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Abstract We shall consider a finite range model on a square lattice Z3 and
show the existence of bubble, tubular and lamellar phases by estimating the
correlation functions at low temperature.

Introduction

In many systems such as the mixture of water and soap we can observe the
phenomena of changes of the geometrical structures according to the density.
When we dissolve the soap in water, the system changes from the dissipative
state into the state of hexagonal structure, then into the state of lamellar
structure and finally into the state of gel. The interaction in the real substances
seems too complicated to be analyzed mathematically.

In this paper we shall show that such a phenomenon is realized even in the
simple model, though our model may not be the simplest one/Consider the 3-
dimensional square lattice Z3. We arrange oil-particles and water-particles on
sites of Z3, and also arrange soap-molecules on bonds of the lattice. Taking
into account the orientational tendency between the hydrophobic group and
the hydrophilic group of soap molecules, we set up the interactions between
the "components" whose ranges are 1, y 2, and 2.

We shall prove that the system changes from the state of bubble structure
into the tubular structure and finally into the lamellar structure as the density
of oil-particles increases by estimating the volume of disordered phase.

We state our results rigorously in Sect. 2 after preparing the necessary
definitions in Sect. 1. Section 3 is devoted to the proof of theorems. In this
section we consider the correlation functions of Bloch walls and derive several
properties of them. As our model does not have simple symmetry in the Ising
model, we extend Heilmann's method [3] to obtain the upper bound on the
correlation functions.

By using this estimate we obtain the unique solution of the correlation
equation, and we also have several properties of correlation functions by
refining the Minlos-Sinai method [1, 2].
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1. Description of the Model

Consider a 3-dimensional square lattice Z3. Suppose that each site of Z3 can
be occupied by any of the two types of particles called oil-particles and water-
particles, and that each bond of the lattice can be occupied by a soap-molecule
or nothing. We denote a soap-molecule by an arrow (-»), and regard the head
of the arrow as a hydrophobic group and the tail as a hydrophilic group. (See
Fig. 1.) For simplicity we denote an oil-particle and a water-particle by an o-
particle and a w-particle respectively.

Before describing the interactions on the system we prepare some terminol-
ogies which will be used in the sequel. Let \x — y\ be the Euclidean distance
between x and yeZ3. We say two sites xeZ 3 and yeZ 3 are adjacent if |x — y\
= 1. A subset V of Z3 is called connected if for all xeV and yeV (xφy) there
is a path in V x1=x, x2, ..., xn = y such that xt and x ί+1 are adjacent (i
— 1, 2,..., n — 1). For a given FcZ3, we denote the set of all sites of Z3\F
adjacent to some sites of V by dV and the set of all sites of V adjacent to some
sites of Z3\F by diaV. We say that a pair of bonds is "perpendicular" if they
contact at one site and are perpendicular. Let T be the totality of sites and
bonds in Z3. In the usual way the configuration space is defined on T.

Now we describe the interactions between the "components" in the follow-
ing.

1 ) Bubble structure 2) Tubular structure

3) Lamellar structure

Fig.l



Geometrical Phase Transitions 405

Distance

Attractive

Repulsive

1

-ε,

e2

JΊ

-*3

*L

2

-ε5

£6

Fig. 2

Fig. 3

1) The interaction potentials between oil-oil pairs, oil-water pairs, and
water-water pairs, at a distance r, are given by

U (r) = jε° f°r |Γ| = 1 (ε°>0)

°'w JO otherwise

E/w» = 0.

2) Soap-molecules interact with particles located on the nearest sites to the
molecules as follows; if a hydrophobic group of a soap-molecule contacts with
an o-particle or a hydrophilic group contacts with a w-particle, the interaction
is repulsive and its potential energy is given by 2ε0, while if a hydrophilic
group of molecule contacts with an o-particle or a hydrophobic group contacts
with a w-particle, it is attractive and its potential energy is given by — ε0.

3-1) Two soap-molecules located on two parallel bonds interact with each
other as follows; the interaction is attractive if they point in the same direction,
while it is repulsive if they point in the opposite directions, and the potential
energies depend on distances between them and are shown in Fig. 2.

3-2) Two soap-molecules located on a perpendicular pair of bonds interact
with each other as follows; the attractive interaction with potential energy — ε7

(ε7>0) is given if it is one of the 12 types of pairs shown in Fig. 3, otherwise
the repulsive interaction with energy ε8 (ε8>0) is given.
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3-3) No interaction is given to the remaining pairs of soap-molecules.
4) We set the chemical potential at 8 μ for an o-particle and zero for others.
Next we introduce the notions of the block configuration and the block

energy. Let S be the dual lattice of Z3. We call the totality of sites and bonds
in a unit cube a "block" and represent it by its center teS. Note that εl9 ε2, ε7,
and ε8-pairs are common to two nearest neighbour blocks and molecule-
particle pairs are common to four nearest neighbour blocks. We now define
the total potential energy Et(ξ) is a block teS under the configuration ξ by

+ 4- (the total energy of particle-molecule pairs in f), (1.1)

where n(ξ\ n^ξ) are the number of o-particles, εrpairs (i= 1, 2, ..., 8) in teS.
Let Σ be the set of all configurations in a block. Put Ω = ΣS. We say ωeΩ

is consistent if for each nearest neighbour pairs of blocks (ί1? ί2)

where ω(ίf)|ίιnί2 is the restriction of the block configuration ω(ίf) on the
common part tίr\t2 of the blocks tί and t2.

Let Ω be the set of all consistent configurations, then there is a one-to-one
correspondence between the original configuration space and Ω. For each ξeό
and each nearest neighbour pair of blocks (ίl9 £2), we define the mutual poten-
tial energy Etίit2(ξ) between tί and ί2 by

£tM2(Ώ = i(-β5M£) + e6«6(£)), (1-2)

where τι5(£) and n6(ξ) are the number of ε5 and ε6 pairs in t1ut2 under ξ
respectively.

Further, the block energy E ( t ; ξ ) of the block t is defined by

(1.3)

For any VaS, let Ωv be the set of all consistent configurations in V. We
say ξ e Ωv is consistent with respect to ω e Ω if (ξ, ω) e Ω, where (£, ω) is the
configuration given by

ξ(t) whenever teV

otherwise.

Let Ωv ω be the set of all configurations ξ e Ωv consistent with ω e Ω.
With the notions above we define the Gibbs distribution. The Gibbs distri-

bution in the finite set Va5, with the boundary condition ωeΩ is the proba-
bility distribution

(1.4)
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where Uv(ξ\ω) and Zv(ω) are given by

Uy(ξ\ω)= Σ E ( t ; ( ξ , ώ ) ) , (1.5)
ίeFuer

Zr(ω)= Σ exp{-βUv(ξ\ω)}. (1.6)
ξeΩv.co

A random field {Xt t e S} on Ω is called a Gibbs random field if for every
finite V^S its conditional distributions are given by

Pr{Xt = ξ(t), teV\Xt = ω(tl tεS\V}=PVt(0(ξ) (1.7)

for all ξεΩVt(0 and almost all ωeΩ.

2. The Statements of the Results

In this section we state our results. We shall show that the system changes
from the state of the bubble structure into the tubular structure, and finally
into the lamellar structure as the value of μ increases. Also we shall consider
the asymptotic properties of the canonical Gibbs measures in the limit as

N
F->Z3, JV-»oo, — -+n*, where n* is the density of o-particles.

To begin with we consider for which configurations the block energy in
each block takes minimal value. Assume that the interaction parameters ε0, ε2,
and ε4 are sufficiently large compared with other interaction parameters, then
Et(ζ) ( ζ ε Σ ) can take minimal value only at the following ten types of con-
figurations in Σ. (See Fig. 4.)

Let Σi be the set of all ArtypQ configurations in Σ (z = 0, 1, ...,9). We
catalog the numbers of elements in these sets :

) = #(Σ9) = 1, Φ(Σl) = Φ(Σ2)=Φ(Σ5) =

= 129 and

Let Πi be the set of all configurations ω in Ω such that ω(t)eΣi for each
teS. Clearly the number of elements in Σt is equal to the number of elements
in J7 f. It is easily seen that each element of Π19 Π2, and Π4 expresses,
geometrically, the bubble structure, the tubular structure, and the lamellar
structure respectively. We also note that the block energy E(ί; ω) is inde-
pendent of ί E S whenever ω E Πί (i = 0, 1, . . . , 9).

Under the following three conditions c-1, c-2, and c-3

c-2) ε 1 +ε 5 >2ε 3

c-3) Min(ε1 +ε 5+ε 8,2

the following assertions are obtained;
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/
/ /

1) if μεKί = [Q,μl), then E ( t ; ω1)<£(ί; ω) for all ω1eΠ1 and all
ωeU\Πί9

2) if μeK2 = (μx, μ2), then £(ί; ω2)<E(ί; ω) for all ω2e772 and all

3) if μeK4^(μ2, μ3), then £(ί; ω4)<£(ί; ω) for all ω4e/74 and all

where Mi=i^ 7 — ε 1 — |ε5, ̂ ^is?"!6! ~ ε '
Put Πi = {ω(^ω(^ ...,ω$} (i = l,2,4), where ̂  = 8, JV2 = 12, and N4 = 8. By

using the assertions above and the Heilmann's argument, we can prove the
occurrence of phase transitions.
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Theorem 1. For any fixed μ^Ki (z = 1,2,4) and any finite subset CaS, there
exists a function gt (β), tending to zero as β tends to infinity, and at least Nt

distinct limiting Gibbs measures Pω(l) (J = 1 9 2 9 . . . 9 N t ) which satisfy the following
estimates,

Pω(,>(Xt = of (t) ί e C) ̂  1 - gί(β) (j = ί,..., Nj

for sufficiently large β.

To describe the next result we introduce the following definitions. We fix a
finite cube FciS and a boundary condition ωe J71u/72u774. For any ξeΩv ω,
the block teV is called static if ξ(s) = ω(s) for all s satisfying \s — f | r g l , and is
called active if it is not. For any coe/I; and any μ^K^ E ( t \ ξ ) is the minimal
value if t is static under ξeΩVi(0. The totality of active sites is denoted by B(ξ).
For any ξEΩv>ω there is a unique decomposition of B(ξ) into the connected
components {B^ξ), ..., B s ( ξ ) } . A couple Bi = (Bi,(ξ(t)\ teBt)) of the connected
component Bi and the configuration on it is called 5-wall (Bloch wall). We say
B is an outer 5-wall if it is contained in no other 5-walls. We call the region
enclosed by the outer boundaries of outer β- walls "the disordered phase", and
denote it by D(ξ). On the_other hand the region 0(ξ) = V\D(ξ) is called "the
ordered phase". We say B1=(B1,(ξ(t)ι ^^i)) is congruent to B2 = ( B 2 , ( ζ ( t ) ι
teB2)\ if B1 is superimposed on B2 by the translation T and ξ(t) = ζ(T(t)) for
all teBίt A congruence class of B- wall is denoted by y, and the set of such
congruence classes is denoted by Γ. Also the volume of the region enclosed by
the outer boundary of γ is denoted by t ( y).

Put

where ρ(y\ β, μ) is the limiting correlation function of y e Γ and is defined in the
next section.

Let Noil(ξ) be the number of oil-particles in V under the configuration

Vίω. For each je{l, 2, 4}, put

n**=uj- Σ (UjV(y)-<*

where u^=^9 u2=^, u4 = ̂ , and <^(y)> is the expectation value of Noϊl in the
Gibbs ensemble Γ(y; β, μ) whose exact definition is given in the next section.
From the estimates of correlation functions given in the next section, we have
nJ*(β,μ)-^Uj as β-*co.

For any function f ( ξ ) on ΩVi(0 we denote the expectation value and the
variance of f ( ξ ) with respect to the probability measure Pv ω by </>F>ω and
vv,ω(f) respectively.

As for the expectation values and variances of Noil(ξ) and D(ξ\ the follow-
ing estimates are obtained.

Proposition 1. For any ωeTJ,-, μeK ί ? and every sufficiently large β, the following
assertions l)-4) are satisfied.

1) \<NM>y.ω.μ-nf *\V\ \<F1(β)\V\-, F^βϊlO exponentially as

2) \(D\ιωιμ-δ*(β,μ)\V\\<F2(β)\V\*, F2(β)lO exponentially as



410 K. Kuroda

3) Vv.a.μ(Noi^<F3(β)\V\, F3()8)|0 exponentially as β->co,

4) Vv^μ(D)<F4(β)\V\, F4(β)lO exponentially as )8-»oo.

We define the canonical Gibbs measure Pyt<0( )by

Note that Py ω is independent of μ.
Our main results are included in the following two theorems.

Theorem 2. For any μGKt and any ωeΠί (z = 1,2,4) there exist functions f(β)
and h(β), both of which tend to zero as β tends to infinity and satisfy

Pv,ω(\\D(ξ)\-δ*\V\\>f(β)\V\-)<h(β) (2.1)

Pv,ω(\Non(ξ)-nf*\V\\>f(β)\V\*)<h(β) (2.2)

for sufficiently large β.

Theorem3. For any ωe.77; (z = l, 2, 4) and every sufficiently large β, there exists
a function g(β) tending to zero as /?-»oo, and satisfying the following; for each α
and each N satisfying

! and \N-nf *(β, μ)\V\ \<F,(β)\V\^ (μeKj,

we have

, (2.3)

where C(β) is some constant.

3. Correlation Functions of β-walls

In this section we define the correlation function and derive the several proper-
ties. For a finite cube Fez S and a boundary condition ωeΩ, let τVtϋ>(B) be the
probability that B is contained in some configuration as a B- wall. Let ΔV^(B)
be the set of all configurations which contains B as a B-wall, then τVί(0(B) is
expressed in the following form,

W^H^ΓT Σ exp{-jSl7κ(ξ:ω)}. (3.1)
^v(ω)ξeΔViω(B)

We define the energy of £-wall B by

(3.2)
teB

Note that E(B) is independent of ξeΔVtω(B).
We modify the definition of E ( t ; ξ ) so that the minimal value is zero by

subtracting the minimal value. With the modification above the definition of
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Pv>ω( ) does not change. We can express τVt(0(B) in the following form,

W5) = yτ-ϊ Σ Π exp{-/?£(£)}, (3.3)
^V\ω) ξeΔv,ω(B) BeB(ξ)

where B(ξ) is the set of all jB-walls under ξ.
To prove the Theorem 1 we shall show the estimate,

τVpω(5)<exp(-Cl|8|B|), (3.4)

where cί is the absolute constant.
If the estimate (3.4) is obtained, Theorem 1 will follow by the standard

argument that if the configuration of a block t is not given by ω(ί) it must be
inside some 5-wall.

For any μeKt and a given configuration ξeΩv>ω, we take one J5-wall B(ξ).
We say B(ξ) is ω[l)-type if ξ(t) = ω(

k

)(t) for all elements in the outer boundary of
B. (Note that each block in the outer boundary of B is static, so that the
configuration in the outer boundary of B is given by some element in 77;.)

In case of μeKί9 there exists a lattice translation Titj which transforms any
ω[1}-type 5-wall B into any other ωj 1}-type jB-wall. As the energy of JB-wall is
invariant under the translation, we can easily obtain the estimate (3.4) by
employing the PeierΓs argument.

On the other hand, in case of μeK2uK4, we must use the Heilmann's
method [3] in order to obtain the estimate (3.4). By using the reflection
transformation, Heilmann has obtained the upper bound on the probability of
a given contour in the models, where one has more than two structures, each
of which can be transformed into any other structures by a reflection. To
extend Heilmann's method to our model we have only to notice the following
three facts l)-3).

1) Each ω[j)-type 5-wall (j = 2 or 4) can be transformed into any of the
other types 5-walls by the reflection or composition of reflections.

2) There exists a lower bound on the energy of a B-wall which is pro-
portional to the number of elements of a 5-wall.

3) The energy of 5-wall is invariant under the reflection.

Next we introduce the correlation functions of outer J3-walls and the
correlation equations.

Let V be the finite subset of S. We denote the region enclosed by the outer
boundary of V by Θ(V), and call the set ln(V) = 9(V)\V inner region of V. For
any μ^Kt and any ωeΠ^ put Yv>ω={E = ( B l 9 . . . 9 B s ) : > a family of £-walls_in V
which doesn't enclose the inner region of V] and Γ^t

ω={B = (jB l5...,5s); a
family of outer J3-walls in V which doesn't enclose the inner region of V}. It is
easily seen that each outer B-wall in BeTv ω or Γ™l

ω is ω-type.
For a given J3-wall B, the inner rejion of B is uniquely decomposed into

connected components { I ι ( B ) , . . . , I n ( B ) ( B ) } .
Put Jk(B) = Ik(B)\dinIk(B). As the configuration in dB is uniquely deter-

mined by the configuration in B, the configuration in each δJk(B) = dίnIk(B) is
uniquely determined by B and is denoted by ωk(B)EΠi. We introduce the
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following probability measure on Yv >ω,

where
Z(Jk(B)ιωk(B))=

Now we define the correlation function of outer ΰ-walls as follows,

As we proved the estimate (3.4) we can prove the following lemma.

Lemma 3.1.

i= 1

for sufficiently large β, where c1 is an absolute constant.

These correlation functions are related by a chain of equations. By the
similar way as Minlos and Sinai have derived the correlation equations in
Ising model [2], we have

Σ
k = l

if S>1,

(3.5)

Σ
fc=l K

where the sum Σ(γ\ extends over all /c-ordered pairs (Fίι5...,Fίk) in ΓJ,ut

ω such
that each Fim intersects or touches Bi9 and the sum Σ(y] extends over all
elements H in Γ^ut

ω which contain B1 within its interior region.
Let Nk be the set of all k-ordered pairs of outer 5-walls in Z3. Put

where φk: Nk-*R and

|| Φ || = sup _ sup \φk(Bl,...9Bl
k^ί L(Bί,...,Bk)eNk

Then X becomes a Banach space. We express the correlation equations in Z3

in the equation on X.
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Taking into account (3.5), we define the linear operator A as follows,

Σ

-Σ$ϊφ,(B2,...,B.,H), (3.6)-Z* VsV"2>

where Σ$ k and Σ%ϊ are defined in the similar way as in (3.5) (for 5 = 1 we set

Then the correlation equations in Z3 are expressed in the following form

pω = Aρω + Λ, (3.7)

where ΛeX is given by

if 5-1

otherwise.

We shall derive the several properties of correlation functions in V and Z3

in the following. Let χv ω be the linear operator given by

where _
[Ί if BI c V and B± is ω-type-

( } ~ θ otherwise.

Then Z ω p F ω e X and (^-^) becomes

Taking into account the following two facts 1) and 2), we obtain the
following lemma.

1) Σ
β;ω-type,βsO k= 1

2) X exp(-/?c1 |B|)<c3(j8)exp(-(j8c1-lnc2)k),
β; ω-type BaO, |β | > fc

where c3(β)~i as β— »oo and c2 is an absolute constant.

Lemma 3.2. ||^|| < 1 for sufficiently large β.

From this lemma Equation (3.7) has a unique solution. We call this solution
a limiting correlation function. Concerning the limiting correlation function
and the correlation function in V, we can derive several properties similar to
the way Minlos and Sinai derived them for the Ising model [2].

The following two lemmas are used to derive estimates for the expectation
value and the variance of the volume of the disordered physe and the number
of 0-particles.
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Lemma 3.3. If each of {J315 ...,£s} is co-type and is included in V9 then

\pv,ω(B1,...9Bj-pω(Bί,...,Bj\

for sufficiently large β, where pω( ) is the limiting correlation function and
d(Bl,...,Bs;dV] is the distance between Bΐu...uBs and dV.

Lemma 3.4 (Clustering Property). If both Bί and B2 are ω-type and are
included in V9 then

for sufficiently large β, where c5(β) is the constant depending on β.
The proof of these lemmas are given in Appendix A.
Let Γω be the set of all ω-type congruence classes. The expectation value

and the variance of \D(ξ)\ and Noίl(ξ) are given in the following forms by the
standard arguement.

<ι0(£)i>κ,»= Σ »ω _Σ pv,»(B), (3 10)
yeΓω Bey

B^V

Vv,ω(\D(ξ)\)= £ v(yι)v(γ2) Σ {Pκ,»(5ι,52)-pκ,(0(β1)pκ>ω(52)}
?ι,y2eΓω B i e y i B i C F

yι + y 2 jB 2 ey 2 B2 c F

+ Σ »(y)2 Σ PF,J5)(1 -pv,ω(B)), (3.11)
yeΓω βey

5^F

Σ Pκ,ω(S), (3.12)
γeΓω BeyB^V

if ωe777,

,ω(^oii(f))= Σ K ϋ(yι)-<n(yι)»K ϋ()'2)-<»(
yι72eΓω

7 1 Φ 7 2

Σ

Σ Pκ,»(5)(i-Pκ,.o(β))+ Σ ^(^Ou) _Σ Pκ,«(5). <3 13)
yeΓω J5ey yeΓω Bey

B^V

if ωeΠj, where <ft(γ)> and F?(]Voil) are the expectation value and variance of
the number of oparticles in the ensemble Γ(y, β, μ). By using Lemmas 3.3 and
3.4 Proposition 1 is easily proved.

Proof of Theorem 2. Let m(β) be the function satisfying the following 1) and 2),

1) m(β)lO as β-+oo
2) F4(j8)/m2(mθas)8-*oo,

where F4(j8) is the function given in Proposition 1. Put f(β} = F2(β) + m(β).
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From Proposition 1 and the Chebyshev's inequality, we have

(3.14)
m

Hence the assertion (2.1) is proved. The proof of (2.2) is just the same as the
proof of (2.1).

For the proof of Theorem 3 we first prove the following proposition.

Proposition 2. For any μeJ^ , any ωeΠ and every sufficiently large β, the
following estimate is obtained,

Py,a(NM(ξ} = N)>c6(β), (3.15)

where N is the positive integer satisfying \N — n**\V\\<Fl(β)\V\^ and c6(β) is
the function of β satisfying c6(/?)|0 as β-*co.

The proof of this proposition is given in Appendix B. Taking into account
the fact that the measure ^ω is independent of μ, we have the following
estimate for sufficiently large V,

Pv

N

ω(\\D(ξ)\-δ*\V\\>g(β)\V\-+«)

^ω(\\D(ξ)\-<\D\yv,ω\>^g(β)\V\i+«)
< - PSMξ)=N} - ' (3Λ6)

where μeKj. From Proposition 2 and Chebyshev's inequality, we have

. (3.17)

Hence, Theorem 3 is proved.

Appendix A

The purpose of this appendix is to prove Lemma 3.3 and Lemma 3.4. We state
the proof in the following several steps. (See also [2].)

1) Let V ί 9 V2 be two finite subsets of Z3, and d(Vί9V2) be the part of dV1

which doesn't belong to dV2.

From (A.I) and (A.2), we have

γ]vl,v2,ω
 =

where
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Let {J31? ...,BS} be the set of ω-type B- walls contained in F15 then

where the sum in the first terms extends over all /c-pairs {Fti, ...,F k} each of
which intersect or touch Bv and at least one element of which intersect or
surround d(Vί9V2\ and the sum in the second term extends over all sets {H}
which surround B1 and intersect or surround d(Vί,V2). As in [2], we have

<Πexp(-/?C l

+ Σ

k= 1 B BsO

exp(-j?C l |B|)

exp(-/?C l |B|)

<C

1+ >xp(-03Cl-lnc2)m)

where
(A.4)

2) For a given subset FF of Z3, we define the Banach space X(W) by

where

sup

e*p((βc1-]ΛC2)d(B1,...,Bk:W))].

The following lemma is proved similarly to the proof of Lemma 3.3 in [2].
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Lemma A.I.

1) // Φε\(W)9 then AΦεX(W).
2) | |y4 | |X ( W Λ )<l for sufficiently large β.

3) From (A.4), ζVl,V2,ωeX(d(Vl9V2)). From (A.3) and Lemma A.I we have

~(βcι^^ (A 5)

where D2(β)=\\A\\X(W).
By taking the limit as V2-+Z3 and putting Vί = V9 we obtain Lemma 3.3.

4) Taking into account the fact that

we obtain the following estimate from (A.3).

B2))9 (A.6)

where c5(β) — .

Appendix B

In this appendix we prove Proposition 2 in the following several steps.
1) Let N(y)(ξ) be the number of outer 5-walls which is congruent to yeΓω

under the configuration ξεΩVt(ύ. As for the expectation value and variance of
N(y), the following estimates are obtained by using Lemmas 3.2 and 3.3.

<tf(y)Vω,μ=_ Σ Pv.ωW (ωεΠj9μeK:) (B.I)

(B.2)

Σ (Pv,ω,μ(
S

ί'
S2)~Pv,ω,μ(B1)pv^μ(B2))

B ι , B 2 e y
BltB2cV

+ ΣPv,ωW-Pv.m(B)), (B.3)
Bey

(B.4)
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2) Define

ijδc! |y|) |7|* for all γeΓω}.

By using Chebyshev's inequality, we obtain the following estimate.

3 f°r some B >0 and sufficiently large β. (B.5)

3) Put_l(X) = {ξeli 9 the totality of outer 5-walls under ξ is X}, where X
= (515...,5S) is a family of outer B-walls. For any ωeΠj and any μeK^ , the
expectation value of Noil in 1(X) is given by

<tfoii>ι<x) = «j l»Ί- Σ KX?) -<"(?)>) N(y Z), (B.6)

where N(y;X) is the number of B -walls in X which belong to yeΓω. We note
that

for all ye/^. Hence

(B.7)

where (j?)|0 exponentially as β-^co. Similarly we have

4) We take one element y0£Γω whose inner region In(y0) is not vacant.
Put

Bie,BlφjQ ,^> m

M(2\ξ)= X (v(Bj-NBl(ξ)) (ξe^(X)),
BieX,Blφy0

where NBι(ξ) is the number of o-particles in θ(5f). In the ensemble H(X) we can
write

and M(1)(ξ) can be represented as a sum of independent identically distributed
random variables numbering N(y0',X) terms. As for the expectation value of
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M(1) in 1Ϊ(X), we have

(M^y,(X} = (v(y0)-(n(y0)y)N(y0;X). (B.ll)

Taking into account that

we have

for sufficiently large V.
Because N(y0;X}>^p(yo) |F|, we can apply the local limit theorem to M(1).

For each m satisfying \m — (M(1}y^(X)\<κ(β) |F|% we have

where £>(/?) is some function of β.
From (B.7), (B.8) and (B.13), we have

Hence, we have

(ϊ) P,(N011 = N)

3 DQg)

8
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