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Markov Partitions for Dispersed Billiards*
L. A. Bunimovich and Ya. G. Sinai

L. D. Landau Institute for Theoretical Physics, Academy of Sciences, SU-i 17334 Moscow, USSR

Abstract. Markov Partitions for some classes of billiards in two-dimensional
domains on R 2 or two-dimensional torus are constructed. Using these
partitions we represent the microcanonical distribution of the corresponding
dynamical system in the form of a limit Gibbs state and investigate the
character of its approximations by finite Markov chains.

1. Dispersed Billiards and Formulation of Main Results

Let Q be a two-dimensional open bounded connected domain on R 2 or the two-
dimensional torus with Euclidean metric. We suppose that the boundary dQ
consists of a finite number of C3-smooth non-selfintersecting curves Γb

ί = l , 2 , ...,p, which may be either closed or have common end-points.
Billiard in Q is the dynamical system which corresponds to the motion of a

material point inside Q by inertia with elastic reflections at the boundary.
We consider the framing of each Γt by unit normal vectors n(q), qeΓt, directed

inside Q. As a result the curvature of each Γt takes a definite sign. Dispersed
billiards are billiards for which all Γt have a strictly positive curvature (see [1]).

Let M be the unit tangent bundle over Q, π is the natural projection of M onto
Q. Preimage π~ 1(q) = Si(q), qeQ consists of unit vectors which are tangent to Q at
qeQ. M is the three-dimensional open manifold with the boundary

P P

dM= [j π~1(/])= (J dMt. On every dMt one can introduce natural coordinates
i=ί i = 1

(r, φ) where r is the parameter of length on every Γt and φ is the angle between x
and n(q), q = π(x). Let
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The set Ms is called the set of singular points of the boundary. For simplicity
we shall restrict ourselves to the case when M2 = &. The general case needs obvious
modifications.

Liouville measure on M takes the form dμ = dqdω, where dq is the usual
Lebesque measure on the plane, dω is the Haar measure on the circle S(1)(q)
= π~1(q). One-parameter group of shifts along the trajectories of the billiard is
denoted by {S*}, — oo <t < oo. It is wellknown that {S*} preserves the measure μ.

Let τ(x), x e M l 5 be the nearest positive moment of reflection of the trajectory
from the boundary. It is easy to see that τ(x) < oo and one can define the
transformation of M1 into itself by the formula Tx = Sτ(x)~°, xeM1. T preserves
the measure v where dv — const cos φdrdφ. Here the const does not depend on Γ.
and can be chosen in such a way that v will be the normed measure. Using the
language of ergodic theory one can say that the flow {S1} is represented as a special
flow built with the help of the automorphism T of the base space M1 and the
function τ(x). The main aim of this and subsequent papers is to investigate the
ergodic and stochastic properties of T.

We shall assume that τ(x) is uniformly bounded from above, i.e. for some
constant C we have τ(x) ̂  C for all x. Sometimes such billiards are called billiards
with a finite horizon (see [7]). Our next assumption is that there are no trajectories
of the flow {S*} which touch the boundary more than twice. It is easy to see that it
is valid for general domains Q. Both these assumptions lead to some simplifi-
cations of a technical character in our future considerations.

Every subset π~ 1(Γi)nMί =M{{) is called a regular component of M 1 . Suppose
that we are given a curve δ which is described by a function φ = φ(r) and belongs to
a regular component of M1. We shall call δ an increasing (decreasing) curve and
denote it δ{u)(δ{s)) if φ(r) is piecewisely differentiable and one-sided derivatives satis-
fy the inequalities

/cL0?.
ι(x{r,ψ)))

mm

τ(x(r, φ)) dr

Here k(0)(r) is the curvature of the boundary at the point r, x(r, φ)eMί is the point

with the coordinates r, φ, fe^n= min/c(0)(r), — — Sψύ ~z

We shall use the following important property of increasing and decreasing
curves (see [1]): if δ is an increasing (decreasing) curve and Ύ{Ύ~ι) is continuous
on δ then Tδ(T~1δ) is again an increasing (decreasing) curve.
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Let xeM1 be an inner point. We shall call a C1-curve y, xey, a stable manifold
(an unstable manifold) of the point x if V is continuous on y for all i > 0 (z <0) and
the length (Ty)-+0 as z-*oo (z-* — 00). In [1] it is shown that for almost every x
there exist stable and unstable manifolds, which are decreasing and increasing
curves correspondingly. We shall use the notations y(s)(x\ y(u\x) for maximal
smooth components of stable and unstable manifolds of x and call them local
stable transversal fibers (l.s.t.f.) and local unstable transversal fibers (l.u.t.f.).

In [1, 6] it is also shown that y(s)(x\ y(u\x) can be represented as solutions of
ordinary differential equations. For y{s\x) the differential equation takes the form

^- =κ{s\x(φ,r))cosφ~k{0\x)
dr

where x = (r, φ)eMv k{0\x) is the curvature of the boundary at the point r and
κ{s\x) is a continuous fraction

2kψ(x) +

cosφ2(x) - τ 3 + ...

Here τ is the interval between z-th and (z—l)-th collisions, τ >0, kf\x) is the
curvature of the boundary at the point of z-th collision, φ.(x) is the angle of
incidence at the point of z-th reflection.

The equation for y{u\x) can be written in an analogous way. If AcMx then

y(*\x) = yW(χ)nA, y<Z\x) = yis\x)nΛ.
Let y^\ y(

2

s) be two l.s.t.f. Subsets ACy(ι\ BCy^ are called canonically
isomorphic if for every xeA the intersection y(u)(x)ny(

2

s) is not empty and consists
of a point belonging to B and vice versa. In a similar way one can define the
canonical isomorphism between subsets of y{"\ y(

2"
}. The canonical isomorphism is

absolutely continuous, i.e. it transforms a measure on y^ which is equivalent to the
length into a measure which is equivalent to the length on yψ. The proof of this
property is the same as the proof of an analogous property for hyperbolic systems
(see [2, 5]).

A subset 3) CM 1 of positive measure will be called a parallelogram if for every
pair of points x\ x'ΈΘ the intersection y(s)(x')ny(u)(x") is not empty and consists
precisely of one point also belonging to 2ι (see [2-4] for the analogous definition
in the case of hyperbolic dynamical systems). If Q) is a parallelogram than all y^(x\
x e ^ , are canonically isomorphic. The same statement is true for all y^{x).
Moreover, every parallelogram can be constructed in the following way. We take
an arbitrary xoe9 and y%}(xol y%\xo\ Then

2= U y(s\y)ny(u\x).
xeγ]g)(xo),yeγM(xo)

Let η be a finite or countable partition of Mι whose elements are parallelograms,
η = {@l9@2,...), ^ 0 ^ = 0, i+j, v ί M r (J 2f\ =0. Iixe3fi we shall write y%\x),

y«\x) instead of y%](x), γ{it(x). ' ' '
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Definition 1 (see [2, 3]). The partition η is called a Markov partition if for almost
every xeMl9 xe@t, Txe@jl9 T~1xe@J2

T(y{

η

s\χ)) £ y(

η

s)(Tx), T- '(y^x)) £ yf{T~ xχ).

The main result of this paper is the following theorem.

Theorem. Under the conditions formulated above there exists a countable Markov
partition.

It is sufficient to construct a Markov partition ξ for T™ for some m>0 because
ξ v Tξ v ... v Tm~1ξ will be a Markov partition for T.

It is well-known that Markov partitions play a key role in investigations of
ergodic properties of hyperbolic systems (see [2] and monographs by Bowen [3]
and Ruelle [4]). The main reason is that using Markov partitions one can rewrite
the measure v in a form of a limit Gibbs state with nice properties of the
corresponding potential. We shall see that in our case it is also possible. Using this
approach we investigate in the next paper, which is in fact the second part of this
paper, statistical properties such as decay of correlations, central limit theorem
and Donsker's invariance principle for dispersed billiards.

The proof of the main theorem consists of three steps. In Sect. 3 we construct
an initial partition which has already some Markov properties. In Sect. 4 we
construct an auxiliary pre-Markov finite partition (see the next section for
definitions). In Sect. 5 we construct the final Markov partition. In Sect. 6 we
investigate symbolic dynamics and some other properties of T with respect to the
Markov partition.

2. Some Preliminary Definitions
and Facts Concerning the Theory of Dispersed Billiards

In the beginning we shall consider various partitions oϊM1 whose elements have a
sufficiently simple form. We shall call polygons open connected domains in M 1

belonging to a single regular component of the boundary whose boundary consists
of a finite number of C1-curves. Each of these curves is either decreasing or
increasing or belongs to So. We shall call quadrilaterals such polygons for which
the boundary consists of two increasing (left and right) and two decreasing (upper
and lower) curves. If C is a polygon then Γ{U\C)(Γ{S)(C)) is the part of the boundary
δC of C consisting of increasing (decreasing) curves, Γ0(C) = δCr\S0.

Let Sk=TkS0, -oo</c<oo. It follows easily from [1] that Sk for fc>0 (fc<0)

consists of increasing (decreasing) curves whose end-points belong to [j Sk,

^ ^ A (see Fig. 2).

For a polygon C we denote Γ{u\C)(Γ{s\C)) the set of components of

Γlu\C)(Γls\C)) not belonging to M Sk ((J Sk). Suppose that we are given a
k>0 \k<0 j

partition ξ whose elements are polygons, i.e. ξ = {C1,C2,...), CinCj = &, ίή=j,

ϊ ί

;),ro(a=Uro(Q=so.
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Fig. 2

Definition 2. A partition ξ is a pre-Markov partition if for some m > 0

\ξ), ξ) C Γ{u\ξ).

We shall construct pre-Markov partitions in Sect. 4. Now we shall discuss in
more detail properties of discontinuity of T", m > 0. It is easy to see that T"1 is

discontinuous on (J S_k. A point xeSknSι is called a double point if /c /^0.
fc=l

Geometrically the double points generate trajectories which touch the boundary
twice either for t ̂ 0 or for t ̂ 0 . The index ind(x) of a double point x is equal by
definition to max(|fe|, |ί|) sgnfe if ZcφO or / if fc = 0. The set of double points for
which /c^ind(x)^/ is denoted by W{.

Let us denote by Sk f, ίelk, smooth components of Sk. Their end-points are
double points. We shall consider the structure of S_m in a neighbourhood of a
double point zeS_m, ind(z)^ — m. The following four possibilities for such double
points can arise.

a) zeS0 (see Fig. 3).
b x) zφS0, zeS_m_UίinS_kJnS_mj2 (see Fig. 4).
The point z is an end-point of S_mj2, i2el_m, an inner point of S_kJ,jeI_k,

0</c<ra, and an end-point of <SLm_ l f i l, ι 1 e/_ m _ 1 . The mapping 7̂  = 1™ is
continuous on S_k . and on S_m_ t h till z. On the curve S_m h the mapping Tλ is
discontinuous at z.

b2) z^5 0 , zeS_m + ίιiίnS_kJnS_mti2.
For T xz we have b j . Here z is an inner point of S_kJ and a common end-

point of S_m + 1 > ί i, S_mj2. The mapping Tx is continuous on S_kJ, S_miί. On the
curve S_m+1 h it is continuous outside z.

b3) ^ S o ^ e S _ m f i l n S _ m f i 2 n S _ T O . l i i 3 (see Fig. 6).
Here z is an end-point of S_m h and an inner point of S_m>il. Tγ is continuous

on S_m . and discontinuous on S_m 2 at z.
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Fig. 3

Fig. 5

S 1

Fig. 4

S-m, ι2

S-k,

S-m-1

Fig. 6
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Now we shall introduce a constant of geometrical nature. Suppose that δ{u\δ{s))
is an increasing (decreasing) curve and T(T~ι) is continuous on δ{u\δ{s)). It follows
from [1] that l{δ{u))^l(Tδ{u)\ l(δ(s))^l(T-ψs)), / is the length of the curve1. We put

It follows easily from [1] that 1 <Λ-min< oo, see also [6].
By a neighbourhood of a regular point xeM1 we shall mean a circle with a

center at x and a semi-circle centered at x for xeS0. If the radius of the circle is α
we shall write Oα(x). The closure of a set A is denoted by A.

3. Construction of an Initial Partition

We shall construct in this section an initial partition ξ0 of the phase space Mί

which will be transformed in the next section into a pre-Markov partition. The
elements of ξ0 will be polygons, the boundary of ξ0 will contain I) Sk. Elements

of ξ0 which have components of the boundary belonging to (J Sk will be called
|fc|£m

adjacent polygons. Other elements will be called non-adjacent polygons.

The construction of ξ0 consists of several steps. To begin with we shall

construct vertices of adjacent polygons (in fact in Lemma 1) lying on (J Sk. Next
|/c|5Ξm

we construct the sides of adjacent polygons intersecting (J Sk. This part of the

boundary will already have a Markov property. Namely if δ^ is a smooth

component of Γ{u\ξ0) intersecting (J Sk at x then Txx = T^x is contained in a

curve δ^cΓiu)(ξ0) and T^^δ^. The same property will hold for δ{°\ Also all
non-adjacent polygons will be quadrilaterals.

Lemma 1. Let a natural number m be given. For all sufficiently small ε there exist
finite sets 0>ε(Sj)cSp [/|^m, such that

1) P^gT&lSj.Jforj^O; <?ε(Sj)QT~^ε{Sj+1)forj^O;

2) dist(z ' ,z")^C l 8 for arbitrary z\z"e (J ^ ε(S.);

3) dist/z, U 0>e(Sj)-z)£C2ε for arbitrary ze [j 0>ε(Sj);

4) distίz, [j 0>ε{Sj))ύC2ε for arbitrary ze (J Sj;

5) for every end-point z of each Skti, \k\^m, ielk, there exists a neighbourhood

O(ί\z)2Oε5/6{z) such that the set M ^ε(S f,)n0(1)(z) has a special form which will be
\j\ύm

described later and which will be called a right form.

Here and later Ci9 i= 1,2,... are constants which do not depend on m,ε but
depend only on the geometrical characteristics of the billiard.

The proof consists of several steps.

1°. Let us take W?{S0)=W?nS0 and T~mWs

n(S0)QS_m. For every

zeT-mV^n(S0) we consider its ε2^-neighbourhood Oε2/3{z) and d ε 2 / 3(z)-O ε 2 / 3(z)

1 Here and further under the length of a curve we mean the length of its projection onto r-axis
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n<S_m. It is clear that if ε = ε(m) is sufficiently small then either Oc2/3(z) is a
simple open curve, (Oε2/3(z)cS_Wji for some ie/_m) or we have the case b3). For
different z and s, Orgs ^m, the neighbourhoods TsOε2/3(z) do not intersect if ε is
small enough. Also J Γ Ό ^ O O C S Q .

Let JΓε(z) be a maximal subset of Oε2/3(z) consisting of points for which the
mutual distances are not less than ε if we disallow the case b3). We can construct
inductively a sequence of sets JίE{Tz\ TszeΛ^ε(Tsz)C TsOε2/3(zX O^s^m, with the
following properties:

2) the mutual distances of points of Jίε(Tsz) are not less than ε;
3) if Jίε(Tsz) is chosen then J^ε(Ts+ ιz) is a maximal set of points satisfying 1)

and 2).
If a double point z is such that we have the case b3) then we consider

and a maximal subset Jίε{z\ zeJfε(z)cOε2/3(z) such that
1) dist (z', z") ̂  ε for arbitrary z\z"eJfε(z)\
2) if for every z' ejVε(z) we construct a straight segment δ(z') passing through z'

at an angle with the r-axis equal to φ{u\z') the end-points of which belong to
δθε2/3(z) then dist (z\ (J δ{z")\ ^ ε. Here tg φ{u\z) = κ{u\z).

\ z"eJ
r

ε(z)-z' )

We can construct now a sequence of sets J^ε(Tsz), l^gsrgm, with the same
properties 1,2, as above.

2°. Let zeS_knS_mr\S_m_ί9 0<k<m [caseb^]. We consider the neigh-
bourhood Tm~kOε2/3(Tk~mz). For sufficiently small ε we have

ΓH-kOe2,3{T*-mz)2Oe5/6(z)

In 1° we have constructed Jίε{z\

Let us take now for every yeJίε{z) a straight line segment passing through y and
having the angle φ{u\y) with the r-axis with the end-points belonging to
d(Tm~kOε2/3(Tk~mz)). We denote by Jί'ε{z) a maximal subset of

Tn-kOε2/3(Ί*-mz)nS_m

with the following properties:
1) dist(z',z")^β/3 for arbitrary z\z"eJί'ε{z)\
2) for every z'eJfε'{z) its distance to the straight line segments constructed

above is not less than ε/3.
It is easy to see that if ε is sufficiently small then there is at least one point of Jf'ε

between every two neighbouring segments (see Fig. 7).
3°. Let zeS_knS_mnS_m+v 0</c<m—1 [caseb2)]. In this case point T~1z

was considered in 2°. Let us construct a maximal subset Jί&\z)QTjVε{T~1z) for
which

1) dist(z',z")^ε/9/l2 in for arbitrary z\z"eJίε\z)\
2) if we construct for every yeJfε(z) a straight line segment with a slope angle

φ(u\y) passing through y and having the end-points belonging to
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S-m-1

Fig. 7

5(7™ kOε2/3(Tk mz) then the distance between Jfε\z) and these segments is not less
than ε/9Λ2

min.

As before, it follows from the maximality of JVE\z) that there is at least one
point of Jί't{z) between two neighbouring segments.

Now we construct a maximal subset

for which
1) dist(z',z");>ε/9yl£in for arbitrary z\ z"eJf"{z\
2) let us construct for every yeJίε{z)κjJί'ε(z) a straight segment at an angle

φ{u\z) the end-points of which belong to d(Tn~kOε2/3(Tk~mz)); then the distance
from any xeJfε"(z) to these segments is not less than ε/9Λ^in. We shall denote

As before it follows from the maximality of Jfε{z) that there is at least one point of
Jfz"{z) between every two neighbouring segments in 2).

4°. For every zeS_knS_mnS_m+v 0 < / c < r a - l , [case b2)] we take Jίε{z\
JVI{Z\ jr>(z) and

Then we construct inductively a sequence of sets Jίε(Vz\ JΓ^(Vz\
Jf"ΐ{Vz\ O^i^k-l, such that

2) Jίi{Tz\ Jίε"(Tz) satisfy conditions 1), 2) of 3°,
3) for given Jfε'(Ίi~1z\ Ji^{T~xz) the sets Jίε\Tz\ Jfε"{Tz) are maximal set

satisfying 1) and 2).
In case b2) the point TkzeS0. There is a closed semi-neighbourhood

containing a part of a curve S_m t where the mapping Tk is continuous. We can
construct a subset

with the same properties l)-3).
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Now let us consider k+ 1 for k<m. It is easy to see that if

then Tk+1S\ TkS" are parts of a smooth curve S_m + k+1JJeI_m+k+1 for which
Tk+1z is a common end-point. We construct Jίε"\Tk+1z\

Tk+1zeJr;"(Tk+1z)cTk+1S'vTkS"

satisfying l)-3). Next we construct a sequence of sets Jfz"\Tz), k+l<i^m
satisfying l)-3).

m

5°. For every double point ze I J S_fc, — ra^ind(z)<0 we have already
fc=O

constructed a neighbourhood or a semi-neighbourhood for zeS_mr\S0 which is
denoted by 0(1)(z) and which contains Oε5/6(z) if ε is sufficiently small. In 0(1)(z) we
have constructed the set Jf'^'(z)2 with the following properties:

1) dist(z',z")^ε/9Λ^in for arbitrary z\ z" e JΓ™{z)
2) if we construct a straight segment passing through z'eJίε"(z) at an angle

φ{u)(z) with the end-points belonging to dθ(1)(z) then the mutual distances between
these segments are not less than ε/18/l^in;

3) jf';\z)QTjf':χτ-ιz\
4) Jίε\z) is a maximal set satisfying l)-3).
The mapping T contracts all curves S_k i5 ie/k. Therefore
5) d is t i l^ ' " (zJ-z 'J^Cjε for every / e ' ^ ' ί z ) .
If l)-5) are valid for some constants not depending on m,ε instead of l/9/l^in,

C2 etc., we shall say that the set has a right form in the neighbourhood 0{1\z).
Now we take

s-m-
zeί U

VO < k ^

and construct a maximal subset Jr

ε

i~m)ζS_m— (J 0(1)(z) such that dist(z\z")^ε
z

for all z\z"etΆ
r£~m\ Next we construct inductively a sequence of sets ^ ( ~ I } ,

0^z<m, for which dist (z\ z")^ε for all z ^ z Έ ^ " 0 , T ^ " 1 ' " 1 ^ ^ " 0 a n d Λ ( " i }

is a maximal set satisfying these conditions.
LetJ/> (J ^-°uU^'X

where the union is taken over all double points ze WZ^.
Changing Γ on T"1 and vice versa we get an analogous sequence of sets

Λ ( S J , •^".(Sm_1),...,^",(S1), >7(So) Certainly it can happen that JT-(S0)
Φ<yV~ε

+(S0) and some points of these sets are too close to each other. We take

2 If z = Tzv O^ί^m, and for zx we have the case b3) then Jί'^\z) = Jίε{z)
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and construct a maximal subset

C ε
consisting of points the mutual distances of which are not less than * with

C\ >iC1<l. For every m i n

one can find z'e JVε(S0) for which

This point z'eJ^ε

+(S0) because mutual distances of points of Jί~{SQ) are not less

For every such pair (z,z') we consider {T~ιz, T~ιz1), (T~2z,T~2z'\...,
(T'kz, T~kz') where k^m is the least number for which

If such a k does not exist, we put k — m. Now we exclude the points
k

z,T~xz, ...,T~kz from set (J ίΛ
r

ε(S_i) and instead of them we include points
i = 0

z', T " 1 / , . . . , T~kz'. One can show that there does not exist a point

for which

for some i, O^i^/c. Further we consider points T~k~ιz\ ..., T~mz'. Suppose that
for some / ^ k + 1 one can find

for which

dist(z", T - ' z ' ^ ^

In this case we take the least kx >l for which

(if such a fex does not exist we put k1=m—ϊ).ltis worthwhile to mention that T~x

l + k

expands the curves S_ki. Now we exclude from the set (J jVε(S_i) the points z'\
i = l

T~ιz\ ...,T~kίz" and we include instead the points T " V , T~ι~ιz\ ...Ts ~ι~klz'.
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Such a procedure will be performed until m is reached with all points of

In every neighbourhood 0(1){z) the new set will have a right form because we
replace a point by a new point for which the distance from the original one is not
more than iQK^min)" 1 - Thus we get the desired set. Q.E.D.

Let 0>ε be the set constructed in Lemma 1. For zeS_mn0>

ε lying outside all
O^Xz^ [see 5) in Lemma 1, zx is a double point] we construct a straight segment
δ{u\z) passing through z at an angle φ{u\z) such that the distance from z to its end-
points are equal to C3ε. Here again C 3 is a constant not depending on m,ε but
depending only on geometrical properties of the billiard. Later we shall suppose
that C 3 is large enough compared with Λmin, Cv C2 etc. From z^(Jθ ( 1 ) (z 1 ) it

follows that Tn~1 is continuous on δ{u\z). For every ί,0^ΐ<m, such that
Tize&>

ε(S_m+i) we construct an increasing curve δ{u)(Tz) for which
1) δ(u)(Tiz)QTδ(u\Tί-1z);
2) the distances from Tz to the end-points of δ{u\Tz) are equal to C3ε.
Now we shall make an analogous construction in neighbourhoods O^Xz^ of

double points zίeS_m. Suppose that z^S0

3. For every

yeO^Xz^n (J &ε(S_k)
k = 0

we construct a maximal straight segment δ("Xy) passing through y at an angle
φ{uXy). In order to define a segment δ{uXy) Q δ^Xy) we shall consider various
possibilities.

a i δ^iKy) intersects all components of (I S_k lying in O(1)(z1). The total
fc=l

number of these components is not more than three [see cases b 1)-b 3)]. The length
m

of each inner component oίδ^Xy) bounded by points of (J S_k is not greater than

2C3ε we shall define in this case δ{uXy) so that it contains both inner components
and the lengths of boundary components are equal to C3ε where boundary

m

component has only one of its end-points on (J S_k.

a2. An inner component of δ("Xy) which is adjacent to y has a length less than
2C3ε, but the next inner component has a length bigger than 2C3ε in this case
δ{uXy) contains an inner component which is adjacent to y and two boundary
components the lengths of which are equal to C3ε.

a3. Both inner components δ{"Xy) have a length bigger than 2C3ε; in this case
δiuXy) has only boundary components the lengths of which are equal to C3ε. All
the cases are drawn in Fig. 8.

Assume that for ze ̂ ε(S_m) we have constructed curve δ{uXz) and T\ O:gϊ</c,
are continuous on δ{uXz). For

we construct inductively curves δ^XVz) in such a way, that
1) δ^XzJQTδ^XT-^);

3 The case Z^^ESQ is considered below
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Fig. 8

2) δ{u\z]) has the same properties as described in a 1 -a 3 above except the fact
that it is a straight segment.

m

So far we have constructed δ{u\z) for some ze (J 0>

ε(S_k). In those cases Twas

continuous on δ{u\T~1z) and δiu\z)QTδ(u\T~xz). Now we expand our construc-
tion to Z^^SQ) or zιe0il\z\ zeS_mnS0. In the first case we take the maximal
component δ{"] of δ{u\T~1z1) containing T~1zί where Tis continuous and we put
δiu\z1)= Tδ{"\ In the second case we construct a straight segment passing through
Zj at an angle φ^Xz^ and either the distances from z1 to both end-points are equal
to C3ε or only one of them is equal to C3ε while the other end-point belongs to So.
In the same way as above we construct inductively (5(M)(Tίz1) for those ί for which T
is continuous on δiu\Tι~1z1). Next we make the analogous construction of curves

δis){z) for ze 0 0>ε{Sk).
k=l

Now we come to a situation where zeO{1\zo)c\0>

t(S_1) for a double point
z0eWI2

1

mnS_1

 a n d T is discontinuous on δ{u\z). Here δ{u\z) consists of two
components δ^\z), (5(

2

w)(z) and T is continuous on each of them. We assume that
their common end-point belongs to δ^\z) and T is continuous on δ^\z) including
the end-points. Three possibilities can arise:

1) TzeS0;
m

2) zeδf{z\ Tze [j S_k and T, T2 are continuous on δf{z)\

3) zeδf(z), Tze \J S_k and Tis continuous on δ(

2

u\z).
fc=l

In case 1) we define δ{u\T2z) only if T2ze ^JtSJ. In case 2) we define (5(u)(T2z
m

only if T2ze M ^ε(S_k). In case 3) we define δ(u\Tz) only if
fc=l

m

Tze
k

We consider

It is easy to see that
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Fig. 9

is a connected set consisting of two smooth components having a common end-
points x, lying o n ^ . Each of components is an increasing curve. Now we recall
that we have "the fence" of curves δ{s\y) along Sv Let z1 = T2z in cases 1), 2) and
z1 = Tz in case 3). We put

where ^ ( z ^ g T 2 * ^ ) , δψizJQTδ™ are smooth increasing curves,

δfizjnδfiz,) = T2δ^\z)n Tδf{z)

and other end-points of these curves belong to a curve δ{s\y). Moreover,

bi) if δ^iz^nδ^iy^Φβ for some y^e^x) t h e n ^ ( z J n δ ^ O ^ φ θ and the
distances from ^ ( z J n ^ O ^ ) , δ^Kz^nδ^ίyJ to y1 are not more than \C3ε\

b2) each δis)(y) cannot contain the end-points of more than one δ{u\z1)\
b3) δ{u\zx) intersects with at least two δ{s\y).
b4) for some y, 0<y<l , which depend on geometrical properties of the

billiard, the lengths of δ^\z\ δf(z) are not less than yC3ε. Ifδ^KzJ or δf{zx) is cut
m

by (J S_k onto two pieces then the length of each piece is not less, than γC3ε.
k=ί

If ZGO ( 1 ) (Z 0 ) , zoeS_mnSo, then δ{u\z) is a straight segment for which at least
one half δ^\z) has the length C3s while the other half (5(

2

M)(z) can be less. We put

δiu\Tz)= Tδf{z)κjδf{Tz)

if the length of Tδf(z) less than yC3ε and δ^\Tz)C Tδf{z) is chosen in such a way
that b ^ b j are valid. If the length of T(5(

2

M)(z) is bigger than yC3ε we make the same
construction as above.

The form of <5(u)(z) is drawn on Fig. 9. The set of δ{u\z) along Sι looks like a fir-
tree.

Let ze U ^ε(S_ fc)u (J T f c^(5 0) be such that δ{u\z) is not defined yet but for

some z, 0^z<m, (^(T'V) is already defined and consists of two components
( ^ ( J T V ) , (5(

2

M)(T-ιz) and r is continuous on δ(tt)(T"£z). We put in this case (5(u)(z)
m

= Ti<5(l<)(T"iz). Now δ{u\z) is defined for all ZE [j 3?ε(S_k) and for some
fc=l
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Fig. 10

ze^ ε (S 0 )u M Tk^ε(S0). Iϊδ{u){z) is defined and zφ0>ε(S_J then Tδ{u\T~ 1z)2δ{u\z).

Now we continue our construction for the rest of ze^ ε(S 0). For such z δ(u)(T~ιz)
is already defined but T is discontinuous on δ(M\T~1z\ consisting of two smooth
components. We take the maximal connected component δ(%\T~ίz)cδ{u){T~iz)
where T is continuous and T~xz is one of its end-points. We put δ(u\z) = Tδ^

m m

• (T- 1z). Now δ(u\z) is defined for all ze \J 0>ε(Sk) and some ze U Tk^ε{S0). If z is

such that <5(s)(z), <5(s)(Tz) are defined then T~ίδ{s\Tz)2δ{s\z). Quite similarly we
can define <S(s)(z) for all ze | J ^(S*) and some ze (J T~k^ ε(S0). If z is such

that (5(s)(z), δis\Tz) are defined then T"1(5(s)(Tz)2^(s)(z). Moreover, we can per-
form our construction in such a way that if δiu\z1)nδ{s)(z2) + 0 then δiu)(T~kzί)
nδis\T-kz2)Φ0 for such k for which δ^T'h^ δis\T~kz2) are defined.

We continue our construction and intend to define δiu\z) for the rest of

ze I) T^^^o). Suppose that ze T^(S0)C ^(SJ. We must consider only the case
fc-l

when δ(u\T~2z) is defined, consists of two smooth increasing components and T is
discontinuous on δ{u\T~2z). In other words δ(u\T~2z) = δ^\T~2z)uδ^\T~2z) and
T, T2 is continuous on ^5 l )(T"2z), T is continuous on (5(

2

w)(T~2z) and
T2^(

1

M)(T~2z)uTδ(

2"
)(T~2z) is a connected set, consisting of four smooth increasing

components. We put

δiu\z) = T2δf{T~ 2z)u Γ δ ^ T - 2z)

(see Fig. 10). If zeΓ*^ ε(S0) for some k^m and T - f c + 1 z e T ^ ε ( S 0 ) c S l 9 δ ( α ) (Γ" k + 1 z)
is already defined and consists of four smooth increasing components we put δ{u\z)
= 7*-1<5<M>(T~*+1z). In the same way we define δ(s\z) for the rest of

m

ze (I T~k0)

ε(So). Now we can formulate the results of our considerations in the
fc=l

form of the following lemma.
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Lemma 2. For every

m m / m

zε U ^(S-*V U Ί*P.(S0) Ue U

one can construct a connected set (5(u)(z), ze<5(u)(z) ((5(s)(z), ze<5(s)(z)) consisting of j ^ 4
smooth increasing (decreasing) components in such a way that

1) if δ(u\z) (<5(s)(z)) consists of one increasing (decreasing) component then
distances from z to the end-points of δ{u\z) (δ{s\z)) are equal to C 3ε; for others j the
length of each smooth component is not less than yC3ε;

2) for
m m — 1 I m m — 1

z e U ^ ε ( S - f c ) υ U 7 * ^ ( S 0 ) (ze [j 0>ε(Sk)u [j
fc=O k=ί \ k=O k=l J

Tδ{u\z)2δiu\Tz) {T-ψ'Xzfeδl'KT-tz))

if T (T'1) is continuous on δ{u\z) (δ{s\z)); if T (T" 1 ) is discontinuous on δ{u\z)
(δ{s\z)) then

δiu\Tz)Q Tδ{u\z)κjT2δ{u\z) (δis\T-λz)QT-M(s)(z)uT~2δis\z))

3) the end-points of δ{u\z) (δ{s\z)\ for which j^2, belong to a δ^XzJ {δ^izj)
with j= 1,

U ^
δ^XzJ (δ^XzJ) does not contain the end-points of more than two δ{u)(z) (δ(sXz)); if
δMWnδ^XzJΦΰ (^(s)(z)n(5(")(z1)Φ0) then the distance from δ^&nδ^XzJ
(δ{sXz)rλδ(uXz1)) to zλ is not more than yC3ε;

4) every δ{sXz) ((5(w)(z)) withj=l intersects at least two different δ{uXy) (δ(sXy))
with j>ί;

5) if ( j M φ n ^ z J Φ O and 0<k<m is such that δiu\T-kz), δis\T-kzί)9

{δ{uXTkz\ δ{sXTk

Zl)) are defined then

The property 2) shows that all δ{uXz) (<5(5)(z)) are uniquely defined via the
construction by δ{uXy) (<5(s)(j)) for ye SPε{S_J {ye ^(SJ) and by the sequence of sets
&e(Sk) satisfying the properties of Lemma 1.

Our construction is flexible and structurally stable in the following sense. There
exists a constant C4 = C4_(CVC2,C3) such that for any sets ^ ( S _ J c S _ m ,
0>'ε(SJcSm which are small deformations of ^ε(S_m), ^ ( S J in the sense that for
every ze0>ε(S_m){ze0>ε(SJ) one can find z'e^(S_ J(z 'e^ ε (SJ) such that dist(z, z')
rgC4ε and the correspondence z->z' is one-to-one, we can take (5(u)(z), ze0>'ε(S_m);
δ{sXz\ z e ^ ( S m ) and perform the whole construction and get the rest of <5(w)(y),
δ(sXy') with same properties. It is possible because one can construct the sets
^(S-u) ( £ « ) , 0^/c<m, T0>'ε(S_k)20>'ε(S_k+1) {T-'^iS^nSk-i)) for
O^fc^m and ^f

ε(S_k) {^ε(Sk)) will be a small deformation of 0>ε(S_k {^ε{Sk)\ In
other words, the set of <5(u)(z), ze&'ε(S_m) and ^(s)(z), ze^ε{SJ is the defining set for
the construction.
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Fig. 11

Let us return to the original situation and consider the set

U
\k\£m

u <5 ( u )(z)u
ZG U ί

k = 0

u δ{s\z) =

In the neighbourhoods of (J Sfe there are maximal connected components

bounded by curves from S. It easy to see that each ^ ( 0 ) is a polygon and can be
triangle, quadrilateral or pentagon. The polygon ^ ( 0 ) is called adjacent to Sk,
\k\^m if a smooth component of the boundary dQιm belongs to Sk. Certainly, it
can happen that ^ ( 0 ) is adjacent to two Skι, Sk2, k1^k2.

Definition 3. The union of all Θ{0\ adjacent to Sk, is called the necklace of Sk. It will
be denoted by 9l(Sk).

The form of the necklace in neighbourhoods of different types is drawn on the

Fig. 11. Sometimes we shall write 9f\k) for 3ff\k) C 9l(Sk). A polygon ^ ( 0 ) for

which dΘ{O)r\ (J Sk = 0 is a quadrilateral. It follows easily from the fact that

different δ(u) or different δ{s) do not intersect each other.
Now we shall formulate the next lemma.
Let Q'ε be a maximal set with the following properties:
1) dist(z',z")^ε for arbitrary z\ z"eQ'ε;
2) dist(z,u^(0))^εfor zeQ'ε.

Lemma 3. There exists such a set Q'ε' that for every z"eQ'ε one can find z'eQε for
which dist(z/,z//)^C5ε, where C5 = C5(CVC2, C3,Λmin) is small enough and the
correspondence z'-+z" is one-to-one. The new set Q"ε has the following properties:

1) for every z"ΈQf

ε one can construct a straight segment δ{u\z") (δ{s\z")) passing
through z" at an angle φ{u\z") (φ(s)(z")) and non-intersecting u ^ ( 0 ) such that either
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the distances from its end-points to z" are equal to C3ε or only one of these distances

is equal to C3ε and the other end-point belongs to (J Γ ( s )(^ ( 0 )) / M Γ(M)(^(0))\

2) for arbitrary δ{u\z'[\ δ{u\z"2\ z"v z"2eQ"ε

min

From 1) it follows that δ{u\z")n [j Sk = 0, δis\z")n [j Sk = & for every
\k\^m \k\^m

Refraining for a moment from the proof of Lemma 3 we shall complete the
construction of a partition ξ0 which we need. We have increasing curves δ{u\z)
constructed for

ze [j ^ t U
k=0 k=l

and all zeQ'E. The first curves satisfy the relation δ{u\z)QTδf{T~1z) where
(̂w)( j - i z) is a component of continuity containing T~ 1z. In a similar way we have

decreasing curves δ{s)(z) for

/c=0 / c = l

and all zeQ'ε. The first curves satisfy the relation δ{s\z)Q T~ 1δ{°\Tz) where δ{l\Tz) is
a component of continuity containing Tz. We can shorten or lengthen each
constructed curve δ{u\z\ δ{s\z\ zeQ^ not more than C6ε in such a way that both
relations will be valid and the end-points of each new segments <5(u)(z), δ{s)(z) will
belong to some <5(s)(z'), δ{μ\z') and the distances of each end-points of new δ{s\z'),
δ{u\z') to the end-points of new δ{u\z\ δ(s\z) are not less than C6ε. The constant C 6

must be sufficiently small. Now we define ξ0 as a partition the elements of which
are connected open sets the boundaries of which are contained in

(z) u uδ{u\z)u [j Sk.
\k\Zm

Thus elements of each necklace $l(Sk), \k\ ^ m are elements of the partition ξ0. It is
worthwhile to mention that elements of the partition ξ0 which are non-adjacent
polygons are quadrilaterals.

Proof of Lemma 3. Let there be given two arbitrary increasing straight segments
( ^ ( z j , δ(u\z2) the lengths of which are not more than 2C3ε and C 5 > 0 is
sufficiently small. Suppose that (S ( w )(z.)nu^ ( O ) = 0 and dist(z,(5(u)(z2))^C5ε for
some zeδ^iz^). We shall show that if m is large enough and ε is small enough then

The curves of the set (J Sk cut phase space Mx on connected domains Fv

F2,...,Frm. Inside each domain the mappings T™ and T m are continuous. Let the
ft-th convergent of the continuous fraction κ{u\z) be Pn(z)/Qn(z\ fc.(z) are its
elements. From the recurrent equations for Pn{z\ Qn(z) we have
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The elements bt are positive and bounded from below by the length of the least
interval between two subsequent reflections4 and the least curvature of dQ
multiplied by 2. Therefore the denominators Qn(z) are bounded from below by
some constant independent of z. From the equality

P P 1

Qn+1 Qn QnQn+l

and from the fact that κ{u\z) lies always between Pn(z)/Qn(z) and Pn+ 1(z)/Qn + ί(z) we
derive that for each α > 0 one can find m = m(α) such that for every z1? z 2 e I n t F ,

|K(«)(Zl) _ ^>(z2)| < α, ! * < % ) - κ^\z2)\ < α.

The assertion formulated above can easily be derived from these inequalities.
Let us take a component dM^ and introduce coordinates r, φ (see Sect. 1).

There exists a number C5 < 1 such that one can decompose dMf into rectangular
cells with sides equal to Cjε. dMf being a cylinder each cell can be described by
two integers (numbers with respect to r and φ coordinate correspondingly). We
can introduce a lexicographical ordering in the set of cells. Also we can assume
that none of the points of Qε belongs to a boundary of a cell. If C5 is sufficiently
small then each cell contains not more than one point of Qf

ε. Therefore the ordering
of the cells induces some ordering of the points of Q'ε. The set 5M (

1

ί )\u^ ( 0 ) consists
of a finite number of connected domains. If follows from the definition of the set Qε

that a cell intersecting KJQJ{0) contains no points of Q'ε and such cells we shall not
consider.

Suppose that for z1 <z2< ... <zk, zieQε the shift is already performed and new
curves are constructed. Let us take the next point zk + 1>zk. Then C5ε-
neighbourhood on the line φ = const of the point zk+1 intersects with some curves
(5(M)(zj) constructed earlier via the induction hypothesis. The total number of such
curves is not more than N, where N depends only on C3. Therefore if we consider
2[CJ *] cells intersecting the line φ = const containing z'k+ x for which the distances
to z'k+1 does not exceed C5ε there exists a finite number of cells which intersect none
of the curves <5(M)(z ). If we take zk+1 equal to the center of one of these cells and
construct an increasing straight segment passing through z'k+ί then due to the
assertion stated above its distance from the curves of the same monotonicity
constructed earlier is not less than \C\ε. We can choose the cell and its center z'k+1

in such a way that the last assertion will be valid simultaneously for increasing and
decreasing curves. Let the end of the increasing (decreasing) straight segment
passing through z'k+ί belong to δ(s)CΓ(s)(v@(0)) [_δ{u)CΓ{u\\j®{0))~]. It is obvious
that we can take zk+1in such a way that the distance of this end to the nearest end

of δ{s)(δiu)) is not less than | C3ε. Q.E.D.

4 It is true if Q is a domain on two-dimensional torus. If Q is a domain on Euclidean plane then the
interval between two consecutive reflections is not bounded from below by a positive number. In this
case one can make use of the fact that there exists a constant L such that any point qeΓtnΓj has a
neighbourhood Uq with the property that any segment of the orbit completely containing in Uq has no
more than L reflections from the boundary. Therefore in this case one must consider TL instead of T
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4. Construction of a pre-Markov Partition

Let ξ0 be the partition constructed in Sect. 3, Γ{s\ξ0)= \J ^ s )(ξ 0), Γiu\ξ0)
i

= [j <5 M)(ξ0) where ^| s)(ξ0)(^|u)(ξ0)) are maximal decreasing (increasing) connected

components of the boundary. Some of <5 s )(£0), δ^\ξ0) consist of several smooth
connected components. It is important to remark that if δίs)(ξ0)(<5jM)(ξ0)) consists of
several smooth components than there exists ^ s )(ξ0)(^M)(ξ0)) which has only one
smooth component and for some k, 0 < k ̂  2m,

In what follows we shall denote δ\s^(ξ0), δf2\ξ0) consisting of one smooth
component by tilde: δ^(ξ0), δ^(ξ0). The construction described in Sect. 3 permits
in fact to get a partition ξ0 if only components of the boundaries δ\s^(ξ0), δ^(ξ0) are
given. Certainly we assume that the constants Cv C2, C 3 , . . . are fixed too and
satisfy the relations mentioned in Sect. 3. It should also be noted that a partition ξ0

is certainly non-unique. However if the partition ξ0 is chosen and we change
slightly (not more than on C5ε) all <5̂ (<ί;0)5 <5 "}(ξ0) then we can construct other
components of the boundary and the corresponding partition uniquely.

Theorem 1. Let ε be sufficiently small and m sufficiently large. For each set of
δ\s^(ξ0), ̂ ( ^ o ) one can find new decreasing and increasing curves δ[s^, δ^ in such a
way that

β
2. if δto{ξo)nδM(ξo)±ύ9 then δ<?nδ£>Φ0;
3. if using <5̂ , δ{ζ} we construct other components and the partition η0 as in

Sect. 3 then

Proof of the theorem proceeds the same way as the proof of the similar theorem
in [2, 3]. Let us take an arbitrary component δ£\ξ0). By construction the mapping
T " m is continuous on δ^(ξ0). Moreover T~mδ{^{ξ0) is also an increasing curve.
Indeed, there exists at least one point zoeδ{^{ξo) where the line tangent to
T~mδ^{ξ0) at T~mz0 is at an angle φ{u)(T'mz0). The final conclusion follows from
the smallness of ε.

Let the end-points ofδ{£(ξ0) belong to δV{ξ0), δ{£(ξ0). Certainly it may happen
that δ^(ξ0), δ{^(ξ0) have more than one smooth component. We consider
Γ-m^f(ξ 0), T-™δV{ξQ). There can appear the following possibilities.

8LV Both δf}(ξo\ δ^(ξ0) consist of a single smooth component. The lengths of

δfχ(ξ0), δ{£(ξ0) are not less than | c 3 ε . Therefore the lengths of T-mδV(ξ0),

T-mδf2{ξ0) are not less Λ™{J^-. We can find δ<g(ξ0) such that

1) dist(x,δg>(ξo))^iC3εy for every point x ^
2) both T-mδV(ξ0), T-mδf2{ξ0) intersect δju

2\ξ0) and the distance between the
points of intersection and the end-points of ^ - " ^ Q ) is not less than \C3εy.

If δ^Cδ^iξo) is the segment bounded by the points of intersection we take
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Fig. 12

a2. One of δ^(ξ0), δ(^(ξ0) has at least two smooth components. Let δ(^(ξ0)
have this property. In this case we choose δ(u) in such a way that the property 1) is

valid. If z^ then the end-point of δ(u) corresponding to T~mz1

lies on the same smooth component of T~mδfί{ξ0) as T~mz

Now we have a new system of curves δj"] with the end-points belonging to the

same smooth components of Γ{s\ξ0) as δ^(ξ0). It may happen that some end-

points of the components of Γ{s\ξ0) don't lie on (J δ^.

Changing T~m to T™ and vice versa we get in the same way a new system of
curves δ\f. We can choose them in such a way that the end-points of each δ\f lie on

C
some δ(£ and their distances to the end-points of δ{£ are not less than -^-cy. Next

we can choose new δ{£ in such a way that T~mδ^ Cδ^(ξ0) and the end-points of

δ^ belong to (J δf.

Now we denote δ("^(ξ1) = δ^, δ<^(ξ1) = δ<f^ and using them construct a new
partition which we denote ξv We evidently have

Suppose now that we have already constructed a sequence of partitions
ξo,ξί,...,ξn with the same properties as ξ0 and
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The same arguments as above give the possibility to construct ζn + 1, for which

It is easy to see that άist(Γ^(ξn+,), Γ^(ξn))^constΛ""", dist(Γ(5»(ξn+1), Γ^(ξn))

<constΛ~!"". Therefore the limit lim <? =wn exists and satisfies all the conditions
— nun n~> oo

of the Theorem 1. Q.E.D.
Partition η0 is not a Markov partition because its elements are not paral-

lelograms. It is easy to see that the elements C(η0) of η0 are curvilinear polygons
for which the total number of sides does not exceed five (see Fig. 12).

If the boundary of C(η0) does not intersect [j TkS0 then C(η0) is a
|fc|£m

quadrilateral. The elements C(η0) for which d(C(ηo))nSk + U will be called adjacent
polygons. Certainly in the last expression we must take \k\^m but later we shall
use this term in a more general situation. We show in the next section how to pass
from the partition η0 to a Markov partition. The partition constructed in Theorem
1 will be called a pre-Markov partition.

5. Transition from a pre-Markov Partition to a Markov Partition

In this section we prove the following

Theorem. Let there be given a finite partition η0 of the phase space M x such that
1) each element Ct of η0 is a polygon which is either adjacent or non-adjacent

all non-adjacent polygons are quadrilaterals and adjacent polygons are triangles,
quadrilaterals or pentagons

m m

2) ^ W ^ U S - . Γ' ' W D ^ ^ ;

3) ΓT«(f/0)Cr< >fo0); T-mΓ("^o)£Γ<"»(^o).
Then there exists a countable partition η, η^η0, such that
ax) each element of η is a parallelogram;

a2) η is a Markov partition with respect to Tm, i.e.

Tmγ{

η

s\x)Cyf{Tmx\ T~myf(x)Qy^(T"mx)

for almost all x.

Proof of the theorem is given below. The property 3) was called the pre-
Markov property of a partition. The partition η0 constructed in Sect. 4 satisfies
conditions l)-3). We shall use again the notation Tx = Tm.

The whole construction will have an inductive character. We put η£ =η0 and
suppose that partitions η£ ̂ η± ^ ---ύ^n a r e already constructed which have the
following properties:

1) there exists a closed neighbourhood Θ{™] of (J Sk consisting of elements
\k\^m

Cn+ of ff+ such that η^\^= W T\ηo\2{^ and every element C n + C ^ m ) is a
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polygon the set 2)^ is called the n-th necklace of N ̂
|fc|έm

For every /, l^n, the set \J T ^ m ) = ̂ Z m ) is called the n-th necklace of
fc = O

U s,
^k^l

m^k^lm

We begin the construction of η*+1 with the definition of

Cπ + C ^ m ) we consider V
v For every

If K is the total number of the elements of η0 then \/ T±ηo\Cη+ consists of

not more than K2 elements. It is easy to see that each of them is a connected set

and a polygon. The set of those elements of \J T^ηo\^] which are adjacent to

{J Sk is by definition the (π+l)-th necklace of [j Sk, their union being

denoted by &™+v We also put

' ln+lΛ+l~ V ιV\0

Next we define for 1 ̂  I ̂  n + 1

V 0()
i Λ + i

and

,U .-u eΛ
Thus ^n

+

+ x is completely defined.

We shall investigate in more detail properties of the sequence {rj^}- It ̂ s e a s Y to

see that ^ m ) is contained in the (constyl~£"m-e)-neighbourhood of [j Sk.

Therefore v ( ^ m ) ) ^ c o n s t y l " ^ ε and |fe|

+ ) , « = 0,1,....

[j

Lemma 5.1. T 1 Γ ( %

Proof. For n = 0 the statement of the lemma follows directly from the pre-Markov
property of ηo = η + . We assume that it is already proven for η$ ̂  ηf ^ ... ̂  η^_ 1

and we shall prove it for η^.
Let Γ^jrn)(η^) be the union of decreasing boundaries of all polygons be-

longing to 3^. It follows easily from the construction of η* that

V T*ηλ. We have also

U
0<k<n
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In view of our inductive assumption T' 1 Γ ( s ) (^_ 1 )cΓ ( s ) (^_ 1 ) . Therefore

1I$Uη:). (**)
n

From the pre-Markov property of η0 we have

because ηo^η^. Now from (*), (**), (***) we get the desired result. Q.E.D.

Lemma 5.2. The connected components of elements C(η*) which are polygons, non-
adjacent to the set (J Sk are quadrilaterals.

— m < k<mn

Proof. It follows easily from the construction of η* that each connected
component of C(η*) satisfying the assumption of Lemma 5.2 is a polygon whose
boundary consists of a finite number of increasing and decreasing curves.

We shall show that two components of the boundary of the same monotonicity
cannot intersect. Let us assume that this is not true and there exists a point
xeδ^nδψ where δ^, (5(

2

S) are two decreasing curves which are parts of the
boundary of C{ηf). We have the inclusion Γ{s\η + )QΓ(s\T~nη0) which is an
immediate consequence of the construction. Therefore from Lemma 5.1

Q Γ(s\η0)

which shows that Γ(s)(η0) must have two intersecting components of the same
monotonicity. But this is obviously wrong. Thus we have that the number of
smooth components of d(C(η*)) is necessarily even. Similar arguments can be
applied to δfnδ^ in view of inclusion Γiu){η+)cΓiu)(T?nη0).

Our considerations will have again an inductive character. Assume that the
statement of the lemma is already established for all η^ t^ηΐ tί --ίk^n We shall
show that it is valid also for η*+1. We must consider only two cases.

1. I n t C ^ J n l n t T ^ 1 ^ 1 ? ! Φ0 and C(η + ) is non-adjacent to | J Sk.

We shall show that the common boundary of the sets (J T ^ ^ 1 ;

mn<l^m(n+ 1)

C(η*)— (J T^ii+i is a union of smooth increasing curves whose end-
mn<l^m(n+ 1)

points belong to Γ{s\C(η^)). Suppose that this is wrong and a component of the
boundary consists of several smooth components. None of these components can
be a decreasing curve because it contradicts the pre-Markov property of η^+v

This means that all the components are increasing curves. But this is also
impossible in view of the arguments given in the beginning of this proof. As a
result we get that the common boundary of the sets C(η + ) - (J Tl@{™tl9

mn^l^m(n+ 1)

(J Tι2>^ ί consists of increasing curves. The end-points of these curves

belong to Γ(s\C(η^)) because of pre-Markov property of η*. Thus we see that
(^(rln)n U T1&™1 x is a finite number of strips and connected components

mn S I i^m(n + 1)

of C(f/n

+) - (J Tι2^l! are quadrilaterals.
^l^(+ 1)
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2. C(η+)Q II T{(3I{™1 ! - ^ m ) ) is a non-adjacent element of η +.
ι = o

The construction of η* shows that it is sufficient to consider only non-adjacent

elements belonging to 3)^1 x - 9{™\ We can represent such C{ηf)C 9{™] in the form

C{η+)=T~1Cίn@nT1C2 where Cv C2, D are elements of V Tfη0 and
|fc|£«-l

3)C^^5x is an element of η^_ v We also point out that the partition \/ T*η0
\k\Zn-l

has the pre-Markov property and C(η*) is a polygon whose boundary has an even

number of smooth components. The last statement has in fact been proven earlier.

Assume now that A = 3nT1C2 is a polygon which is non-adjacent to the set

(J Sk. We shall show that it is a quadrilateral. Let us consider the polygon
ί k^— m Sί k^

T1C2. Some components of its increasing boundary can belong to (J Sk. But
0 < k ̂  mn

the increasing components whose parts belong also to the boundary of A differ
from them because A in non-adjacent. We shall now show that parts of at least two
increasing components of TίC2 are smooth components of the boundary of A. If
none of them has this property then it means that the increasing part of BA lies
inside T1C2. But it contradicts the pre-Markov property of \/ Tfη0. If only one

\k\^n

of them has this property then again we have a contradiction to the pre-Markov

property of \/ Tfη0 because the total number of increasing components of the
\k\^n

boundary of A is not less than two and therefore at least one of them lies inside

τ,c2.
Thus we have at least two increasing components of the boundary of T 1 C 2

intersecting 3). If A is not a quadrilateral then at least two increasing components
of the boundary of A are also increasing components of 3). But in view of the pre-
Markov property of \J T±η0 it is possible only in case Θ = TγC2 because
otherwise increasing components of A will lie inside Ύ^C^

If $) = T1C2 then Q) is a polygon which is non-adjacent to (J Sk. This
5ί k^— m 5ί k^

means that 3) cannot belong to the n-th necklace of (J Sk. As a result we get that
\k\^m

A has only two increasing components and therefore it is a quadrilateral.
The intersection T[1C1nA can be treated in the same way. If A = 3nT1C2

is not a non-adjacent polygon then the same arguments applied to
T~1C1n9nT1C2 will yield the desired result. Q.E.D.

Taking everywhere T^1 instead of 7\ we can construct in the same way the
partitions ηo = ηό UVΪ = ••• = ΐ1n f° r which the same lemmas are valid.

Lemma5.r. Tf ^ " ^ J c Γ ^ ; ) , n = 0,l,....

Lemma5.2'. Connected components of elements C(η~) which are polygons, non-

adjacent to | J Sk are quadrilaterals.
— mn-^k^m

We also point out that the necklaces Θ{™] coincide for both sequences of
partitions. We shall introduce now the notion of rank for non-adjacent elements of
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the partitions η^. If C{η^) is a non-adjacent element of η$ then by definition its
rank is equal to zero. Elements of η± belonging to Θ^ — Q}^ have a rank equal to
one. Other non-adjacent elements of n\ have a rank equal to the rank of the
containing element of η£. In the general case we put the rank of an element of η*
belonging to &™2x — ̂ m ) equal to n. The rank of an element of η* belonging to

l-l \ ί l-l \

V{Γ-i- U τi^{Γ-ί)- ( T j ^ m ) - (J T\<3){™A is equal by definition to n-l,

1 ̂  / ̂  n. By definition the rank of every non-adjacent element of η* which is con-
tained in a non-adjacent element of η*_ x is equal to the rank of this element of

In the same way we can define ranks of elements of η~. Let us put ηn = η* v η~.
If C(^n) = C1(^π

+)nC2(^~) then we put r+(C(ηn)), r_(C(ηn)) to be equal to the
ranks of C^η*), C2{η~) correspondingly. It is easy to see that ηn has the pre-
Markov property.

Lemma5.3. Let C{ηn) = C1(η*)nC2(η~) be such that Cx(η*) and C2(η~) are non-
adjacent elements of η*, η~ correspondingly. If r+(C(ηn)) = k, r_(C(ηn)) = l then 1)

J) where either r + (C(ηn_1)) = k—l or C(ηn_ί) is polygon

adjacent to (J Sp. 2) Γ(u){T1-
1C{ηn))CΓ(>uXC"(ηn_1)) where either

m(n-k- l)^p^m(n-k)

r_(C"(ηn_1)) = l— 1 or C//(ηn_1) is a polygon adjacent to \J S_ .
m(n-k- l)^p^w(n-k)

The proof follows directly from the definitions.

Corollary. In conditions of Lemma 5.3

Let η=\J ηn. We shall show that η is a Markov partition whose elements are
n

parallelograms and satisfies all assertions of theorem.
First we remark that it follows easily from the construction that each element

C(η) has + -ranks. Indeed every element C(η) can be represented as
C(η) = C(ηn)nC(ηn + ί)n... where C(ηn) is a non-adjacent element of ηn and
r+(C(ηn)) = r+(C(ηn+1 ) )=. . . , r_(C{ηn)) = r_(C{ηn+1 ) ) = . . . and do not depend on n.
Therefore we can put r+(C(η)) = r+(C(ηn)l r_(C(η)) = r_(C(ηn)). Let Mκ+ (M f c_) be
the set of C(η) for which r+(C(η)) = k (r_(C(η)) = k).

Lemma 5.4. For sufficiently large k and some α, 0 < α < 1,

Proof. Let Πn be the union of all elements of ηn adjacent to (J Sk, v(Πn) = βn.

It is obvious from the construction that v(Mk>+)^v(J7fc). From the contractive
properties of T it follows that

U
0<s</c-l
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In view of the measure preserving property of 7\ we have

From the construction it follows that Πk = (J

So we obtain

This inequality can likewise be proved for the set Mk _. Q.E.D.
We denote by k0 a minimal natural number for which v(Mk + ) > 0 ,

)

Lemma 5.5. η is a countable partition.

Proof. It is sufficient to prove the assertion of lemma for partition η + = \f η*. Let

us put θn = v(^m )), vn = vί (J T ^ \ It is easy to see that £ vn < oo. We shall
[ )

give an abstract version of the assertion which we need.
Suppose that we have a sequence of finite partitions ξλ ^ ξ2 ^ ... ̂  ξn ^ ... of a

measure space (M l 52ϊ5v) and a measure-preserving transformation Ύλ with the
following properties: for each n there exists a set Q)n of elements of ξn such that

i f ^ , = U τι^n t h e n ^ consists of elements of ξn+1 and ξn+ί\{Mί-^n)

= ξn\(M1—<Fn). We shall show that \J ξn is a countable partition provided

Σ
In order to show the last statement we put Sn= (J 3Fk and Mln = M1— Sn.

k^n

Then Mι — Sn consists obviously of elements of the partition \J ζn, ζn \Mln

= ξ π |A ί l B fora l ln 1 ^nand V ^ | M l n = g M l n . T h u s \JξJMln for all n^n is
equal to ξ n |M l r ι . But ξn\Mln is a finite partition. From our conditions it follows that
vK)->0.

The statement of the lemma for {?}„} is a particular case of this general

assertion and therefore η+= \Jη+ is a countable partition. In the same way
n

η~ = \/ η~ is also a countable partition. Therefore η = η+ vη~ is also a countable

partition. Q.E.D.

Lemma 5.6. η is a Markov partition.

Proof. We must show only that every element of η is a parallelogram. Let xeC(η\
r+ =r + (C(η)\ r_ =r_(C{η)\ C{η) = C{η+)nC{η~). It follows from the construction
that C{η+)CC(η^\ r+(C(η*)) = r+ for all sufficiently large n. Let k be equal to the
minimum of all such n. It is easy to see that / c ^ [ ^ r + ] . From Lemma 5.2 C{η£) is a
quadrilateral. Therefore it is sufficient to show that if γiu\x) is a maximal smooth
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unstable transversal curve for x then y(u)(x) intersects both components of the
boundary Γ(s)(C(^+)).

If it were wrong then y{u\x) would intersect Γ(u\C{ηk

+)) or Γ{u\C(η + )) for some
s>k and xeC(η^)cC(ηk). We have seen above during the proof of Lemma 5.2
that C{ηk) — C{η^) consisted of a finite number of strips whose stable boundaries
belonged to Γ{s\C(ηk

+)). Let y(^(x) be the connected component of y{u)(x), xey{"](x)
and at least one of the end-points of γ^\x) belongs to Γ{u)(C{η^)). The curve γ^\x)
cut the connected component of C{η*) containing x into two parts which we
denote by A and B. We remark now that C(η^) — C(η) is a union of an infinite
number of similar strips as above and this union is everywhere dense in C(η*). It
means that infinitely many strips will intersect y^\x) and therefore y^\x) will
intersect at infinitely many points the set (J Sk. But this is impossible

sm + 1 ^ k < oo

because the inner part of y{"\x) cannot contain the points of (J Sk because
sm + 1 ^ k < oo

every intersection makes a break of the derivative of y^ix) which contradicts the
smoothness of y^\x).

The same arguments show that y(s)(x) intersects both components of Γ{u\C(ηk))
and therefore C(η) = C1(η+)nC2(η~) are parallelograms. Q.E.D.

6. Symbolic Dynamics and Other Properties of the Partition η

Let η be the Markov partition constructed in the preceeding section. We label the
elements of C(η) by natural numbers, i.e. Ci(η) = Ci, i ̂  1. The +-ranks become the
functions of z which we denote by r+(i\ r_(i). We can choose the labelling in such a
way that r + (z 1 )^r + (z 2 ) if i1 ^z 2 . ξ(s\ ξ{u) are the measurable partitions oϊM1 whose
elements are maximal regular l.s.t.f. and l.u.t.f. y(s\x), y(u\x), η(s) = ξ{s)vη,
η(u) _ ξ(u) Vη/± parallelogram C is u-embedded in a parallelogram Q) if C Q 3 and
for every x e C w e have y{^\χ) = y^(χ). In an analogous way one can introduce the
notion of s-embedding.

The content of this section is similar in many respects to the corresponding
parts of [2, 3]. Therefore we shall omit some details in the proofs which are the
same as in [2, 3].

If ε in the construction of η0 is small enough then an infinite product
00

P) TlCig(η) cannot consists of more than one point. If it consists of one point then
— oo

all intersections Cis(η)nT1Cίg +1(η)Φ0, — oo<s< oo. The inverse assertion is also
true: suppose that for a sequence of elements Cis{η) all v(Cis(η)nTίCis + ι(η))>0;

00

then the product f] T1

sC i s(^)φ0. The usual proof (see [2, 3]) is based upon the
— oo

canonical isomorphism between different y({°, yψ C C^η) and can be applied in our
case too. Therefore let us introduce the matrix of intersections Π=\\πij\\ where
πij=l if v(Cί nT 1 C J .)>0 and 0 otherwise. We construct the space ΩΠ of sequences
ω = {...,ω_Λ,...,ω0, ...,ωπ,...}, 0^ = 1,2,... and π ω n ω w + 1 = l, - o o < n < o o . If we
introduce discrete topology in the space of natural numbers then ΩΠ will become a
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topological space with the topology of the direct product of topological spaces.
The space Ωπ is invariant under the shift Tπ in Ωπ.

00

As in [2,3] we define the mappings φ : ΩΠ-^M1 putting φ(ω)= f] TfCωJη). It
— oo

follows from the Markov properties of η that φ is defined everywhere on Ωπ.

Lemma 6.1. The mapping φ is one-to-one mapping of Ωπ onto its image. The image
φ(Ωπ) is a subset of M1 of full measure. The inverse mapping φ"1 is continuous.

Proof of Lemma 6.1 is the same as the proof of the Theorem 3.1 in [2].
Using φ one can introduce the induced measure vΩ on Ωπ via the formula vβ(C)

= v(φ(C)). From Lemma 6.1 it follows that φ is an isomorphism of measure spaces
(M l 5 91, v) and (Ωπ, 91^, vβ) where SΆΠ is the completion of the Borel σ-algebra of
Ωπ using vβ. It follows from the relation φTί = Tπφ that Tπ preserves the measure

The triple (Ωπ, 9ίπ, vβ) is called a symbolic representation of the initial
(M l 5?l,v). The rest of this section is devoted to the analysis of properties of the
measure space (Ωπ, 9ΪΠ, vβ). It is based upon two facts.

1. Let us introduce measurable partitions ζ + , ζ~ of Ωπ where an element
Cζ+(Cζ-) is defined by a semi-infinite subsequence ω o ,ω 1 ? . . . ,ω π , . . .
( . . .ω_ n , . . . ,ω_ l 5 ω 0 ) and consists of all ω which have this subsequence on
corresponding places. An element of ζ + (ζ~) containing ωeΩπ will be denoted by
Cζ+(ω) (Cζ_(ω)). If ωeC ζ + ,C ζ - and φ(ω) = xeM1 then φ(Cζ+(ω)) = CηW{x)9

ζ η

2. Letω = {ωf}, - c x x i < o o , r+(ω£) = r+(Cω i).
If r + (ωi) = k>k0, r_(ωί) = k>k0 then from Lemma 5.3 r + (ω i _ 1 ) = fe—1,

Lemma 6.2. There exists a constant α l 5 0 < α 1 < l ? such that for all sufficiently
large r

vΩ{ω\r + (ω 0)^r)<;a\, vΩ(ω :r_(ω 0 )^r)ga\ .

The statement of the lemma is a reformulation of Lemma 5.4.
Let Anirl2 be the set of all C^CJίη) such that r + {ί)^nί9 r_(ϊ)<,n2.

Lemma 6.3. There exists a constant k = k(nvn2) with the following property: ifCη(u)

e C(η)cAnίtl2 then v(Ct\T^Cη(u))>0 for every CicAniri2. The same statement is true
for η{s\

The proof follows easily from the fact that η(u\ η(s) are K-partitions for T1

[1, 6]. The next lemma estimates the growth of k(nί9n2).

Lemma 6.4. There exists a constant k0 such that
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Proof. Let r + = minr+(i), r_ = minr_(i), k0 = k{r+, r_). If C (̂ ) is an element of 77

then it follows from the construction of η that for some 5

The parallelogram TlC^η) is w-embedded in Cj(η) due to the Markov properties
of η. For the same reason T^^C^nC^n) is a parallelogram of positive mea-
sure w-embedded in Ck(η) for every Ck{η)QAr+r_. In the same way for an
arbitrary Ch(γ])cAnuni one can find s l 5 r . ^ ) —r_ ^s 1 ^r_(z 1 ) such that
T~s'Cilη)QCh(η)QAr^r_. The parallelogram Γf^C^f/) is s-embedded in
Ch(η) due to the Markov properties of η. Therefore viT^^C^iη)
nT1

s+fcoCί(?7))>0, i.e. v(Ciι(η)nTs

1

 + Sl + koCi(rι))>0. But it follows from the fact
that Ch{η\ C{η) are parallelograms that v t C J ^ I T ^ + ^ C ^ ^ O . Q.E.D.

Our next task is to investigate one-sided conditional probabilities
vΩ(ω0\ω_ 1 ? . . . , ω_n,...) existing with vΩ-probability one. In case of Markov chains
of finite memory this probability depends only on a finite number of coordinates.
We shall show that in our case these conditional probabilities can be in a sense
very well approximated by probabilities with finite memory. Taking constants
α20'α2i'α22' 0 < o c 2 0 , α 2 1 , α 2 2 < 1 we introduce the sets:

l/m = {x:dist(x,S 0)<α2 0},

Vn = {x:TkxφUm,rn = tna21l\k\Sn and TίxeUi for \i\>n},

It is clear that Wn consists of elements of η(s\

Lemma6.5. Let Cζ-,Cζ-~ correspond to ω o , ω _ 1 ? . . . ,ω_ n + 1 ? ω / _ n , ω / _ n _ 1 , . . . ;
ω o , ω _ 1 ? . . . ,ω_ π + 1 ,ωl n ,ω"_ n _ v ... and Oζ-,C^-eφ~1(Wn). Then one can chose
α 2 O ? α 2 1 , α 2 2 and oc2, 0 < α 2 < l , in such a way that

The proof of the lemma is based on properties of the canonical isomorphism of
different Cη(s), C^s) lying in the same element of the Markov partition η. The
canonical isomorphism (see [2, 5]) transforms the conditional measure on C(J(S)

induced by v into a measure which is absolutely continuous with respect to the
analogous conditional measure on Cη(s). For Cη(sh C^(s)eWn the corresponding
Jacobian differs from one by a number whose modulo is no more than α^ for some
α3, 0 < α 3 < 1, for points belonging to Vn. Indeed, it can easily be estimated on the
basis of the formula for the Jacobian (see [5]). The last statement is equivalent to
the assertion of Lemma 6.5. In terminology of statistical mechanics Lemma 6.5
shows that the potential —lnvΩ(ω 1 |ωo,ω_ 1,...) for which vΩ can be considered as
a limit Gibbs state (see [8]) is of a short-range character. Further we assume that
α 2 0 , α 2 1 ? α 2 2 , α 2 are chosen in such a way that Lemma 6.5 is valid.
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The last property which we shall consider is an analogy of the so-called
Doeblin's condition in the theory of usual Markov chains. Let us introduce
conditional probabilities

We have the probability distributions π l 5 π 2 on the space of words ω3n+ι, . . . ,ω 4 w

under different conditions ω'_ n + 1 , ...,ω'o and ω"_n+1, ...,ω"0.

Lemma6.6. Suppose that r±(ω'^^n, r±(ω'[)^n, l girgn. Then there exists a
constant α4, 0 < α 4 < l , such that for all large enough n

Var(π l5π2)=4 Σ W« 3 n + 1 , ...9ω4lI)-π2(ω3π + 1, ...5ω4n)|<α4.
O>3n4- l ©4n

Proof consists of three steps.
1. It follows from the construction of η that there exists a finite collection of

m

elements of η A = (C1(η\...,CJrι)) such that for every C(η)φ {J Cfy) TC(η) is
i = l

another element of η.
Let us consider two Cη{sh C^s)CC^η) for some ί, l^ί^m. They are canonically

isomorphic because C^η) is a parallelogram. The induced conditional distributions
are equivalent and the corresponding density depends on expansion coefficients
along the semi-trajectories (see [5] where one can find an exact expression for the
density in case of Anosov systems the same expression is valid in our case too). It
means that for every d, 1 < d < oo, one can find a parallelogram <3)iCC (^), l^i<Lm,
which is u-embedded in Ct(η) such that v(^ f )^( l — d~x) v(Cf(?/)) and the restriction
of the density to Qt^C^ is contained between d~γ and d uniformly over
C;(s), q ( s ) . Thus μ(@i\Cη{s))^y1 > 0 for all C^cC^η) where y^y^d) depend on d.
Using the language of symbolic dynamics one can say that

for arbitrary kj,k<l. Here Cζ-=φ~1(Cη(s)\ C\- =φ~1(CJJ(S)). It is also obvious
that one can take as a condition φ~1(@i) instead of C ζ - n φ " 1 ^ . ) and the same
inequalities will be valid.

2. Let Cη(s)CC(η) and r±(C{η))^n. We shall show that one can find lo<3n
and α5, 0 < α 5 < l , not depending on n such that for all l>l0

C^,) ^ α 5,

Indeed from Lemma 6.4 one can find lt^2n + k0, for which T^^C^s) = C'η(s)CC (
for some i, l ^ i ^ m . Let be l^lo>l1 and ί0 — ίx be large enough. We have
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Because T x is mixing v(T[ liC.{η)\^^^\v{C.{η)). Also for all

vlΓj-'ΐMΓ'ΐJ^r^Γl-'ΐift)^ min v(CM.

Putting α5 = f<i~2 min v(CJ.(̂ /)) we get the desired inequality.

3. Let B be a set of the form f| T1

ΐCω.(^). We have

/ / n-l \ I w - 1

| . " 2 ) = Σ Ί f Π TΓ'CJηή-vlB Π Γf'C^:
B V \ i = 0 / \ i = 0

where £ + here and further means that the summation is taken over positive terms.
We can write

J v(B|C;(.,)dv'- v(B\C;w)dv"

q ( s )c

where dv', rfv" are normed measures on Cη{s) C f) Tx

respectively. Further I = o
T x ^ ^ (

i = 1

"n T -C

v'^v M x -

+ i ί ί ί Σ ;

r _
[

n - l

n

— dv'dv"

We remark that v ^ l C ^ n T / ^ ^ v ί T f ^ l ^ n T f 3 1 1 ^ , , ) . The set
Cj(?7)nT1~

3nC^(S) is a finite union of some C (̂s). The set <3jnT[~3nC'η{S) is the same
union of ^ n C ^ s ) . The same statement is valid for CJ^ΓΛT^^C^. NOW it follows
from 1° that
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Also from 1° and 2° v(Γ 1

3 n^|C; (.,)/v(T 1

3"^|C; (. ))^α 5y 1=>' 2. Therefore

1 — — ^——— < 1 — y~d~1

and

( m n— 1

1 \J 1 i
i= 1

But it follows easily from 2° that v[M1- \J T?n y, where

as J->oo. Therefore the last expression is uniformly less than 1. Q.E.D.

7. Concluding Remarks

1°. We shall describe a more general case to which the whole construction can be
applied. Suppose that we have an infinite configuration of convex non-overlapping
scatterers on the plane 1R2 such that

1) the curvature of the boundary of each domain is continuous and bounded
from above and from below by some positive constants

2) the length of an arbitrary straight segment which does not intersect any of
the scatterers is bounded from above and from below by some positive constants

Let us consider the motion of a single particle between the scatterers with elastic
reflections from the scatterers. We denote by Mf the set of x = (q,v) where q is a
point of the boundary of the i-th scatterer, v is the velocity vector directed outside
the scatterer. We put M x = (jM (/ } and consider the transformation T:M1->M1

i

generated by the motion of the particle. The transformation T preserves the
infinite measure v whose restriction to Mf takes the form dv = dqdφcosφ.

One can introduce the definition of Markov partition in the same way as in
Definition 1. Our construction can be performed without any changes under
assumptions 1), 2). This gives the existence of a Markov partition in this case too.
The properties of this partition can be investigated in the same way as in Sect. 6.

2°. Let α be the transformation of M1 which is induced by the involution in the
phase space M which is generated by changing υ into — v. It is easy to see that the
set of discontinuity curves I) Sk is invariant under α. One can easily modify the

\k\Zm

construction of the Markov partition in such a way that it will be also invariant
under α.

Acknowledgements. Ja. B. Pesin, A. Kramli, and D. Szasz have read the whole text and made many
useful remarks. We express our sincere gratitude to them.



280 L. A. Bunimovich and Ya. G. Sinai

References

1. Sinai,Ya.G.: Russ. Math. Survey 25, 137-189 (1970)
2. Sinai,Ya.G.: Funct. Anal. Appl. 2, 64-89 (1968); 2, 70-80 (1968)
3. Bowen, R.: Equilibrium states and ergodic theory of Anosov diffeomorphisms. In: Lecture notes in

mathematics, Vol. 470, p. 108. Berlin, Heidelberg, New York: Springer 1975
4. Ruelle, D.: Thermodynamic formalism, p. 180. New York: Addison-Wesley 1978
5. Anosov, D.V., Sinai, Ja.G.: Russ. Math. Survey 22, 103-167 (1967)
6. Gallavotti, G.: Lectures on billiards. In: Lecture notes in physics, Vol. 38, pp. 236-296. Berlin,

Heidelberg, New York: Springer 1975
7. Keller, G.: Diplomarbeit, p. 203. Erlangen (1977)
8. Sinai,Ya.G.: Theory of phase transitions. Rigorous results, p. 160. Moscow: Nauka 1980

Communicated by A. Jaffe

Received April 29, 1980




