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Critical Point Dominance in One Dimension

C. M. Newman*
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Abstract. The renormalized, dimensionless 4-point coupling constant of scalar
one dimensional field theories is maximized uniquely by the "critical point
theories" (obtainable as the scaling limit of φ4 models). The renormalized
coupling constant of certain scalar one dimensional lattice field theories is
maximized uniquely (for fixed correlation length) by the corresponding
spin-1/2 model.

1. Introduction

For a scalar, Euclidean field, φ(x), xeIRd, with truncated Schwinger (Ursell)
functions Un(xl9 ...,xn), and physical mass m>0, one definition of the re-
normalized, dimensionless coupling constant g, which is particularly appropriate
for φ4 models (see [6]) is

g = mdB/A\ (1)

where

v 4 = l i m L " d j U2(x1,x2)dx1dx2= J U2{0,x)dx9 (2)
L ~ > c o (CL)

2 lRd

B= lim L~d j [— U4.(xί,x2,x3,x4)~]dx1dx2dx3dx4_
L-GO { C L ) 4

= J l-U4(O,yi,y2,y3ftdyίdy2dy3, (3)
(IR d ) 3

and CL denotes the cube, ([-L/2, L/2])d, in IRd.
In [4], it was proven by using correlation inequalities, that in φ4 models, g has

an absolute upper bound (depending only on d) and in [3] it was argued that the
value of g for φ4 models should be dominated by its critical point value. The
resulting picture of critical point dominance and its relation with renormalization
group analysis is presented rather clearly in [11] (see especially Fig. 5 there) where
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the critical point value is denoted gw, the w standing for Wilson [12]. The
dependence of gw on d and the possible existence of (non-superrenormalizable) φ4

models with g>gw are among the main topics discussed in [11]. For numerical
results concerning gjβ), see [1, 2].

The primary purpose of the present paper is to show, under rather mild
assumptions that at least for d = 1, there can be no field theories (whether or not of
φ4 type) with g>gw, and moreover that g = gw only for the (φ4 scaling limit)
"critical point theories". These results verify in a particularly strong way the
Glimm and Jaffe picture of critical point dominance for d=\.

The scaling limit theories, which have been extensively studied by Glimm and
Jaffe [5], have strictly positive physical mass m, and are believed to be obtainable
by either of two (presumably equivalent - at least for low dimension [1]) limiting
procedures. These procedures automatically involve approaching the critical point
so that for the scaling limits, one expects to have g = gw. In the first procedure one
lets λ tend to oo in a λφ4 model while varying the bare mass so that the physical
mass tends to m in the second procedure one lets the lattice spacing ε tend to 0 in
a spin-1/2 Ising model while varying the temperature so that the physical
correlation length has the finite limit, 1/m. Our critical point theories will be
parametrized by the physical mass m (replaced by m in Example 3 below) and a
field scaling variable (the K of Examples 2 and 3). In order to explicitly define these
one dimensional scaling limits, we first define what we will mean in this paper by
one dimensional field theories in general. We replace x by t or 5 since the one
dimensional variable is Euclidean time; we also write spec(T) [respectively
Dom(T)] for the spectrum (respectively domain) of an operator Tand denote by
Ω1 the orthogonal complement of the subspace generated by Ω.

Definition ί. A one dimensional (continuum) field theory of physical mass m>0,
consists of a Hubert space Jf, a self-adjoint operator H^O, and its related
semigroup Ps = exp (— sH), a unit vector Ωe Jtf, and a self-adjoint operator Φ such
that

(i) PίΩ = Ω,
(ii) sup {spec (QP1Q)} = e~m where Q is the projection on Ω1 [i.e., QΨ=Ψ

-(Ω,Ψ)Ωl
(iii) for n = 0,1,2,... and for any choice of non-negative sv ...,sπ, the vector

Ψ{su...,sJ = PSίΦ...PSnΦΩ, (4)

belongs to Dom (Φ), and
(iv) finite linear combinations of the Ψ(sv ...,sn)'s are dense in Jf. The

Schwinger functions of the field theory are defined by

sn(t19..., y = ( Ω , ψ(o, tπ2 - tKl,..., tπn - tπnj), (5)

where π is any permutation of 1,...,n such that ί π i ^ ί π 2 ^ ... ύtπn

Example ί. Even φ4 models: Here J f = L2(R,d0), Φ is multiplication by φ, and

H = η(-d2/dφ2 + λ(φ2-K)2-E)

for λ>0 and real K. E = E(λ,K) is chosen so that zero is the lowest eigenvalue of H
and η = η(λ, K,m)>0 is chosen so that the next lowest eigenvalue is m.
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Definition 2. A one dimensional lattice field theory with lattice spacing ε > 0 and
physical correlation length ξ consists of Jf, Ω, Φ as above together with a self-
adjoint operator P satisfying 0 < P : g l and its related discrete semigroup Pn such
that (i)-(iv) are valid with m = ε/ξ. The Schwinger functions Sn(tv ..., tn) are defined
for(ί 1,.. .,ί l l)eεZ dby

, 2 - / π i , . . . , ί π n - / π π _ 1 ) ) , (6)

where π is any permutation such that iπ^iU2... ύiπn

Example 2. Spin-1/2 Ising model (zero external field, ±]/κ valued): Here stf . . .C 2 ,

Φ=]/K +1

o _J] (7)

for some K>0, and

p_/ β + e-β)~l * * (g)
β ^ , J

with

β = arctanh (e " m) = arctanh (e " ε / Ό . (9)

The scaling limit may be obtained from Example 2 by letting ε->0 and /?-• oo
with K fixed (thus approaching the one dimensional "critical point" at β= oo) in
such a way that ε exp (4/?)-» 1/m (or equivalently m/ε^rh). The resulting continuum
field theory is our next example.

We note that the spin-1/2 Ising model is a simple two state Markov chain and
its scaling limit is just the related continuous time two state Markov jump process.

Example 3. Critical point theories: Here Jt? = C2, Φ is as in (7), and (with fh
replaced by m)

U m -m\ (10)
— m m\

A unitarily equivalent theory can be obtained from Example 1 by letting Λ,-> oo
with K>0 fixed. To appreciate the equivalence, note that in Example 1, one can
use a standard procedure to replace L2(IR, dφ) by L2(IR, Ω2(φ)dφ) which in the limit
l->oo becomes

-γK) + δ(φ + |/K)]/2) ̂  C2

see [9] for a rigorous analysis.
We will always assume the symmetry Sx=0, which can in any case be obtained

by replacing Φ by Φ — (Ω, ΦΩ). When S1=0, the Ursell functions appearing in (2)
and (3) are given by

C/2(x1,x2) = S 2(x 1,x 2), (11)

L/4(X1; X2? ^ 3 ' -^4/ ~ ^ 4 ( ^ 1 ' X2> X3 > XA) ~ ^2\XV Xl)^2\X3^ X4J

- S2(Xl,x3)S2(x2, x4) - S2(Xl,xJS2(x2, x3). (12)
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In Sect. 2 of this paper we treat critical point dominance for the continuum
case and in Sect. 3 we treat the lattice case. The results in the two sections are
analogous except that in the discrete case we find it technically necessary to make
the additional assumption that

SJtl9t29t39tA)^S2(tl9t2)S2(t39tA) for all t ^ t ^ t ^ h ; (13)

this is a special case of the GKS inequalities [7, 10] and is valid for many models
including lattice φ4 models [8]. The proofs of our results are elementary they are
related to the methods of [4] and are based on the observations that in both
Examples 2 and 3, the inequality (13) is an equality and S2(0, s) = K exp (— ms).

2. Continuum Theories

Theorem 1. Let g be the renormalized coupling constant defined by (l)-(3) and (11)-
(12), for a one dimensional field theory of physical massm>0 as given in Definition 1
above with S1(x) = (Ω, ΦΩ) = 0; then g^β and g = 6 if and only if the field theory is
unitarily equivalent to a critical point theory of Example 3 above (for some K>0).

Proof We let R = QH~1Q where Q is the projection on Ω1 and define for any
operator T, (T}=(ΦΩ, T(ΦΩ)\ Then

00 00

A = 2 J S2(0, s)ds = 2 J <exp ( - sH))ds = 2(R), (14)
0 0

where we have used the fact that QΦΩ = ΦΩ since (Ω, ΦΩ) = 0. Similarly, we have

00 00 00

0 0 0

with

B ι = 4 ! ϊ ϊ ϊ [S2(0, *! +s2)S2(0,s2 + s3)
0 0 0

+ S2(0, sx + s2 + 53)^2(0, s2)] dsγ ds2ds3, (16)

β 2 = 4 ! J j j [ S 4 ( 0 , s 1 , s 1 + s 2 , s 1 + s 2 + s3)-S2(0,s1)S2(0,s3)]ds1ds2ds3. (17)
0 0 0

We first perform the s1 and s3 integrals and then the s2 integral to obtain

c \ A V >- / \ ^ - « - N / / j ™»~> . . x ^ ^ / x ^ ^ / ? V - L o j

= 4! j (RΦQe~sHQΦR}ds = 4\(RΦRΦR}. (19)
0
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We thus have

9 t>mK ^ >-. (20)

Now since H~x > 0 on Ω1, we see that

(RΦRΦR> = (Q[ΦRΦΩ~],H~1Q[ΦRΦΩ^O (21)

with equality if and only if Q[ΦRΦΩ~] = 0 or equivalently if

ΦRΦΩ = KΩ, (22)

with K = (Ω,ΦRΦΩ) = ([_ΦΩ^H'1lΦΩ'])>0. We define A to be the unit vector

A = {R1/2ΦΩ)/\\Rί/2ΦΩ\\=(R1/2ΦΩ)/(R}1/2,

so that by (21) and the fact that mR = Q{H/m)~1Q^l, we have

with the final inequality an equality if and only if RΛ = (l/m)Λ or equivalently if

H{ΦΩ) = m{ΦΩ). (23)

We have thus shown that g ^ 6 with equality if and only if both (22) and (23) are
valid. Letting K = mK and taking as basis vectors, (Ω±ΦΩ/K1/2)/]/2, it is
immediate [using property (iv) of Definition 1] that (22) and (23) are valid if and
only if there is unitary equivalence with the model of Example 3. This completes
the proof.

3. Lattice Theories

The definition of g we will use for one dimensional lattice theories is

g = ε-1 2t<ϊnh(ε/2ξ).B/A2, (24)

where A and B are given as in (2)-(3) but with x replaced by t. = εij and j dx
c

replaced by ε times the sum over all i such that είe C. Note that as ε-»0 for fixed ζ,
ε~12tanh(ε/2ξ) tends to ξ~ι so that (24) is consistent with (1).

Our main result in the lattice case [under the additional assumption of (13)], is
that for fixed ε and ξ, g is maximized (uniquely) by the corresponding spin-1/2
model of Example 2. This is analogous to our continuum case result in that
Example 2 can be obtained as the infinite coupling constant limit of lattice φ4'
models. We note that the choice of factors in (24) implies that the g of Example 2,
[given by the right hand side of (25) below] is strictly bounded by its ε->0 for fixed
ξ value of 6 which is of course the value attained in Example 3 we also note that in
Example 2, tanh (ε/2ξ) = exp ( - 2β).
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Theorem 2. Let g be the renormalized coupling constant defined by (24) for a one
dimensional lattice field theory of lattice spacing ε>0 and physical correlation length
ξe(O, oo) as given in Definition 2 above with S^εή^iΩ, ΦΩ) = 0 and assume that (13)
is valid; then

g^β — 2 tanh2 (ε/2£) (25)

with equality in (25) if and only if the field theory is unitarily equivalent to that of
Example 2 above for some K>0.

Proof For fixed J>f, Ω, Φ, and P, the value of g as defined by (24) is independent of
ε we may thus choose ε = 1 and recall that

exp (-m) = exp(- ε/ξ) = sup {spec{QPQ}}.

The lattice version of Eqs. (14) and (15) is complicated by the introduction of
boundary terms which vanish in the continuum case. The role played by
00

j Ptdt = H~1 in the proof of Theorem 1 is replaced here by

o

P°/2 + £ P o l -

and we accordingly define R in this case as
(26)

note that

sup {spec (R)} = + _ = [2 tanh (1/20]" ' . (27)
Δ\ι e )

We again define (T} = (ΦΩ, T(ΦΩ)) and proceed to calculate A and B.

00 00

j=-oo j = 0

where

2, if 7>0

1, if 7 = 0,
(29)

B= Σ .Σ Σ v(j1J2J3)l-U4(OJίJ1+j2J1+j2+j3ft=B1-B2,

where

'4!, if no7 = 0

2-3!, if a single7^ = 0

2-3, if j, =7 3 =0 and ; 2 > 0

4, if71>0 and72 =73 =0 or iϊj3>0 anάjι=j2 = O

00 00 00
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and where Bγ (respectively B2) is defined by a sum as in (29) but with — U4

replaced by the integrand of (16) [respectively (17)]. We may rewrite (29) as

00 00 00

B = Σ Σ Σ
ji = 0 h = 0 h = C

7 1 = 0 . 7 3 = 0 Z

with similar expressions for B1 and B2. In the case of Bv we can sum over j x and j 3

(as in (28)) to obtain

(31)

where

= 6 Σ [ < ( ) ( ) / ( )
J = O

+ <(1 + P)PJ(1 + P)/(l - P)2><(1 - P)Pj/(ί -

= 6 £ 2[<p;(l+P)/(i-P)2><p;/(l-P)>
J=0

- P)2XPJ+ V(l - P)>

<1/(1 - P)> = 12<2Λ(1

so that

(32)

Now, by (13) and the expression for B2 analogous to the sum of (29), we see that
B2 5:0 with equality if and only if

S4.(0,j1,j1 +j2 +j3)-S2(0,jι)S2(0J3) = 0

for all Λ J J J J ^ O , (33)

but this is equivalent to

(PhΦQPhQΦPh)> = 0 for all j1j2,j3 ^ 0 ,

which is equivalent to

QΦPjΦΩ = 0 for all ^O. (34)

Letting Λ = (R1/2ΦΩ)/\\R1I2ΦΩ\\ and r = [2tanh(l/2ξ)]" 1 , we see from (28) and
(32) that

{2r2y1, (35)
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where the last inequality follows from (27) and is an equality if and only if RA = rΛ
or equivalently if

PΦΩ = e~mΦΩ. (36)

We have thus derived (25) and seen that there is equality in (25) if and only if (34)
and (36) are both valid. But (34) and (36) are equivalent to (36) together with

Φ2Ω = KΩ for some K>0. (37)

It is an elementary excercise, as in the proof of Theorem 1, to show that (36) and
(37) are valid if and only if there is unitary equivalence with the spin-1/2 model of
Example 2. This completes the proof.

Remark. One can obtain the exact expression for B2,

B2 = 24{RΦRΦR} - 2{RΦQΦ} - 2(ΦQΦR}, (38)

which yields the exact expression for g,

(39)

It may be possible to utilize these expressions to obtain (25) without the ad hoc
assumption of (13); we have been unable to do so.
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