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Abstract. We construct a class of non-symmetry breaking pair interactions,
which change the phase diagram of the n.n. Ising and classical X Y model.
Furthermore we improve earlier obtained constraints on the decrease of
interactions, necessary to get analyticity properties of the pressure in manifolds
of non-symmetry breaking interactions.

1. Introduction, Notation and Some Known Results

Heuristically, in thermodynamics one expects that the Gibbs phase rule holds,
in the sense that there are manifolds in some interaction space on which
1. suitable thermodynamic functions are analytic
2. the number of possible phases remains the same [4].
In [1] it was shown that in spaces <%g defined by

1*1= Σ d(χ)\φ(χ)\
OeX c 7Ld

2. does not hold if g(X) is only dependent on the number of points in X and
1. does not hold if g(X) increases more slowly than (diam(X))ί/2.

The existence of manifolds on which more than one phase coexist has been
shown by Peierls contour arguments. In finite dimensional interaction spaces,
containing classical interactions of finite range, this has been done in [2] for a
more restricted class of interactions, but in the infinite dimensional subspace of
pair interactions with g(X) = diam (X), in [3].

In this paper we improve the results of [1] for the 2 dimensional Ising model.
We construct a classical long range perturbation, which does not break the
symmetry of the transition, but changes the phase diagram when added to the
Ising interaction with any positive strength. This implies that the result in [3]
in a sense is best possible. For analyticity we give the improved condition (which
is necessary but probably not sufficient in view of our result on the stability of the
phase diagram) that g(X) has to increase at least as diam (X)2/3.

Furthermore we consider the broken rotation symmetry of the classical
XY model and show that in that case the stability of the phase transition is lower
than in the case of a broken discrete symmetry.
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Remark. We have taken the Ising and the classical XY model as examples, but
our results can be directly generalized to a much wider class of classical lattice
systems incorporating all short range interactions, which give rise to a phase
transition with a broken symmetry. The generalization to quantum interactions
is also straightforward (if we start with the special case of a discrete spin classical
interaction it is a direct consequence of the fact that neighbourhoods in classical
interaction spaces lie inside the corresponding quantum neighbourhood [14]).

For general properties of lattice systems we refer to [4]. We will make repeated-
ly use of the variational principle

P(Φ) = sup s(p)-p(Aφ) (*)
pel

[11 Chap. 7.4; 4 Chap. 2] where the equality is reached for elements of Jφ, the
translation invariant equilibrium states for the interaction Φ. As in [1] / is the
set of translation invariant states, P the pressure and s the entropy per lattice
site.

Further we write Gφ for the Gibbs states for Φ, i.e. the states for which the
DLR equations hold [5] (compare [14]) if || Φ || ± = Σ|Φ(X)|<oo. GΦ^IΦ.

OeX

Both Iφ and Gφ are Choquet simplices. Hence, if pelφ, p has a unique decompo-
sition in extremal invariant equilibrium states and also a (in general finer) unique
decomposition in extremal DLR states [5,11]. Extremal DLR states have short
range correlations i.e. for any observable AeC({Ω}Έd) there is a finite ΛaZd

such that

\p(ΛB)-p(A)p(B)\^\\B\\

if BeC({Ω}zd/Λ). [5. Th. 3.4; see also 20] (Ω is a compact one spin configuration
space). If p is extremal DLR and invariant, this implies

lim p(ΛτχB) = p(Λ)p(B),
x->oo

while if we only know that p is extremal invariant, but not necessarily extremal
DLR, this limit needs only to exist in the Cesaro sense (p is weakly clustering
[6,12]).

Definition. An interaction Ψ does not break the symmetry of the phase transition
at Φ if p(Λψ) is the same for all pe/ φ .

2. Instability of the Ising Phase Diagram

For the 2-ά ferromagnetic n.n. Ising model with interaction Φ/5, it is well known
that, if the external field H = 0 and T <Tc, there exist two invariant extremal
DLR states ρ+ and p~ with magnetization + m and - m [7] (It is even true that
/ φ f t = σ φ f t [ i 3 ] ) .

As in [1] we will use spinίlip operators.
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For any Ω c Z 2 , RΩ is the operator which flips the spins in Ω. For Ne N we
divide Z 2 in layers as follows:

00

Z2= (J LN'where L^fo .x jAr '^x^Mi+l) } .
i = - o o

00

Furthermore we define: ΩN = (J L ^ 1 and RN = RΩ . Now we introduce a
i = - oo

class of perturbations which destroy the Ising transition, denoted by Φa

z. Φa

z is
a non-symmetry breaking pair interaction with only antiferromagnetic terms,
defined by:

00

Φa

z(xτjox) = £ δ.^cΐ \<a<\ VxeZ2

ί = o

Φ«(X) = 0 otherwise.

Note that

Now we can prove the following:

Theorem 1. For ΦIs + λΦa

z, there do not exist two invariant extremal DLR states
with a magnetization different from Ofor any a with \ < a < 1 and λ > 0.

Proof Suppose that there did exist ω^λ and ω~λ, translation invariant extremal
DLR states with a nonzero magnetization + m1. Then (*) implies:

P(ΦIs + λΦz) = s(a>ϊλ) - ω*λ(Aφ +λφa) = sups(p) - p(Aφ +λφa). (1)
Is Z pej Is Z

We will now construct a state ώa λ NQ el such that:

Clearly (2) contradicts (1) which implies that, contrary to the assumption
ω*λ cannot be equilibrium states.
Define

1 2N ( 1 2N \
&a,λ,N = 2lj Σ KλθRNτiJ = 2ΪJ Σ ωa,λoRNh,0 Y

Since ω+λ as an extremal DLR state has short range correlations there exists
keN such that:

<AKO^,O)^W Vî 2*. (3)

Furthermore we know that 5(ωα

+

λ) = s(ώfl λN)VN ([1] Lemma 3). To prove (2)
we need to show that

ωa,λ(ΛΦls +ΛΦ«) - ™a,X,ΛAΦh +λΦ«z) > 0 ( 4 )

for some N. Take N = 2ι for some /.
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We will split Aφ + λφa in 4 parts consisting of

A = - Φisί(σ-i,oσo,o + σi,oσo,o + σo,iσo,o + σo,-iσo,o)

ί - 1

i=k+l

C = ̂ λaι(σ00σ2K0 + σ o o σ_ 2 ί > o )
00

τ\ 1 Ί SP is i \

Example with

k = 1 and ! = 3

• i 1 11 l l i n
C B A ( 0 . 0) A B C D

ί= 1

_ - l '

<ΛB)-^,N(B)>λ 'Σ jmφr.

λ(2a)k+!

By (3) we have

and

Furthermore

Combining (5), (6), (7) and (8) we get (4) and hence (2) by choosing N large enough.

(5)

(6)

(V)

(8)

D
Note that the same proof works whenever we take instead of a1 any positive
function/for which

lim2//(2/)=oo.

3. Constraints on Analyticity

In [1] it was shown that P is not analytic [18] on spaces &g if g increases more
slowly than (diam (X))1/2 iϊN(X) = 2.
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This result can be improved somewhat as the following Theorem shows.

Theorem 2 : At ΦIs P cannot be analytic on a space 3ft g if

N(X) = 2 diam(X)2/3

diam(X)^> oo

Proof. Define ΨN to be the antiferromagnetic pair interaction between points
at distance N:

ΨN{X) = 0 otherwise.

If P is analytic in 3Sg and || εΨN || small

P(ΦIs + εΨN) = P(ΦIs) - εp+(AψJ + ε*P';s(ΨN, ΨN) + ε'0(\\ ΨN \\3

g) (9)

P(ΦIS - εΨN) = P(ΦIs) + εpΠAψJ + ^rh(Ψv, ΨN) + ε 3 θ ( || ΨN \\3

g) (10)

where Pjs is the bilinear form on 38 x 38 which is the second derivative of P

a t Φ / s .
The difference of the right hand sides of (9) and (10) is

The difference of the left hand sides of (9) and (10) is of order —. This can be seen

by the following argument:
2N

Σ
From (*) we have

P(ΦIS- εΨN)~ P(ΦIs+εΨN)^ s(ώN)- s(ωN)-ώN(Aφ ) + ωN(Aφ
Is I

+ εώN{AΨ) + sωN(AΨJ ^ - 1 1 | ΦIs ||

because

ώN (AΨJ = - ωN (AΨJ and s(ώN) = s(ωN).

In the same way we can prove:

-εΨN)^--\\Φj. (12)

Hence

Thus

' ) | | 3 ^ — IIΦ II. (13)
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By taking ε = 0 ί — 1 we see that

Remark. Note that this should be true for any infinite subsequence NkoϊN.

4. Comments on the Ising Case

Ginibre et al. [3] proved that in applying the Peierls argument one is allowed to
add small perturbations in the space of pair interactions satisfying:

\\*\\iGGR=Σdiami(X)\Φ(X)\<cc Vi
OeX

where diam^X) is the maximal distance in the ΐ'th direction between points of X.
Theorem 1 shows that this cannot be much improved in the sense that any

condition of the form

ΣgidUmt{X))\Φ(X)\< co
OeX

on the perturbation is too weak if

r g{2l) 0

(This implies that the GGR result is the best possible if g should be mono tonic).
Analyticity results of Kunz and Souillard have been announced [8] in some

space 0&g with £ — — < oo with the corresponding strong cluster-properties [9].
OeX

There are spaces SSg however, for which this condition holds which contain
a Φa

z of our Theorem 1 or in which the technique of our Theorem 2 can be applied
[10], so without some other conditions this condition cannot be sufficient.

5. Instability of the Phase Diagram of the Classical XY Model

In the 3-d n.n. classical XY model it was proved in [15], that for H = 0 and T
sufficiently low there is spontaneous magnetization in the sense that for some
state pelφχγ

lim p(sOiOfO sBiOiO) = lim p(cos(β 0 f 0 f 0 - Θn^0)) = ™2 > °
0 f 0 f 0

«->oo «->oo

For this case we can prove

Theorem 3. For Φχγ + λΦa

z there do not exist equilibrium states with spontaneous
magnetization in the sense of (14)for any a with ̂  < a < 1 and λ>0.

Here Φa

z is the (rotation invariant) classical XY interaction defined analogous
to the Φa

z in Theorem 1.

Proof The proof goes essentially in the same way as in Theorem 1. However,
instead of ώa λ N we now use ώa λ N defined as follows:
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Let Λ* be defined by:

Then

Σ ω « / R ί \0,0 + ω

a,A ° *tf τi,0,0

(5) becomes in this case (using -cos (x + y) + ~cos(x - y) = cos xcosy and
1 — cosx < x2):

= ω<αί - cos(Θo,o,o - βi,o,o) + i c o s [ Θ o,o,o - Θi,o,o

fCOS (Θ0,0,0 - 01,0,0 - ^Jj + λωa,l y Σ β'
Ϊ = 0

^ \ _ A o s f θ -Θ - —
v θ'°'° 2''0'° N J 2 \ °'° ° 2''°'° N

for C some positive constant independent of N. The rest of the proof is the same as
for Theorem 1. D

As for analyticity, with the same techniques as in Sect. 3 it follows that g(X)
has to increase at least like (diam (X))413 in this case for P to be analytic on a mani-
fold in a rotation invariant Banach subspace £%n.

6. Final Comments

1. In the proof of [15] it is not allowed to have general non run. interactions, so
it is not known if our Theorem 3 gives a "worst possible" result in some sense.
2. Theorems 1 and 3 can also be proven if we take instead of Φa

z isotropic pair

interactions with power decrease — with d < α < d + 1 in the d dimensional

Ising case (d ̂  2) and d<oc<d + 2 in the d dimensional classical XY case (d ̂  3).
3. The above results seem to support Griffiths' and Pearce's [16,17] claim that
renormalization group transformations in the thermodynamical limit may not
exist as analytic transformations on interaction spaces, because the phase transi-
tion and hence also the critical behaviour is less stable than is generally assumed
[16,19].
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