explicitly write down two linearly independent square roots and
use these to form invariants. Finally, we show that in normalized coordinates, the
general reduced system of Sect. 4 reproduces the partial differential equation
obtained in [18] for the case M = SN~i and in particular, the sine-Gordon
equation for the case M = S2.

6Λ. First Higher Conservation Law for the Grassmannian Model

For the complex Grassmannian su (N)/S(Up) x U(q))9 withN=p + qandp^q, the
corresponding Lie algebra is the Lie algebra su (N) of traceless antihermitean
complex (N x ΛΓ)-matrices, for which we shall use the following block matrix
notation :

(6 1}

/**->
P q-
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Then the decomposition (2.11) is given by

IA o o
B -C+ = -B, D+ = -D\

(6.2)

and

From [15, pp. 347-349], we also find

A real diagonal, D+ = — D \

= -B, diag(β) =

A real diagonal r

diag(.R) imaginary

(6.3)

A2 real diagonal with nonzero and

mutually different entries

A real diagonal with Aίί> ... >/Lpp>θk

(6.4)

and therefore

+Shas nonzero and

mutually different eigenvalues

Turning to the nonlinear σ-model on SU(N)/S(U(p) x U(q)\ we write the
in the form g = (X, Y) = (X, Y', Ύ"\ where all matrices have N rows

(6.5)

fields
and
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g,X, Y, 7', Y" has N,p,q,p,q — p columns, respectively (cf. [3, 1] and (6.1)). Then as
usual,

(6.6)

and

0 Y+dμY,
0

0

+

Projecting out the various components corresponding to the above decom-
position, we find

o
o

Y"+dY"

(Aμ)p=\ o
0

(kμ)a=

\

0

Y"+duY'
(6.8)

For later use, we also introduce the notation

Now the PR gauge condition (4. la) respectively (4.1b) means that

O -K 0\

kξ=κ 0 0 i.e. F^

0 0 O

with

real diagonal

(6.9)

(6.10)

(6.11)

(6.12)

and K such that the entries of κ2 are nonzero and mutually different respectively
that the entries of K satisfy κίί > ...>κpp>Q. This implies that in the PR gauge,
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X+dηX a,ndX+djX are both diagonal! In fact, for X+dηX this follows directly from
(6.8) and the equation (Aη)p = Q [cf. (4.4)]. To prove the same for X+dξK, observe
that

lkξ,Dξkξ-]=-ad(kξ)
2(Aξ\ (6.13)

(because \_kξ, dξkξ~] = 0 and [_(A^, kξ~] = 0). Writing this out in terms of (3 x 3) block
matrices and expressing Yf+dξY' in terms of X and its derivatives [via (6.11) and
(6.12)], we arrive at the equation

lK2,X+d;X~]=Q (6.14)

which indeed implies ihatX+dξX is diagonal.
Still working in the PR gauge, let us now write our first nontrivial local current

[cf. (5.31)] in the form

(6.15)

where Jl

ξ

l\ J(

η

l} are fields taking values in the real diagonal (p x p)-matrices. Then
the entries (J^j of J^υ and (^υ)jV of J*υ (1 ^j^p) are explicitly given by

-κ4-

_l -i y £-iι
2^77 L> ^jk '

k=l
(6.16)

[cf. (6.10)] with

kii = κ2(2κίj)
2, ** = *&(*»-*») for jΦ/c, (6.17)JJ JJ N Jj' J"' ΛΛ.V j j ivn./ •/

and

respectively. In fact, (6.18) follows directly from (6.8). To prove (6.16), we make an
Ansatz

0 -R + κ~1 -S

~*R 0 0

S 0 0

with diag(JR) purely imaginary [cf. (6.3)], which implies

AR+-.R 0 0

0 Sic 0

(6.19)

(6.20)
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Comparing this with (6.8) and using the fact thatX+d^ is diagonal, we derive that
the diagonal entries RJJ of R (l^j^p) and the offdiagonal entries Rjk of R

are given by

R j j - f r j j Γ t W j j , Rjk = (κ2

n-κlkΓ
lWjk for Φfe (6.21)

[cf. (6.10)], and that
2. (6.22)

Inserting this into the equation

J(v=±Rediag(κ-1RR+-2κ-1R2 + κR+κ-2R + κS+S) (6.23)

which follows from (6.15), (6.19), (6.20), we arrive at (6.16).
To compare our result with that of [12] (which contains some errors), we have

to take the sum over j and rearrange terms by using that

Kjj KJk ~^~Kkk Kkj =Kjj Kkk (Kjj + Kkk) (6.24)

for Irgj, k^p; this gives

-ίΣ ^^(Kjj + KkkΓ^W.j (6.25)
j,k=l

[cf. (6.10)], and

(6.26)

From (6.16)-(6.18) and (6.25), (6.26), we see again that the currents are invariant
under residual gauge transformations, which act on the fields X and W according
to X^XQxp(iΛ) and W-+Qxp(-iΛ)Wexp(iΛ\ where A is a field taking values in
the real diagonal (p x p)-matrices [cf. (6.3)], and that the regularity conditions
ensure the denominators to be nonzero. It also follows that for p = ί, our
conservation law reduces to the usual conservation law for the complex projective
space CPN"1 = SU(N)/S(U(ί)xU(N-ί)) [8], which, in contrast to the one for
Grassmannians of higher rankp>l, is automatically invariant under general
gauge transformations.

To conclude, we want to show how for the rank 2 Grassmannian
SU(N)/S(U(2) x U(N — 2))9 our conservation law can be rewritten in a form which
is manifestly invariant under general gauge transformations. This is based on the
observation that for any positive definite hermitean (2 x 2)-matrix V with inverse
V~ 1, we can give an explicit formula for the two linearly independent square roots

Vl/2 of V and V~1/2 = (Vl/2Γ\ KΓ1'2^'2)'1 of F~ 1 8 :

= (trF±2(detF)1/2)-1/2(F±(detF)1/2l),
(6.27)

8 The index +, which is sometimes omitted [cf. (6.12)], is supposed to indicate that F+/2 respectively
V+ 1/2 is the unique positive definite square root of V respectively V~l
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Note that all these (2 x 2)-matrices are again hermitean and commute with each
other moreover, denoting the eigenvalues of F by λ2 and μ2, with λ ̂  μ > 0, we get

λ±μ = trVl/2. (6.28)

For the proof, observe that we can always find a unitary (2 x 2)-matrix ί/e 17(2)
such that

0\

μ2)-

Then

and (6.27) reduces to the formulae

from which all our statements are obvious note that an explicit knowledge of U is
not required.

Now with V given by (6.9), we can rewrite our first nontrivial local current in
the form

= \ tr F±~

- £(tr F^2)- 1 {tr (F- r W)2 + (det F|/2) tr (F± 3/2 VF)2} (6.29)

[cf. (6.10)], and

(6.30)

These expressions are obviously invariant under general gauge transforma-
tions, which act on the fields X, F, F+/2 (keZ) and W according to X-*Xh,
V^h-^Vh, V%2-*h~lV%2h [keZ; cf. (6.27)] and W^h'^Wh, where Λ is a field
taking values in C7(2), and a short calculation shows that in the PR gauge, (6.29) is
equivalent to (6.16) and (6.30) is equivalent to (6.18).

Of course, the entire analysis of this section also applies, mutatis mutandis, to
the real Grassmannian SO (N)/SO(p) x SO (q) with N = p + q and p^q. In fact, all
we have to do is to replace + (hermitean adjoint) by T (transpose) and discard all
imaginary parts we leave the details of these modifications to the reader.

6.2. Reduced System for the Sphere Model

To show that for the nonlinear σ-model on the sphere SN~1=SO(N)/SO(N- 1),
our general definition (4.11)-(4.13) of the reduced system reproduces the result of
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[18], and in particular, for JV = 3, the sine-Gordon equation, we write

(6.31)
' \

(kη)a=\β 0 θ|, (fc«)n=lθ 0 0

\0 0 O/ \φ 0 0

and

/l= j//?2 + φ2, β = λcosoί, φ = As inαf , (6.32)

where K, λ, α, β and φ, φ, f are fields taking values in K. and in IR1^ 2, respectively,
with κ>Q,λ>0, and f2 = 1 observe that in terms of the original field q [1,18], the
variables K, λ, and α are given by

(6.33)

Then φ = δvφ [cf. (4.4)], and the differential equations (4.11)-{4.13) take the form

cVc=0, (6.34)

dη(^2) = dξβ, (6.35)

Dφ + κjSφ=0, (6.36)

implying

3̂  = 0. (6.37)

In terms of normalized coordinates, we have κ= 1, λ= 1 [cf. (6.33)], and φ solves
the equation

^((l-φT1/2δ,φ) + φ = 0 (6.38)

obtained in [18]. For N = 3, this reduces to the statement that α solves the sine-
Gordon equation

Dα + sinα = 0. (6.39)
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