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Abstract. For a stochastic operator U on an Lx-space, i.e. U is linear,
positive, and norm preserving on the positive cone of L l 5 it is shown that
U decreases relative information between two nonnegative L^functions.
Furthermore it is shown that the following properties of U are closely
related: U is energy decreasing (energy preserving), U is H-decreasing,
where H is Boltzmann's H-functional, and the Maxwell distributions are
fixed points of U.

The aim of this note is to prove some properties of stochastic operators on Lx-
spaces. In Sect. 1 we show that a stochastic operator decreases relative
information between two nonnegative ί^-functions. Such a property was
known for special cases.

In Sect. 2 we show that, for a stochastic operator U, certain properties are
equivalent. If a is a function on the measure space defining the energy and H
is Boltzmann's H-functional, then, for instance, it is shown that U is energy
decreasing and iί-decreasing if and only if all "Maxwell distributions"
exp( — κ:α) ( κ ^ l ) are invariant under U. These properties are also equivalent to
the property that U is energy preserving and leaves one "Maxwell distribution"
exp (— α) fixed.

In [13], the author proves the H-theorem for Boltzmann type equations u'
= Tu+J(u) in L1(μ), for some measure space (Ω,jtf,μ). The required conditions
are posed in abstract form on the strongly continuous semigroup (U(t); f^O)
of "free motion" generated by T, and on the "collision operator" J separately.
In applications, U(t) should be expected to be a stochastic operator for each
ί^O. As a consequence of Theorem 2.1 and Proposition 2.5, one can obtain
relations between some of the conditions for (U(t)); this is discussed in [13,
remarks preceding Proposition 3.1]. As an example we consider Ω—DxΊR3,
where DczIR3 is open (and has suitable boundary), μ is Lebesgue measure, and
T is an operator associated with the differential expression — ξ gradx and a
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suitable boundary condition. The corresponding initial boundary value prob-
lem in Lx(μ) is treated in [14]. With a defined by a(x,ξ) . = l +\ξ\2 (xeD,
( e R 3 ) , the problem to find boundary conditions such that the corresponding
semigroup satisfies the conditions required in [13] is discussed in [14, Sect. 9].
In this discussion, the equivalence of the conditions in Theorem 2.1 suggests
that only rather restricted boundary conditions come into question.

The author is indebted to H. Spohn for suggesting Theorem 1.1.

1. A Convexity Theorem

Let (Ώ, J</, μ) be a measure space. By L1(μ) we denote the space of real valued
integrable functions, by L1(μ)+' = {feL1(μ); /^0} its positive cone. For
fgeLx(μ) + we define the information of f with respect to g by

H(f\g): = $(f\nf-flng)dμ. (1.1)

(We set 0In0 = 0, x lnθ= — oo for x>0.) For the introduction of this quantity
we refer to [5]. The following remarks recall that we always have
— oo <H(f\g) ^ oo. The elementary inequality

xlnx — x^xlny — y (1.2)

(x,3^0) implies /(w) ln/(w)-/(w)Ing(w)-/(w) + g(w)^0 (weΩ), H(f\g)^\\f\\
— | | g | |>-oo. If in particular | |/ | | = ||g||5 then H(f\g)^0. Furthermore, since
equality in (1.2) holds if and only if x = y, we obtain H(f\g)=\\f\\ - \\g\\ if and
only if/=g.

Let (Ωi?j/.,μ.), i = l,25 be measure spaces, and U: L1(μ1)->L1(μ2)
 a linear

operator. U is called positive if U(L1(μ1)+)czL1(μ2)+. (This implies that U is
continuous; cf. [11, II, Theorem 5.3, p. 84].) U is called stochastic if U is
positive and \\Uf\\ = \\f\\ holds for all feL1(μί)+ (cf. [11, III, Def. 8.8, p. 191];
in [4, Def. 11.7.4, p. 353], such operators are called transition operators). We
note that, for a stochastic operator U, we have j Ufdμ2= \\Uf+\\ — \\Uf~\\
= II/ΊI - I!/'II =Sfdμi for all feL^μJ.

1.1. Theorem. Let (Ω^s/^μ^ z = l,2, be measure spaces. Let U: Lί(μ1)-+Lί(μ2)
be a stochastic operator. Then

H(Uf\Ug)^H(f\g) (1.3)

holds for all fgeLί{μί)+.

1.2. Remark. A statement similar to Theorem 1.1, for completely positive trace-
preserving maps on the trace class operators on a Hilbert space, can be found
in [6]; cf. also [12]. For special situations, Theorem 1.1 is known. We refer to
[5, Chap. 2, Theorem 4.1, p. 19] for the case that U is the operator forming
conditional expectations, and to [7, Sect. 2.3], where our Corollary 1.5 is
proved if (Ω, jtf, μ) is a discrete finite measure space. •
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1.3. Lemma. Let (Ω,s$,μ) be a measure space. Then there exists a compact
Hausdorff space S and an isometric algebra isomorphism J: /^(μ)—• C(S) (L^μ)
and C(S) real valued). J / / = 7c:IR, and y: / - > R is continuous, and feL^μ) is
such that μ({weΩ;f(w)φI}) = 0, then

J(yof) = yo(Jf), (1.4)

Proof. Since the complex valued Lc o(μ;C) is a commutative β*-algebra with
unit (cf. [4, Definition 1.15.3, p. 22]), there exists a compact Hausdorff space S,
and an isometric £*-algebra isomorphism J : L ^ μ ; (C)-> C{S; C) (cf. [4, Theo-
rem 4.22.1, p. 157]). Then J =J\Loo(μ) has the asserted properties.

If A G I R \ / , then λ\~f is invertible in L0O(μ), therefore λl—Jf is invertible
in C^S), and this implies Jf(s)ή=λ for all S E S . Without restriction we may
assume that / is compact. Then there exists a sequence of polynomials (pk;
/ceN) such that max{\pk(t)-y(t)\; teI}-+0 (/c->oo). Now, pk°f-+y°fin L^iμ),

Pkojf->yojf and J(Pkof) = Pko(Jf) ( k N ) imply (1.4). Q

For the validity of (1.4) in a related situation we refer to [3, Theorem
4.6.18, p. 274].

1.4. Lemma. Let Sί, S2 be compact Hausdorff spaces. Let R: CiS^-^ C(S2) be a
positive linear operator, Rl = l. Let / = 7c=IR be an interval, y: I—>IR continuous
and convex. If φe C(5X) is such that φiSJal, then Rφ(S2)^L and

yo(Rφ)£R(yoφ)m (1.5)

Proof Let seS2. Then a positive linear functional Rs on C ^ J is defined by
Rsφ: = (Rφ)(s) (φeCiSJ), and, by the Riesz representation theorem, there
exists a positive Borel measure μs on ίS1 such that \φdμs = Rsφ (φeC(Sι)) (cf.
[10, Theorem 2.14, p. 40]). By .Rs(l) = l, we have μ s(S }) = l. Jensen's inequality
(cf. [10, Theorem 3.3, p. 61]) now implies y(\φdμ^\(y°φ)dμs, which can be
written as y(Rφ(s))t^R(yoφ)(s). Since this is true for all seS2, we have
(1.5). D

Proof of Theorem 1.1. We define the function γ: [0, oo)->R by y(t)- = tlnt (recall
0 In 0 = 0). y is continuous and convex. Furthermore we note that, for ί ^ O ,
t2>0, we have

hy ί—)=t1\ntί-t1\nt2. (1.6)

(i) In the first step we are going to prove (1.3) under the additional
assumption that there is c > 0 such that f^cg. Let g e L 1 ( μ 1 ) + be fixed, and
define Ω'2: = {\v2eΩ2; (7g(w2)φ0}. We define a linear operator R': L0 0(μ1)

by

R'<p:= —U(φg).
Ug

Then we have R'φ^O for ^ ^ 0 , R'ί = ί. Let J ^ L^μ^-^ Ciβ^ J2:
L 0 0 (μ 2 | Ω'2)—> C(iS2) be the algebra isomorphisms whose existence was shown in
Lemma 1.3. Then the operator R = J2R'J^1 obviously has the properties
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required in Lemma 1.4.

For φeLa0(μί)+ we have J1φ7z0, and Lemma 1.4 implies yo(RJ1φ)
^R(yoJ^φ\ or γo(J2R'φ)<^J2R

fJ1~
1(γojίφy Applying J2~

ι and using (1.4),
we obtain y o (R' φ) ̂ R'(yo φ\

(Ug) (y

(1.7)

Now let feLί(μ1)+ be such that there exists c>0 such t h a t / ^ eg. Then there
exists φGL0 0(μ1)+ such that f=φg9 and for each φ with these properties we
have (yoφ)g=f\nf — /Ing. [This is trivial for those wίeΩ1 for which g(w1) = 0
holds; otherwise it follows from (1.6).] From (1.7) we therefore obtain

UfIn Uf-Uf\n Ug^U(flnf-f\ng) (1.8)

on Ω'2, where we have transformed the expression resulting on the left hand
side with the aid of (1.6). From flnf— f\ng = (yoφ)g we obtain | / m /
—f\ng\S l|y°<p|loo£> which implies U(f\nf—flng)\Ω2\Ω2 = O. Since we also
have Uf\Ω2\Ω'2 = 0=Ug\Ω2\Ω2, we obtain (1.8) on all of Ω2. Now, integrat-
ing (1.8), we obtain

H(Uf\Ug)£ ί U(flnf-fing)dμ2 = H(f\g).

(ii) In this step we assume /|[g = 0]=0 μ^almost everywhere. Defining
fk:=f^kg (fceN), we have fkύfk+i (fceN), / fc->/ in L^μ^, and from part (i)
we obtain

H(Ufk\Ug)^H(fk\g). (1.9)

If jFί(/|g)=oo, then (1.3) is trivially true. Assume now H(f\g)<oo. We
define Ω[ . = lfSgl Ω'[^if>g]. Then we have (fk\nfk-fk\ng)\Ω\=(f\nf
-/lng)|ΩΊ (IteN). For wefi" we have

0g/k(w) ln/k(w) - / » I n g(w) =/k(w) l n ^ / / ( w ) I n ^ (fc-> oo).

The dominated convergence theorem therefore implies

(1-10)
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As an increasing sequence, the sequence (Ufk) converges to Uf μ2-almost
everywhere. From (1.2) we obtain UfklnUfk-UfklnUg-Ufk+Ug^O, and
therefore Fatou's lemma implies

H(Uf\ Ug)- | | I//1 | + \\Ug\\ ^liminϊ(H(Ufk\ Ug)- \\Ufk\\ + \\Ug\\),
(1.11)

H{Uf\ Ug) ^l im inf H{Ufk\ Ug).

From (1.9), (1.10), (1.11) we obtain (1.3).

(iii) If the assumption made in (ii) is not satisfied, i.e. if μ1({weΩι; g(w) = 0,
/(w) + 0})>0, then H(/ |g)=oo, from the definition, and (1.3) is trivially
satisfied. •

Theorem 1.1 becomes especially interesting if the "reference quantity" g is a
fixed point of U.

1.5. Corollary. Let (Ω,jrf,μ) be a measure space. Let U: L^μ)—>Lj(μ) be a
stochastic operator. Let geL1(μ)+ be a fixed point of U (i.e. Ug = g). Then, for
all /eL 1 (μ) + J one has

H(Uf\g)^H(f\g). (1.12)

Proof This is a trivial consequence of Theorem 1.1. •

We now fix the measure space (Ώ, stf, μ). Furthermore, we assume that a
measurable function α: Ω—>[α0,oo) (for some α o >0) is given. The ί^-norm in
L1(aμ) will be denoted by || ||α. We shall always assume the condition

(αl) exp(-α)GLi(μ)

[where exp( — α)(w) = = exp( — α(w))(weΩ)]. F o r / e L 1 ( α μ ) + we define the nega-
tive entropy off by

(1.13)

We note that always — oo <H(f)^co, because of

) = H(f\exp(-a))-\\f\\a. (1.14)

1.6. Corollary. Let (αl) be satisfied. Let U: Lx(μ)—>Lx(μ) be « stochastic opera-
tor. Assume that exp( —α) is a fixed point of U.

(a) Then H(Uf)+ \\Uf\\ΛίH(f)+ | |/ | |α for all feL1(aμ)+ such that

(b) // /eLi(αμ) + is such that UfeL^aμ) and \\Uf\\a^ | |/ | |α, ίften
)^H(/)ΛoMs.

This follows from Corollary 1.5 and (1.14). •

2. Properties of i/-Decreasing Stochastic Operators

In this section, we fix the measure space (Ω, J</, μ). As in Sect. 1, let α:
Ω—>[α0, oo) (for some α o >0) be a measurable function satisfying (αl).



36 J. Voigt

We define the σ-algebra s/a: = {oί-1(B); JBC[0,OO) Borel set}cj3/ on Ω.
is σ-fmite, since the sequence Aj% = {weΩ; a(w)^j} (jelti) satisfies

j Λ , Ω = \jAj, μ(Aj)^ej\\Qxp{-a)\\<oo. For feL^μ) we define the signed
measure μf on sda by μf{A) = \fdμ{Aes^a). Then μf is absolutely continuous

A

with respect to μ\jtfa, and the Radon-Nikodym theorem implies the existence
of a unique MΛfeL1(μ\jrfΛ) such that

$MJdμ=Sfdμ (2.1)
A A

holds for all Aes/X (cf. [10, Theorem 6.9, p. 122 as well as the remarks on p.
124]). Mα is the operator which, to each feLί(μ), assigns the conditional
expectation with respect to stfa. The operator Mα: Lί(μ)—>L1(μ\s^a) is stochastic.
If Lx(μ|j/α) is canonically embedded in L1(μ\ and, accordingly, Mα is consid-
ered as an operator in L1(μ\ then M^ = Ma holds.

2.1. Theorem. Lei (αl) be satisfied. Let U: L1(μ)-^Lι(μ) be a stochastic opera-
tor. Then the following statements are equivalent:

(a) UiL^aμVtzL^aμland WUflSWfl, H(UmH(f)for all feLMμ)^
(b) exp( — κ(x) is a fixed point of U for all κ^.1 (or equivalently, for all κ>0

such that exp( — κa)eLi(μ)).

(c) Uf=ffor all feL^μ]^) (or expressed differently, UMa = MΛ).

(d) UMa = Ma = MaU.

(e) l/ίLΛαμflcLΛαμ), | | l / / | | β = | | / | | β for all /eL 1 (αμ) + , am/ exp(-a) is a
fixed point of U.

We note that, if κ'>0 is such that exp( — κfa)eL1(μ\ then exp( — κoc)
eLj(αμ) for all κ>/c/. Therefore (αl) implies exp( — κa)eLί(aμ) for all
κ>\.

For the proof of Theorem 2.1 we need some preparation.

2.2. Lemma ("Lemma of Gibbs"). Let exp( —α)GLx(αμ), and assume that
feLι(aμ)+ satisfies

Then f = exp (— α).

Proof (compare [2, p. 25], [8, p. 549]). The assumptions imply

= tf(exp(-α)|exp(-α)) = 0,

thus ff(/|exp(-α))=||/||-||exp(-α)||, which implies/= exp(-α). Π

2.3. Lemma. Let (αl) be satisfied. Then the set {exp( — κcή; κ^l} is total in
L^μl^/J (i.e. the linear span of {...} is dense).

Proof On the σ-algebra s$' of Borel sets of [0, oo) we define the image μ! of μ
under α, μ'(B)' = μ(a~1(B)) (Bestf'). Obviously μ'(B)<co for each compact set
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JBC[0,OO). The operator J: Lγ{μ')-+ Lγ{μ\srfa\ Jf'—fΌutf'eL^')), defines an
isometric isomorphism (cf. [9, Chap. 15.2, Proposition 1, p. 318]).

For κ^l we define/^: [0, oo)—>IR, ft{t)' = e~κt. Then /κΌα = exp( — KOL\ and
therefore/^eL ί (μ') Now, the assertion is equivalent to the statement that {ft;
κ^l} is total in L1(μf); we are going to prove the latter statement.

Because of f{eL1(μ') + , μ"'=f[μf is an integrable measure on [0, oo). The
operator J': Li(μf)-^L1(μf/), Jff'(t) ' = etf'(t) (ί^O), is an isometric isomorphism,
and we have J ft=ft\ where ft'(ή = e~{κ~1)t (ί^O), for all κ ^ l . So it remains
to show that A = [ft'; fcg l] ( = linear subspace of L1(μfr) generated by {ft';
κ^ί}) is dense in L^μ"). Obviously, A is a subalgebra of C([0, oo]) (^space of
continuous functions on [0, oo) converging at oo), and A separates the points of
[0, oo] and contains the function 1=//'. Therefore, A is || H^-dense, in
C([0, oo]), by the Stone-Weierstrass theorem ([1, Chap. X, Sect. 4.2, Theorem
3, p. 36]). Because of μ"([0,oo])<oo, (C([0, oo]), || U J M W ) , II II) exists
and is continuous, and C([0, oo]) is dense in Lx(μ!'). This shows that A is
dense in L1(μ/r). •

2.4. Lemma. Let (αl) be satisfied. If feL^aμ), then we have MJΈL^ocμ),
Ma(af) = (xMJ. Further, i//eL1(μ)+ and MJΈL^μ), thenfeL^ccμ).

Proof. The bounded j^-measurable function α" 1 can be approximated uni-
formly by a sequence (ξn) of ^-simple functions. The obvious equalities ξnMaf
= Ma(ξJ) (ΠGN)_imply α ^ M J - M ^ α " 1 / ) (feL^μ)). If/eL^αμ), then MJ
= Ma(a 1af) = a~1M(X(ocf) implies the first assertion. To show the second
assertion, let χn be the indicator function of the set {weΩ; α(w)rgrc} (neN).
Then Ma{χJ) = χnMJ, hnW)dμ = \xMa{χnf)dμ = \ χnaMJdμ-^$aMJdμ,
and α/eL^μ) follows from the monotone convergence theorem. •

Proof of Theorem 2.1. (a) => (b). Let κ'>0 be such that exp( — K' a)eL1(μ\ and
let κ>κ'. Then exp( — κa)eL1(ocμ). If, in Lemma 2.2, a is replaced by κa9 then
for / : = L/exp( — KOL) the assumption^ are satisfied, and / = exp( — κot) follows.
From exp( —κ:α)-^exp( —/c'α) (K—>κ;' + ) we obtain U exp (— κf a) = exp (— K! α).

(b) ^> (c). From ί/exp( — /cα) = exp( — KOL) (κ^ΐ) and Lemma 2.3 we obtain

Uf=f for all feL,{μ\^a\

(c) => (d). First we show that /eL1(μ) + , AesίΛ, f\[Λ=0 implies C7/|||X
= 0. If μ{A)<co, then χ ^ e L ^ μ K ) , f=lim{f AjχA)9 Uf=limU(fΛjχA), and
from O^U(fΛjχA)^U(jχA)=jχA (/eN) we obtain L//|(J^ = O. In the case
μ(^4)=oo there exists an increasing sequence (Aj) in <$/a, [j Aj = A, μ(Aj) <co
(jeM). We have/ = limZjl/, and from l/(χA/)lC^ = O and t//=lim t/(^/)
we obtain Uf\[A=0.

Now, let/eL^/i). If 4erf a, then the fact shown in the preceding paragraph
implies χAU(χAf) = U(χΛf), (ί-χA)U((l-χA)f)=U((ί-χΛ)f), which in turn
implies χA Uf= χΛ U(χAf) + χA [/((I -χA)f) =

= ί U(χJ)dμ= J χ ^ μ = J/d/x.

Since this equality holds for all y4ej/α, the definition of Mα implies MJ
= Ma Uf This shows Ma = MaU.
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(d) => (e). If feL^aμ), then M0CUf±=MJ±eL1ί{aμ) implies Uf±eL1{aμl
by Lemma 2.4. For /eL1(αμ) + 5 Lemma 2.4 implies

II E//||α= ||aC//|| = ||Mα(αl//)|| = ||αMβl7/|| = ||αMα/|| = ||

From exp( — σ.)eL1(μ\j^J we obtain £/exp( — α) = t/Mαexp( — α) = Mαexp( — α)
= exp (— α).

(e) => (a). This was proved in Corollary 1.6 (b). •

2.5. Proposition. Assume that

(α2) exp( — KoήeL^μ) for all κ>0

holds. Let U: L1(μ)-+L1(μ) be a stochastic operator satisfying one (and there-
fore all) of the conditions of Theorem 2.1. Then WUfW^^WfWoo holds for all

Proof Let feL^μ) n L^μ), without restriction/^ 0 and | |/IL = L Let fk-=f
Λexp( — α/k) (fceN). Then /fc//(k—>oo) in L1(μ). This implies Ufk/

{Uf in
L^μ), in particular Ufk-+Uf μ-almost everywhere. From (b) of Theorem 2.1
we have Ufk^ U exp (-α/k) = exp (-α/k) g l , HfZ/Jl^^l (keN). This implies
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