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Abstract. Markov Partitions for some classes of billiards in two-dimensional
domains on R* or two-dimensional torus are constructed. Using these
partitions we represent the microcanonical distribution of the corresponding
dynamical system in the form of a limit Gibbs state and investigate the
character of its approximations by finite Markov chains.

1. Dispersed Billiards and Formulation of Main Results

Let Q be a two-dimensional open bounded connected domain on IR? or the two-
dimensional torus with Euclidean metric. We suppose that the boundary 0Q
consists of a finite number of C3-smooth non-selfintersecting curves I,
i=1,2,...,p, which may be either closed or have common end-points.

Billiard in Q is the dynamical system which corresponds to the motion of a
material point inside Q by inertia with elastic reflections at the boundary.

We consider the framing of each I; by unit normal vectors n(g), ge I, directed
inside Q. As a result the curvature of each I takes a definite sign. Dispersed
billiards are billiards for which all I; have a strictly positive curvature (see [1]).

Let M be the unit tangent bundle over Q, « is the natural projection of M onto
Q. Preimage 7~ '(¢q)=S'(g), g€ Q consists of unit vectors which are tangent to Q at
qgeQ. M is the three-dimensional open manifold with the boundary

oM = U n NI)= U 0M,. On every 0M, one can introduce natural coordinates

(r, @) where ris the parameter of length on every I; and ¢ is the angle between x
and n(q), g=mn(x). Let

M, ={xedM :(x,n(q)) =0, g=n(x)}, MP=M,noM,
So=1{xedM :(x,n(q))=0, g=n(x)},
M,=)n NnT), M=S,uM,.

iFj

*  Dedicated to the memory of Rufus Bowen
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The set M is called the set of singular points of the boundary. For simplicity
we shall restrict ourselves to the case when M, =@. The general case needs obvious
modifications.

Liouville measure on M takes the form du=dgdw, where dq is the usual
Lebesque measure on the plane, dw is the Haar measure on the circle S(g)
=n""'(¢q). One-parameter group of shifts along the trajectories of the billiard is
denoted by {S'}, — o0 <t<oo. It is wellknown that {S’} preserves the measure .

Let t(x), xe M, be the nearest positive moment of reflection of the trajectory
from the boundary. It is easy to see that t(x)<oo and one can define the
transformation of M, into itself by the formula Tx=S""° xe M,. T preserves
the measure v where dv=const cos@drdp. Here the const does not depend on I
and can be chosen in such a way that v will be the normed measure. Using the
language of ergodic theory one can say that the flow {S’} is represented as a special
flow built with the help of the automorphism T of the base space M, and the
function 7(x). The main aim of this and subsequent papers is to investigate the
ergodic and stochastic properties of T.

We shall assume that t(x) is uniformly bounded from above, ie. for some
constant C we have t(x) < C for all x. Sometimes such billiards are called billiards
with a finite horizon (see [ 7]). Our next assumption is that there are no trajectories
of the flow {S'} which touch the boundary more than twice. It is easy to see that it
is valid for general domains Q. Both these assumptions lead to some simplifi-
cations of a technical character in our future considerations.

Every subset 1~ '(I))nM , = M{ is called a regular component of M,. Suppose
that we are given a curve ¢ which is described by a function ¢ = ¢(r) and belongs to
a regular component of M,. We shall call ¢ an increasing (decreasing) curve and
denote it 6™(8®) if ¢(r) is piecewisely differentiable and one-sided derivatives satis-
fy the inequalities

KO(r) + o <% o+ chf)(sf )
a r T x(r,
oy (T 0) ¢
gy S8 4P oy Cose )
Wl @) = dr =
7o +t(x(r, @)

Here k'°)(r) is the curvature of the boundary at the point r, x(r, @)e M, is the point
with the coordinates r, ¢, k% = mig kOxr), — g << g—

We shall use the following important property of increasing and decreasing
curves (see [17]): if 8 is an increasing (decreasing) curve and T(7 ') is continuous
on 6 then TS(T~15) is again an increasing (decreasing) curve.
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Let xe M, be an inner point. We shall call a C*-curve y, xe?y, a stable manifold
(an unstable manifold) of the point x if T" is continuous on y for all i >0 (i <0) and
the length (T'y)—0 as i— o0 (i— — 00). In [1] it is shown that for almost every x
there exist stable and unstable manifolds, which are decreasing and increasing
curves correspondingly. We shall use the notations y®(x), y*(x) for maximal
smooth components of stable and unstable manifolds of x and call them local
stable transversal fibers (l.s.t.f.) and local unstable transversal fibers (Lu.t.f.).

In [1, 6] it is also shown that y*)(x), y*(x) can be represented as solutions of
ordinary differential equations. For y®(x) the differential equation takes the form
%? =k®(x(¢, 7)) cos ¢ — k'V(x)
where x=(r, p)e M,, k'(x) is the curvature of the boundary at the point r and

x®(x) is a continuous fraction

1
KO(x) =
T 0 1
cos,(x) 1
EAT ) i
Cos@,(x)  —15+ ...

Here 7, is the interval between i-th and (i— 1)-th collisions, 7,>0, k{°(x) is the
curvature of the boundary at the point of i-th collision, ¢,(x) is the angle of
incidence at the point of i-th reflection.

The equation for y™(x) can be written in an analogous way. If ACM, then
790 =y0x)N A4, YP(x) =1 (x)nA.

Let 7%, 9§ be two Ls.tf Subsets ACyy, BCyy are called canonically
isomorphic if for every xe 4 the intersection y*(x)ny$ is not empty and consists
of a point belonging to B and vice versa. In a similar way one can define the
canonical isomorphism between subsets of 49, y4). The canonical isomorphism is
absolutely continuous, i.e. it transforms a measure on y{” which is equivalent to the
length into a measure which is equivalent to the length on 7%). The proof of this
property is the same as the proof of an analogous property for hyperbolic systems
(see [2, 5]).

A subset  C M, of positive measure will be called a parallelogram if for every
pair of points x’, x"e & the intersection y®(x")Ny™(x") is not empty and consists
precisely of one point also belonging to & (see [2-4] for the analogous definition
in the case of hyperbolic dynamical systems). If & is a parallelogram than all y$)(x),
xe9, are canonically isomorphic. The same statement is true for all y%(x).
Moreover, every parallelogram can be constructed in the following way. We take
an arbitrary x,e 2 and y$)(x,), y¥(x,). Then

7= U 7))
xey)(x0), yer$(xo)
Let 5 be a finite or countable partition of M, whose elements are parallelograms,
N=(2,,2,,...), 2:02,;=0, i+], V(Ml— U @i) =0. If xe 9, we shall write y%(x),

y¥(x) instead of y§)(x), y(s)(xl
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Definition 1 (see [2, 3]). The partition 7 is called a Markov partition if for almost
every xeM, xe 9, Txe Z,;, T"'xe %,

TOPCNSyATX), T H () SyeA(T ™ 'x).
The main result of this paper is the following theorem.

Theorem. Under the conditions formulated above there exists a countable Markov
partition.

It is sufficient to construct a Markov partition & for T™ for some m>0 because
EVTEV ...v T" Y will be a Markov partition for T.

It is well-known that Markov partitions play a key role in investigations of
ergodic properties of hyperbolic systems (see [2] and monographs by Bowen [3]
and Ruelle [4]). The main reason is that using Markov partitions one can rewrite
the measure v in a form of a limit Gibbs state with nice properties of the
corresponding potential. We shall see that in our case it is also possible. Using this
approach we investigate in the next paper, which is in fact the second part of this
paper, statistical properties such as decay of correlations, central limit theorem
and Donsker’s invariance principle for dispersed billiards.

The proof of the main theorem consists of three steps. In Sect. 3 we construct
an initial partition which has already some Markov properties. In Sect. 4 we
construct an auxiliary pre-Markov finite partition (see the next section for
definitions). In Sect. 5 we construct the final Markov partition. In Sect. 6 we
investigate symbolic dynamics and some other properties of T with respect to the
Markov partition.

2. Some Preliminary Definitions
and Facts Concerning the Theory of Dispersed Billiards

In the beginning we shall consider various partitions of M ; whose elements have a
sufficiently simple form. We shall call polygons open connected domains in M,
belonging to a single regular component of the boundary whose boundary consists
of a finite number of C!-curves. Each of these curves is either decreasing or
increasing or belongs to S,. We shall call quadrilaterals such polygons for which
the boundary consists of two increasing (left and right) and two decreasing (upper
and lower) curves. If C is a polygon then I''(C)(IP(C)) is the part of the boundary
0C of C consisting of increasing (decreasing) curves, [,(C)=0CNS,,.

Let S,=T*S,, — oo <k<oo. It follows easily from [1] that S, for k>0 (k<0)

consists of increasing (decreasing) curves whose end-points belong to (] S,
o<k <k
( U Sk,) (see Fig. 2).
k<K <0
For a polygon C we denote I'(C)I'(C)) the set of components of
I(CYI#(C)) not belonging to | J S, (U Sk). Suppose that we are given a
k>0 k<0

IIA

partition ¢ whose elements are polygons, ie. {=(C,,C,,...), C;nNC;=0, i*],
v(M Y Ci) =0. We put I{9(¢)=)IOC), I9Q=)roc), e

= JI(C), T = | I'"(C), I5(&)= | IL(C)=S5,.
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Definition 2. A partition ¢ is a pre-Markov partition if for some m>0
r'(T"E)CreE), Irr-meHcra(q).

We shall construct pre-Markov partitions in Sect. 4. Now we shall discuss in
more detail properties of discontinuity of T", m>0. It is easy to see that T™ is

discontinuous on ) S_,. A point xeS,NS, is called a double point if k-/=0.
k=1

Geometrically the double points generate trajectories which touch the boundary
twice either for t=0 or for t £0. The index ind(x) of a double point x is equal by
definition to max(|k|,|l|)-sgnk if k=0 or [ if k=0. The set of double points for
which k<ind(x)<I is denoted by W}.

Let us denote by S, ;, iel;, smooth components of S,. Their end-points are
double points. We shall consider the structure of S_,, in a neighbourhood of a
double point ze S _, , ind(z) = —m. The following four possibilities for such double
points can arise.

a) ze S, (see Fig. 3).

—m

b,) z¢Sy, zeS_,,_; ;,0S_; ;NS_,, ;, (see Fig. 4).
The point z is an end-point of S_,, ;.. i,€I_,,, an inner point of S_, ,, jel_,,
O<k<m, and an end-point of S_,,_,,, i;el_,_,. The mapping T;=T" is

continuous on S_, ;and on §
discontinuous at z.

b,) z¢S,, Z€S 1,5, OS o jOS iy .

For T~ 'z we have b,). Here z is an inner point of S_, ;jand a common end-

—m—1,i, till z.On the curve S_,, ;, the mapping T, is

pointof S_, . ;,S_, ;- The mapping T, is continuous on S_, , S_, ;. On the
curve S_, ., ;, it is continuous outside z.

b,) z¢S,, zeS_m’ilr'\S_,,,,izr\S_m_l,i3 (spe Fig. §). ' .

Here z is an end-point of S_,, ; and an inner pointof S_, ; . T, is continuous

on S_, ; and discontinuous on S_, , at z.
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Now we shall introduce a constant of geometrical nature. Suppose that 5*(6)
is an increasing (decreasing) curve and T(T~!) is continuous on §®(5). It follows
from [1] that [(6“) S I(T™), [(5W) ST~ 16W), Lis the length of the curve!. We put

I(T5®) I(T"lé(s)))
Ay =i (},ﬂf 6@ > 5w

It follows easily from [1] that 1 <A _; <o, see also [6].

By a neighbourhood of a regular point xe M, we shall mean a circle with a
center at x and a semi-circle centered at x for xe S,. If the radius of the circle is «
we shall write O,(x). The closure of a set 4 is denoted by A.

3. Construction of an Initial Partition

We shall construct in this section an initial partition £, of the phase space M,
which will be transformed in the next section into a pre-Markov partition. The

elements of £, will be polygons, the boundary of ¢, will contain U S, Elements
|kl <m

of ¢, which have components of the boundary belonging to | ] S, will be called
[kl =m
adjacent polygons. Other elements will be called non-adjacent polygons.
The construction of £, consists of several steps. To begin with we shall

construct vertices of adjacent polygons (in fact in Lemma 1) lying on U S, Next

we construct the sides of adjacent polygons intersecting U S, ThlS part of the

boundary will already have a Markov property. Namely "it 0% is a smooth

component of I'*(&,) intersecting U S, at x then T;x=T"x is contained in a
-m=k=0

curve 8% CI'™(&,) and T,6% 26%. The same property will hold for 6¢. Also all
non-adjacent polygons will be quadrilaterals.

Lemma 1. Let a natural number m be given. For all sufficiently small ¢ there exist
finite sets Z(S;)CS, |j|<m, such that

1) Z(S)STAS;_,) for j<0; W(S)CT 1@(Sjﬂ)forj>0

2) dist(z', ") = C,¢ for arbitrary Z',z' el U 2(S

3) dlSt< | U 2(S)) z) <C,e for arbltrary ze U 2(S);
ME lilsm
4) dist( U 2(8 )) < C,é for arbitrary ze | S;;
lilsm

5) for every end -point z of each S, ,, [k|<m, iel,, there exists a neighbourhood
0")(2)20,5,(z) such that the set U P(S)N0'"(z2) has a special form which will be

described later and which will be called a right form.

Here and later C;, i=1,2, ... are constants which do not depend on m,¢ but
depend only on the geometrical characteristics of the billiard.

The proof consists of several steps.

1°. Let us take W[ (S,)=WnS, and T "W/(S,)<S_,. For every
ze T™"W(S,) we consider its &2/>-neighbourhood 0,,/:(z) and 0,./3(2) = 0,2,5(2)

1 Here and further under the length of a curve we mean the length of its projection onto r-axis
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NS_,. It is clear that if e=¢(m) is sufficiently small then either 0,.:(2) is a
simple open curve, (682/3(Z)CS _m,; for some ieI_, ) or we have the case bs). For
different z and s, 0=<s=<m, the neighbourhoods T°0,.,:(z) do not intersect if ¢ is
small enough. Also T’"ész/s(z)CSo. .

Let A(z) be a maximal subset of O,,(z) consisting of points for which the
mutual distances are not less than ¢ if we disallow the case b,). We can construct
inductively a sequence of sets N (T°z), T*ze N (T°z) C T°0,2/5(z), 0 =s <m, with the
following properties:

1) TH(T2)2N(T*"'z), 0Ss<m;

2) the mutual distances of points of A4 (T°z) are not less than ¢;

3) if A (T"z) is chosen then A (T*!z) is a maximal set of points satisfying 1)
and 2).

If a double point z is such that we have the case b;) then we consider
OSZ/S(Z)mS —m = 0~22/3(Z)

and a maximal subset A4 (z), ze ./V;(Z)Céez/;g(z) such that

1) dist(z,z")=¢ for arbitrary z/,z"€ AV (2);

2) if for every z'e ¥ (z) we construct a straight segment (z’) passing through z’
at an angle with the r-axis equal to @™(z') the end-points of which belong to
00,,/5(z) then dist (z’, U 5(2”)) >¢. Here tg " (z) =1"(2).

z"eN e(2)—2'
We can construct now a sequence of sets A (T°z), 1 <s<m, with the same
properties 1,2, as above.
2°. Let zeS_,nS_,nS_,,_;, 0<k<m [case b,)]. We consider the neigh-
bourhood T™ *0,,,s(T* ™z). For sufficiently small ¢ we have

T"7%0,5(T* " "2)20,56(2) .
In 1° we have constructed A/(z),
ze N (2)CS_) ;CS_,.

Let us take now for every ye .#(z) a straight line segment passing through y and
having the angle ¢®(y) with the r-axis with the end-points belonging to
AT™*0,,s(T*"™z)). We denote by .4#7(z) a maximal subset of

T" %0, (T* "2)NS_,,

with the following properties:

1) dist(z,z")=¢/3 for arbitrary z',z"e A](2);

2) for every z'e #;(z) its distance to the straight line segments constructed
above is not less than g/3.

It is easy to see that if ¢ is sufficiently small then there is at least one point of A7
between every two neighbouring segments (see Fig. 7).

3°. Let zeS_,nS_,,nS_,4+1, 0<k<m—1 [case b,)]. In this case point T~ 'z
was considered in 2°. Let us construct a maximal subset A7 (z)C T.A(T™ 'z) for
which

1) dist(z,z")=¢&/942;, for arbitrary z/,z"e #(z);

2) if we construct for every ye ./ (z) a straight line segment with a slope angle
©"“(y) passing through y and having the end-points belonging to
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S-m-!‘ 12

Fig. 7

AT™*0,,,5(T*~™2) then the distance between .4}(z) and these segments is not less
than ¢/942, .

As before, it follows from the maximality of 4(z) that there is at least one
point of .#(z) between two neighbouring segments.

Now we construct a maximal subset

N(2)CS_, T *0 s(TF ™2)
for which
1) dist(z,z")2¢/942,, for arbitrary 2, z’e N(z),
2) let us construct for every ye 4 (z)U.A;(2z) a straight segment at an angle
@"(z) the end-points of which belong to d(T™ *0,.5(T* ™z)); then the distance
from any xe.#)(z) to these segments is not less than ¢/942, . We shall denote

N2 =N (2)ON (2)ON(2).

As before it follows from the maximality of 4"(z) that there is at least one point of
A7(z) between every two neighbouring segments in 2).
4°. For every zeS_,nS_,nS_,.+., 0<k<m—1, [case b,)] we take A4 (2),
N{(2), #{(2) and
N (@)= N (D)o N (2) 0N (2).

Then we construct inductively a sequence of sets N (T'z), N/(T'z), N(T'z),
N(Tiz), 0<i<k—1, such that

1) N(T2)STH(T ™ 2), N (T STH (T 2);

2) N/(T'z), N'(T'z) satisfy conditions 1), 2) of 3°,

3) for given N(T'"*z), #/(T'"'z) the sets N](T'z), #(T'z) are maximal set
satisfying 1) and 2).

In case b,) the point T*ze S, There is a closed semi-neighbourhood

0, CT" *0 (T~ z)

containing a part of a curve S_,, ; where the mapping T* is continuous. We can
construct a subset
N(T2) CTHO  A(S_,US_,)

with the same properties 1)-3).
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Now let us consider k+ 1 for k<m. It is easy to see that if
S’:S_mﬁTm_kogz/s(T_erkz),
§"=S_,, 10T %0, s(T ™" *z)

then T 'S, T*S" are parts of a smooth curve S_,, . ;, jel_,, ., for which
T**'z is a common end-point. We construct A"(T** 1z),

Tk+ IZE/V;”(Tk—F 1Z)C Tk+ 1S/UTkS//

satisfying 1)-3). Next we construct a sequence of sets A"(T'z), k+1<i<m
satisfying 1)-3).

5°. For every double point ze () S_,, —m<=<ind(z)<0 we have already
k=0

constructed a neighbourhood or a semi-neighbourhood for ze S_, NS, which is
denoted by 0'*)(z) and which contains O s/+(z) if ¢ is sufficiently small. In 0")(z) we
have constructed the set .4."(z)* with the following properties:

1) dist(z,z") = ¢/942,, for arbitrary z,z"e 4]"(2);

2) if we construct a straight segment passing through z'e A4}"(z) at an angle
©"“)(z) with the end-points belonging to d0'*)(z) then the mutual distances between
these segments are not less than ¢/1842, ;

3) MRS TN (T 12,

4) A"(z) is a maximal set satisfying 1)-3).

The mapping T contracts all curves S_, , i€ l,. Therefore

5) dist(z', /" (z)—2') S C,e for every z'e A]"(2).

If 1)-5) are valid for some constants not depending on m, ¢ instead of 1/942,,,
C, etc., we shall say that the set has a right form in the neighbourhood 0™)(z).

Now we take

S_.— v 0™M(z)

ze(0<kU§m(W:5nnS_M))

and construct a maximal subset 4™ CS | — (] OY(z) such that dist(z,z")=¢

z
for all z/,z’e /"™, Next we construct inductively a sequence of sets (79,
0<i<m, for which dist(z,z")2¢ for all 2, 2"e /"), TA 1= D2 "D and 47D
is a maximal set satisfying these conditions.
Let /= | ) NP0 AN(z) and N (S_)=N."S_,, LSk<m,

0Zism z

N (So)= A0S,

where the union is taken over all double points ze W_ .
Changing T on T~ ! and vice versa we get an analogous sequence of sets

NAS)s NSy i)y ooy Nl S1)s AT(Sg). Certainly it can happen that A,7(S,)
+/.7(S,) and some points of these sets are too close to each other. We take

N (So)UJVg+ (So)

2 Ifz=T'z,,0<i<m, and for z, we have the case b;) then A4}"(z)= A4 (2)
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and construct a maximal subset

NA(S)E AN (Sp)u A" (So)

iy . . . o
consisting of points the mutual distances of which are not less than 94 28 with
C, >3, C <1. For every Ao

2e N7 (So) =N (So)
one can find z'e #,(S,) for which

dist (z,2') < Ce(942

min

This point z'e #,*(S,) because mutual distances of points of A" 7(S,) are not less
than Ce(942,)~ "

For every such pair (z,z) we consider (T 'z, T™'z), (T 2z, T %Z),...,
(T~ *z, T~*z') where k<m is the least number for which

dist(T %z, T™*2') = C}e(942

mm)

If such a k does not exist we put k=m. Now we exclude the points

2z, T 'z, .., T % from set U A(S_,) and instead of them we include points

Z,T"*Z,...,T"*z. One can show that there does not exist a point
m
Z’e ) NAS_
i=0
for which

L Cle
dist (2", T"iz) < =2 1 Z2 942, )

for some i, 0<i<k. Further we consider points T~ %" 1z, ..., T~ ™z Suppose that
for some [=k+1 one can find
Z'e U NS )
i=1
for which

dist(z", T~ z)<C (942.)7 1.

In this case we take the least k, > for which
dist (T~ 2", T™'"*z) =2 Cle(942,) !

(if such a k, does not exist we put k; =m—I). It is worthwhile to mention that 7!
1+k

expands the curves S_, ;. Now we exclude from the set U NS _;) the points z",

T 'z',..., T ¥z" and we include instead the points T~ ’z’ T iy, T ~thy,
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Such a procedure will be performed until m is reached with all points of
N (So) = A LSo).

In every neighbourhood 0*)(z) the new set will have a right form because we
replace a point by a new point for which the distance from the original one is not
more than 5C;e(942, )" . Thus we get the desired set. Q.E.D.

Let 2 be the set constructed in Lemma 1. For zeS_,,n 2 lying outside all
0"W(z,) [see 5) in Lemma 1, z, is a double point] we construct a straight segment
6%(z) passing through z at an angle ¢“(z) such that the distance from z to its end-
points are equal to C,e. Here again C; is a constant not depending on m,¢ but
depending only on geometrical properties of the billiard. Later we shall suppose

that C; is large enough compared with A, ;. C,, C, etc. From z¢( ) 0")(z,) it

follows that T"~! is continuous on 6“(z). For every i,0<i<m, such that
T'ze 2(S _,..;) We construct an increasing curve §*(T'z) for which

1) 8“(T'z2) S TS“(T 1z);

2) the distances from T'z to the end-points of 6*)(T'z) are equal to C,e.

Now we shall make an analogous construction in neighbourhoods 0%)(z,) of
double points z,;eS_,,. Suppose that z,¢S,>. For every

ye0(z)n U Z(S_y)
k=0

we construct a maximal straight segment 6{’(y) passing through y at an angle
©™(y). In order to define a segment 6*(y)S6%(y) we shall consider various
possibilities.

min’

a,. 6%(y) intersects all components of () S_, lying in 0")(z,). The total
k=1
number of these components is not more than three [see cases b,)-b;)]. The length
of each inner component of §%(y) bounded by points of ] S_, is not greater than
k=0

2C,¢; we shall define in this case §*(y) so that it contains both inner components
and the lengths of boundary components are equal to C,¢ where boundary

m
component has only one of its end-points on (] S_,.
k=0

a,. Aninner component of 6{(y) which is adjacent to y has a length less than
2C,¢, but the next inner component has a length bigger than 2C,e; in this case
8%(y) contains an inner component which is adjacent to y and two boundary
components the lengths of which are equal to Cje.

a,. Both inner components 6(y) have a length bigger than 2C,¢; in this case
5™(y) has only boundary components the lengths of which are equal to C,e. All
the cases are drawn in Fig. 8.

Assume that for ze 2(S_,,) we have constructed curve §*(z) and T%, 0<i<k,
are continuous on 6*(z). For

2 =T2e 25 )

we construct inductively curves 5*Y(T'z) in such a way, that
1) 89(z,)C T8(T~ 12);

3 The case z, €S, is considered below
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Fig. 8

2) 6)(z,) has the same properties as described in a,—a, above except the fact
that it is a straight segment.

So far we have constructed 6*(z) for some ze | | 2,(S_,). In those cases T was
=1

k
continuous on 6T~ 'z) and §“(z)C T6"“(T~'z). Now we expand our construc-
tion to z,e2,(S,) or z,€0)(z), zeS_,,NS,. In the first case we take the maximal
component 6{ of §*(T~'z,) containing T~ 'z, where T is continuous and we put
8“(z,)=Té%. In the second case we construct a straight segment passing through
z, at an angle ¢*(z,) and either the distances from z, to both end-points are equal
to C;¢ or only one of them is equal to C,¢ while the other end-point belongs to S,.
In the same way as above we construct inductively *(T'z,) for those i for which T
is continuous on 6*(T""'z,). Next we make the analogous construction of curves

59z) for ze | ) 2(S)).
k=1

Now we come to a situation where ze 0"(z,)n Z(S_,) for a double point
zoeW-}5,nS_, and T is discontinuous on 5*(z). Here 6*(z) consists of two
components 6{)(z), 64(z) and T is continuous on each of them. We assume that
their common end-point belongs to 6{(z) and T is continuous on §%(z) including
the end-points. Three possibilities can arise:

1) TzeS,;

2) zed(z), Tze | ) S_, and T, T? are continuous on §%(z);
k=1

3) zed%(z), Tze | ) S_, and Tis continuous on 5%(z).
k=1

In case 1) we define “Y(T?z) only if T?ze 2(S,). In case 2) we define §“(T?z)
only if T?ze | ) 2(S_,). In case 3) we define 6*(Tz) only if
k=1

Tee ) 2(5_,).
k=1

We consider
T25¢(z)u ToY(z).
It is easy to see that

T25%(z)u T6W(2)
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Fig. 9

is a connected set consisting of two smooth components having a common end-
points x, lying on S,. Each of components is an increasing curve. Now we recall
that we have “the fence” of curves 6®)(y) along S,. Let z, = Tz in cases 1), 2) and
z, =Tz in case 3). We put

8(z,)=06%(z,)ud¥(z,),
where 6%(z,)C T*6%(z), 64(z,) S T6™ are smooth increasing curves,
39(2,)0%(z,) = T?00(2) ToW(2)

and other end-points of these curves belong to a curve §®(y). Moreover,

b,) if 6%%(z,)N“(y,)+0 for some y, e Z(S,) then 6%(z,)Né*(y,)=*0 and the
distances from §%%(z,)né“(y,), 6%(z,)Nd®(y,) to y, are not more than 3C,¢;

b,) each (y) cannot contain the end-points of more than one §*(z,);

b,) 6“(z,) intersects with at least two d“)(y).

b,) for some 7y, 0<y<1, which depend on geometrical properties of the
billiard, the lengths of §$(z), 64(z) are not less than yC,e. If {°(z,) or 6%(z,) is cut

by (J S_, onto two pieces then the length of each piece is not less, than yCye.

k=1
If ze0M(z,), zo€S_,,NS,, then 5*(z) is a straight segment for which at least
one half 6$%(z) has the length C,¢ while the other half §%(z) can be less. We put

0U(Tz) = T6$)(2)L6%(Tz)

if the length of T6¥(z) less than yC e and 6$)(Tz) C T64(2) is chosen in such a way
that b, }-b,) are valid. If the length of T6%(z) is bigger than yC,¢ we make the same
construction as above.

The form of §*(z) is drawn on Fig. 9. The set of §*)(z) along S, looks like a fir-
tree.

Let ze | ) 2(S_)u |J T*2(S,) be such that §*(z) is not defined yet but for
k=1 k=1

some i, 0<i<m, (T 'z) is already defined and consists of two components
ST z), 8%(T'z) and T' is continuous on §“(T~z). We put in this case 6*(z)

=T8T 'z). Now 6“(z) is defined for all ze () #(S_,) and for some
k=1
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Fig. 10

m
ze2(So)u | T*Z(S,). If 6“(2) is defined and z¢2(S_,,) then TS™(T ™~ '2)25%(z).
k=1
Now we continue our construction for the rest of ze 2,(S,). For such z (T~ !z)
is already defined but T is discontinuous on §*(T~ !z), consisting of two smooth
components. We take the maximal connected component 64T~ z) Co“(T 'z

where T is continuous and T~ 'z is one of its end-points. We put §(z)=T5¢
(T~ 1z). Now 6®(z) is defined for all ze C) 2(8S,) and some ze (nj T*P(S,). I z is
such that 6%)(z), 6*Y(Tz) are defined thgrzloT"5‘5’(Tz);5‘s’(z). gulite similarly we
can define §¥(z) for all ze kOO 2,S,) and some ze kol T *2(S,). If z is such

that 6)(z), 6*(Tz) are defined then T~ 16®(Tz)25®(z). Moreover, we can per-
form our construction in such a way that if 6*)(z,)nd®(z,)+0 then 6"(T *z))
NOS(T~*z,)=%0 for such k for which 6T *z,), 8T *z,) are defined.

We continue our construction and intend to define 6*)(z) for the rest of

ze U T*2(S,). Suppose that ze T2(S,)C 2(S,). We must consider only the case
k=1

when 6®(T~2z) is defined, consists of two smooth increasing components and T is
discontinuous on (T~ ?z). In other words 6T~ ?z)=6T~22)ud%¥(T~ ?z) and
T, T? is continuous on 8T~ %z), T is continuous on &%¥(T ?z) and
T28$(T~22)UTé%(T™ %z) is a connected set, consisting of four smooth increasing
components. We put

8(z) = T26W(T~22)L TSW(T ™ 2z)

(see Fig. 10). If ze T*2(S,) for some k<m and T~ *"1ze TP(S,)CS,, 8T **'z)
is already defined and consists of four smooth increasing components we put 6*(z)
=T 1§0(T~**1z), In the same way we define 6“(z) for the rest of

m
ze () T7*2(S,). Now we can formulate the results of our considerations in the
k=1

form of the following lemma.
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Lemma 2. For every

zek(_")o Q;(S_k)uk(_") T*P(S,) (zek(_"jo 2500 () T—"gg(so))

one can construct a connected set 5"(z), ze §™(z) (6°)(z), ze 5°N(z2)) consisting of j<4
smooth increasing (decreasing) components in such a way that

1) if 6“(z) (0“(z)) consists of one increasing (decreasing) component then
distances from z to the end-points of §“(z) (§®Nz)) are equal to Cse; for others j the
length of each smooth component is not less than yC,¢;

2) for
e [ 25 00U rasg (ze [ 2500 705
k=0 k=1 k=0 k=1
T6%(z)2 5(“)(TZ) (T~ 15(5)(2) 209(T 1z))

if T(T™Y) is continuous on 8(z) (6°(z2)); if T (T~1Y) is discontinuous on 5%(z)
(6“N2)) then

SW(T2) S TOM(Z)U T2 (z) (ST~ 12)S T~ 169(2)u T~ 269(2)) ;

3) the end-points of §*(z) (6°)(z2)), for which j=2, belong to a §“(z,) (6"(z,))
with j=1,

ze ) 2(8) (zle 0 %(S_») ;
k=0 k=0

59(z,) (6"(z,)) does not contain the end-points of more than two 6*(z) (6“)(z)); if
0(2)NSNz)£0  (N2)nE™N(z,)+0) then the distance from §“(z)né®(z,)
(6“92)"8"(z,)) to z, is not more than yC,e;

4) every 5°(z) (6™(z)) with j=1 intersects at least two different 5“(y) (6“)(y))
with j>1;

5 if 02)ndW(z)%0 and O<k<m is such that 3"(T*z), (T *z,),
(0“(T*z), 6“XT*z,)) are defined then

ST *2)NSNT *z,)+0  (0“AT*2)nd“(T*z,)+0).

The property 2) shows that all §*(z) (6')(z)) are uniquely defined via the
construction by 6™(y) (6¥(y)) for ye 2(S_,) (e 2(S,,) and by the sequence of sets
2(S,) satisfying the properties of Lemma 1.

Our construction is flexible and structurally stable in the following sense. There
exists a constant C,=C,(C,,C,,C;) such that for any sets Z,(S_,)CS_,,
P.S,,)CS,, which are small deformations of 2(S_,), #(S,,) in the sense that for
every ze2(S_,)(ze2,S,,) one can find z’€Z,(S_,)(z€Z,S,,)) such that dist(z, 2
<C,é¢ and the correspondence z—Z' is one-to-one, we can take 6)(z), ze Z(S_,);
09(z), ze 2(S,,) and perform the whole construction and get the rest of 6*(y),
0“(y) with same properties. It is possible because one can construct the sets
PUS_) (ZUSY), 0=<k<m, TPAS_)22UAS_1+1) (T PUSYI22US,_,) for
0<k<m and 2.(S_,) (2S,) will be a small deformation of Z(S_, (2(S,)). In
other words, the set of §*(z), ze 2(S _,,) and 8“(z), ze 2.(S,,) is the defining set for
the construction.
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Let us return to the original situation and consider the set

U Sw U .. (v U 09(z)=S.
[kf =m zek!o@c(S—k)ulQ‘ T2 +(So) zekgom(skm U T7124(50)
In the neighbourhoods of (] S, there are maximal connected components Z©
[k| =m
bounded by curves from S. It easy to see that each 29 is a polygon and can be
triangle, quadrilateral or pentagon. The polygon 2@ is called adjacent to S,,
|k|<m if a smooth component of the boundary 02 belongs to S,. Certainly, it
can happen that 2'¥ is adjacent to two S, , S, k; +k,.

Definition 3. The union of all 2%, adjacent to S,, is called the necklace of S,. It will
be denoted by 9i(S,).

The form of the necklace in neighbourhoods of different types is drawn on the
Fig. 11. Sometimes we shall write 2{9(k) for 2" (k)CN(S,). A polygon 2 for
which 02~ | ) S,=0 is a quadrilateral. It follows easily from the fact that

kl<m
different 6® orl |d_ifferen‘[ 5 do not intersect each other.
Now we shall formulate the next lemma.
Let Q. be a maximal set with the following properties:
1) dist(z, z") ¢ for arbitrary 2, z’€Q.;
2) dist(z, U2 =¢ for ze Q..

Lemma 3. There exists such a set Q7 that for every z"e€ Q. one can find z' € Q. for
which dist(z',z")< Cs¢, where C5=C4(C,,C,, Cy, A,,) is small enough and the
correspondence z'—z" is one-to-one. The new set Q. has the following properties :

1) for every z"€ Q! one can construct a straight segment 5“X(z") (6®)(z")) passing
through z" at an angle ¢™(z") (p(2")) and non-intersecting W %'Y such that either
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the distances from its end-points to z" are equal to C,¢ or only one of these distances
is equal to C,¢ and the other end-point belongs to tvj (@) ((_{) r (“’(@(0))) ;
. 2(0) 4(0)

2) for arbitrary §“(z}), 6“(z}y), 2}, Z,€ Q"

min dist(y;,y,)=Cse.
y1€80(z7)
y2€8((23)

From 1) it follows that 6“(z")n ) S,=0, 69(")n () S,=0 for every
[kl =m [kf=m
z"eQy.
Refraining for a moment from the proof of Lemma 3 we shall complete the

construction of a partition ¢, which we need. We have increasing curves 5*)(z)
constructed for

ze |J 2(S_Ju | T*2(S,)
k=0 k=1

and all zeQ!. The first curves satisfy the relation §“(z)CT6¢(T~'z) where
04T~ 1z) is a component of continuity containing T~ 'z. In a similar way we have
decreasing curves §%(z) for

m

Z€ U O U T*P(S,)
k=0 k=1

and all ze Q7. The first curves satisfy the relation 6(z) C T 6{)(Tz) where 6{(Tz) is
a component of continuity containing Tz. We can shorten or lengthen each
constructed curve 6“(z), 5“)(z), ze Q7 not more than C¢ in such a way that both
relations will be valid and the end-points of each new segments §*(z), 5*)(z) will
belong to some §®(z'), §*(z') and the distances of each end-points of new ('),
5™(z’) to the end-points of new *(z), 5(z) are not less than C¢. The constant Cg
must be sufficiently small. Now we define £, as a partition the elements of which
are connected open sets the boundaries of which are contained in

udNz) U LYz | ) S,.
|k[=m

Thus elements of each necklace 9YS,), |k| =m are elements of the partition &. It is
worthwhile to mention that elements of the partition £, which are non-adjacent
polygons are quadrilaterals.

Proof of Lemma 3. Let there be given two arbitrary increasing straight segments
0“(z,), 6“Yz,) the lengths of which are not more than 2C,¢ and Cs>0 is
sufficiently small. Suppose that 6(z)n w2 =@ and dist(z,6*(z,))= Cs¢ for
some ze 8*)(z,). We shall show that if m is large enough and e is small enough then
dist(3(z,),0(z,)) 21 C .

The curves of the set | ] S, cut phase space M, on connected domains F,
lkl=m

F,, ..., F, .Inside each domain the mappings 7" and T~ ™ are continuous. Let the
n-th convergent of the continuous fraction k®(z) be P,(2)/Q,(z), b(z) are its
elements. From the recurrent equations for P,(z), Q,(z) we have

Qn—Qn—Zzbnbn—IQn—Z+bn/bn—2(Qn—2—Qn—-4)’ n;S



Markov Partitions for Dispersed Billiards 265

The elements b; are positive and bounded from below by the length of the least
interval between two subsequent reflections* and the least curvature of 9Q
multiplied by 2. Therefore the denominators Q,(z) are bounded from below by
some constant independent of z. From the equality
Pn Pn n 1
Ly

Qn +1 Qn QnQn +1
and from the fact that k*(z) lies always between P (z)/Q,(z) and P, ,(2)/Q, . ,(z) we
derive that for each «>0 one can find m=m(«) such that for every z,, z,eIntF,,
i=12,...,1,

K¥(z))— k" (z,) <o,  [K9(z,)— Kk )z,)| <a.

The assertion formulated above can easily be derived from these inequalities.

Let us take a component dMY and introduce coordinates r, ¢ (see Sect. 1).
There exists a number C5 <1 such that one can decompose IM{ into rectangular
cells with sides equal to C3e. IM) being a cylinder each cell can be described by
two integers (numbers with respect to » and ¢ coordinate correspondingly). We
can introduce a lexicographical ordering in the set of cells. Also we can assume
that none of the points of Q. belongs to a boundary of a cell. If C; is sufficiently
small then each cell contains not more than one point of Q.. Therefore the ordering
of the cells induces some ordering of the points of Q.. The set IMP\L2? consists
of a finite number of connected domains. If follows from the definition of the set Q,
that a cell intersecting UZ® contains no points of Q! and such cells we shall not
consider.

Suppose that for z, <z, < ... <z, z,€ 0, the shift is already performed and new
curves are constructed. Let us take the next point z,,,>z,. Then Cge-
neighbourhood on the line ¢ =const of the point z, , , intersects with some curves
8“(z)) constructed earlier via the induction hypothesis. The total number of such
curves is not more than N, where N depends only on C,. Therefore if we consider
2[C5 '] cells intersecting the line ¢ =const containing z; , , for which the distances
to z;,, , does not exceed C ¢ there exists a finite number of cells which intersect none
of the curves 6*(z)). If we take z;, , equal to the center of one of these cells and
construct an increasing straight segment passing through z; ., then due to the
assertion stated above its distance from the curves of the same monotonicity
constructed earlier is not less than 2C2e. We can choose the cell and its center z .
in such a way that the last assertion will be valid simultaneously for increasing and
decreasing curves. Let the end of the increasing (decreasing) straight segment
passing through z;, ; belong to 6 CI'“(u2?) [6“ cTr*“(V2®)]. It is obvious
that we can take z;, , in such a way that the distance of this end to the nearest end

of (W) is not less than %cys. Q.ED.

4 Ttis true if Q is a domain on two-dimensional torus. If Q is a domain on Euclidean plane then the
interval between two consecutive reflections is not bounded from below by a positive number. In this
case one can make use of the fact that there exists a constant L such that any point ge ;I has a
neighbourhood U, with the property that any segment of the orbit completely containing in U, has no
more than L reflections from the boundary. Therefore in this case one must consider T* instead of T
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4. Construction of a pre-Markov Partition

Let &, be the partition constructed in Sect. 3, I'Y(&y)= | ) o), T™(E,)
= | 6¢(&,) where 6(£,)(6(&,)) are maximal decreasing (increasing) connected

components of the boundary. Some of §(&,), 6%(¢,) consist of several smooth
connected components. It is important to remark that if 6(&,)(6{(&,)) consists of
several smooth components than there exists 6'(£,)(64”(¢,)) which has only one
smooth component and for some k, 0 <k <2m,

THPEIUT 1006 200(E) TGV T 101(E0) 207(E0)].

In what follows we_shall denote {(¢o), 6{(,) consisting of one smooth
component by tilde: 5‘5’(50), 5"‘)(50) The construction described in Sect. 3 permits
in fact to get a partition & if only components of the boundaries 5‘”(50), 55‘?(50) are
given. Certainly we assume that the constants C,, C,, C,, ... are fixed too and
satisfy the relations mentioned in Sect. 3. It should also be noted that a partition &,
is certainly non-unique. However if the partition £, is chosen and we change
slightly (not more than on Cse) all (&), 5¢(&,) then we can construct other
components of the boundary and the corresponding partition uniquely.

Theorem 1. Let ¢ be sufficiently small and m sufficiently large. For each set of
SEE), 0U(¢E,) one can find new decreasing and increasing curves 5, 5% in such a
way that
1 dist (5%, 69(E ) < CoAnm;
2. if 5‘3) ﬁo 5(“)(60)#@ then 5(5’(‘\5‘“)#0
3. if using oﬁj’, 6“" we construct other components and the partition 1, as in
Sect. 3 then
T"T9(no) ST9n,), T_mr(u)(”lo)gr(u)(rlo)~
Proof of the theorem proceeds the same way as the proof of the similar theorem
in [2 3]. Let us take an arbitrary component 5(“’(50) By construction the mapping
T~™ is continuous on 5(“)(50) Moreover T~ '"5‘“’(50) is also an increasing curve.
Indeed there exists at least one point z0 5(“’(50) where the line tangent to
T™"6M(&,) at T™"z, is at an angle (T ~"z,). The final conclusion follows from
the smallness of e.
Let the end-points of §{(&,) belong to (&), (&), Certainly it may happen
that d(&,), 5(5)(50) have more than one smooth component. We consider
'"5“{(5 ), T ’”5“’(&0) There can appear the following possibilities.

. Both 5“)(60), 5“)(50) consist of a single smooth component. The lengths of
‘;’(CO) 0(&,) are not less than §C3e Therefore the lengths of T "3%)(&,),

T~ "3$)(&,) are not less Al C% " We can find 5‘.“’(60) such that

1) dist(x 5(“’(50)) 3.93) for every point xe T~ '"5‘“’(50)
2) both T~ "'5(3)(5 ) “moY(&,) intersect 5(“)(50) and the distance between the
points of intersection and the end- -points of 5(“)(60) is not less than 4 C,ey.

If 5(“)C5('”(§0) is the segment bounded by the points of intersection we take
’I'mé(u) _ 5(14)



Markov Partitions for Dispersed Billiards 267

Fig. 12

a,. One of 0(&,), 0Y)(&y) has at least two smooth components. Let 6{(Z,)
have this property. In this case we choose §* in such a way that the property 1) is

valid. If z, =6{(¢,)nd%(&,) then the end-point of 6" corresponding to T~ "z,

lies on the same smooth component of T~"0%(&.) as T~ "z,.

Now we have a new system of curves (i‘l‘) with the end-points belonging to the
same smooth components of I'(&,) as 6{(&,). It may happen that some end-

points of the components of I')(£,) don’t lie on U Sﬁ‘f’.

Changing T™™ to T™ and vice versa we get in the same way a new system of
curves 0. We can choose them in such a way that the end-points of each ¢ lie on

5 o . % C
some ¢ and their distances to the end-points of 6{* are not less than *428% Next
we can choose new gf‘l" in such a way that T”mgﬁ'l‘) ng’(fo) and the end-points of
o belong to [ ) 0.

i N s s .
Now we denote 0{(¢,)=0%", 0(¢,)=0! and using them construct a new
partition which we denote £;. We evidently have

T™mI(E) STE)UT™(E,),
TIO(E)STOEYVIIE).

Suppose now that we have already constructed a sequence of partitions
¢or &y, .., &, with the same properties as £, and

TN STME)OTE, ),  TrIOE)CTOE)VIE, ).
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The same arguments as above give the possibility to construct &, , ,, for which

T, VST, JOTY(E,),
T"TE, ) ETOE,  )OTV(E,).

It is easy to see that dist(I'™(&, . ), IT™(&,)) S const A ™, dist(IF(E, . ), T®(E,))
<constA_"". Therefore the limit Jim &, =, exists and satisfies all the conditions

of the Theorem 1. Q.E.D.

Partition 7, is not a Markov partition because its elements are not paral-
lelograms. It is easy to see that the elements C(y,) of #, are curvilinear polygons
for which the total number of sides does not exceed five (see Fig. 12).

If the boundary of C(y,) does not intersect U T*S, then C(n,) is a

quadrilateral. The elements C(y,) for which 6(C(;70))mS 4:0 will be called adjacent
polygons. Certainly in the last expression we must take |k| <m but later we shall
use this term in a more general situation. We show in the next section how to pass
from the partition #,, to a Markov partition. The partition constructed in Theorem
1 will be called a pre-Markov partition.

5. Transition from a pre-Markov Partition to a Markov Partition

In this section we prove the following

Theorem. Let there be given a finite partition n, of the phase space M | such that

1) each element C; of n, is a polygon which is either adjacent or non-adjacent ;
all non-adjacent polygons are quadrilaterals and adjacent polygons are triangles,
quadrilaterals or pentagons;

2) FO9)> U S T0)> U 83
3) Tmr(s)(’?o)gr(s)(”lo)§ T~mr(“)(’70)gr(u)(’70)'
Then there exists a countable partition n, §=1,, such that

a,) each element of n is a parallelogram
a,) 1 is a Markov partition with respect to T™, i.e.

T CHPT™), T~"06) S 1T ")
for almost all x.

Proof of the theorem is given below. The property 3) was called the pre-
Markov property of a partition. The partition 5, constructed in Sect. 4 satisfies
conditions 1)-3). We shall use again the notation T, =T™.

The whole construction will have an inductive character. We put ny =17, and
suppose that partitions 7y <y#{ <...<#, are already constructed which have the
following properties :

1) there exists a closed neighbourhood 2™ of () S, consisting of elements
[kj=m

C,; of n such that 1|20 = \/ Tino|2{” and every element C,, C2{" is a

" ki<
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polygon; the set 2" is called the n-th necklace of | ) S,;
[kl =m
2) MM C .. .CP,
1
For every I, [<n, the set ) T¥@™ =g is called the n-th necklace of
k=0
S,

—mzk<im

We begin the construction of #,, ; with the definition of 2™,. For every
C,: CP we consider \/  T{n,|C, ..

|k|sn+1
If K is the total number of the elements of , then  \/ Tl"nolCﬁ consists of
|k|=n+1
not more than K? elements. It is easy to see that each of them is a connected set
and a polygon. The set of those elements of ~ \/ T1k?10|@f,'.') which are adjacent to
[kfsn+
U S, 18 by definition the (n+ 1)-th necklace of |J S, their union being

k| =m |k|=m

denoted by 2! ,. We also put

_ k
95."21_ \/ Tmol@f."i)l-

lklsn+1

4
ﬂn+1

Next we define for 1<I<n+1

+ 1 gy(m) kop(m) \ k 1
r’n+1(T1@n+1_ U T1@n"1rl)— T1’70’(T1@£z"21—

0<k<l —n+1-2<ks<n+1-+1 0<k<1
k ¢y (m)
Tlgn"-‘i-l)
and

+
nn+1

+
( -Ur wﬂn:

Thus 7,7, is completely defined.

We shall investigate in more detail properties of the sequence {#, }. It is easy to
see that 29" is contained in the (constA,"™e)-neighbourhood of | §,.
Therefore v(@f{"))g constA "¢ and k< m

min

n+1
(M- Y i, ).

min

v( T 9("’)) <const(n+1)A_""-
0<kZn+1

Lemma 5.1. T,I'%(n")cI'9n;),n=0,1, ...

Proof. For n=0 the statement of the lemma follows directly from the pre-Markov
property of n,=#ns. We assume that it is already proven for g <y <...<n,_,
and we shall prove it for 5.

Let I'8) Shw(n,7) be the union of decreasing boundaries of all polygons be-
longing to 2"™. It follows easily from the construction of #} that

I, ) CT m( \/ Tl"no) We have also

rOm =000 L T, (+)

II/\

k=n
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In view of our inductive assumption T,I"(,"_ ) CI'®)(n_,). Therefore

LAOm ) =T, Do ) TGO T ). ()

From the pre-Markov property of #, we have
TP L (n, ) C Ty T o) CT9(n0) CTn,)) (k%)
because 1, <#,". Now from (), (xx), (xx*) we get the desired result. Q.E.D.

Lemma 5.2. The connected components of elements C(n,") which are polygons, non-
adjacent to the set | | S, are quadrilaterals.

—m=k=<mn
Proof. It follows easily from the construction of #, that each connected
component of C(;)satisfying the assumption of Lemma 5.2 is a polygon whose
boundary consists of a finite number of increasing and decreasing curves.

We shall show that two components of the boundary of the same monotonicity
cannot intersect. Let us assume that this is not true and there exists a point
xedPnd) where 6%, 6§ are two decreasing curves which are parts of the
boundary of C(). We have the inclusion I'®(y,)STI'(T, "y,) which is an
immediate consequence of the construction. Therefore from Lemma 5.1

Tix=THOPN6Y) = T16P A T16§ S T¥(n)

which shows that I'¥(n,) must have two intersecting components of the same
monotonicity. But this is obviously wrong. Thus we have that the number of
smooth components of d(C(n,")) is necessarily even. Similar arguments can be
applied to 6$?NéY¥ in view of inclusion I'™(n,") CT“(TE™,).

Our considerations will have again an inductive character. Assume that the
statement of the lemma is already established for all ny <n; <...<p,". We shall
show that it is valid also for ,, ;. We must consider only two cases.

L IntC(n})NIntT" 19" 40 and C(y;) is non-adjacent to ) S,

—m=Zk<mn
We shall show that the common boundary of the sets U T'9™ |,
mn<l<m(n+1)
Cnh)— U T'9™, is a union of smooth increasing curves whose end-

mn<l<m(n+1)
points belong to I'(C(y,7)). Suppose that this is wrong and a component of the
boundary consists of several smooth components. None of these components can
be a decreasing curve because it contradicts the pre-Markov property of n,7, ;.
This means that all the components are increasing curves. But this is also
impossible in view of the arguments given in the beginning of this proof. As a
result we get that the common boundary of the sets C(n,)— U T'9™

mn<l<m(n+1)

T'9™ , consists of increasing curves. The end-points of these curves
mn<l<m(n+1)

belong to I ©(C(n,)) because of pre-Markov property of #,". Thus we see that
C(,n U T'2™  is a finite number of strips and connected components

mn<l<m(n+1)

of C(n,1)— (J  T'2™, are quadrilaterals.

mn<l<m(n+1)
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n—1
2. Cy,hH< 1Uo TH(D™ , —2™) is a non-adjacent element of 7, .

The construction of n,7 shows that it is sufficient to consider only non-adjacent
elements belonging to 2™, — 2. We can represent such C(y,7)C 2% in the form

CnH=T'C,noInT,C, where C,, C,, D are elements of \/ Ty, and

[kl sh—1

2 CP™ | is an element of 5, ;. We also point out that the partition \/ T¥y,
[klsn—1

has the pre-Markov property and C(x,’) is a polygon whose boundary has an even

number of smooth components. The last statement has in fact been proven earlier.

Assume now that A=2nT,C, is a polygon which is non-adjacent to the set
(J S, We shall show that it is a quadrilateral. Let us consider the polygon

—m=k<mn

T,C,. Some components of its increasing boundary can belongto ) S,. But
O0<k=<mn

the increasing components whose parts belong also to the boundary of A4 differ
from them because A4 in non-adjacent. We shall now show that parts of at least two
increasing components of T, C, are smooth components of the boundary of 4. If
none of them has this property then it means that the increasing part of 04 lies

inside T, C,. But it contradicts the pre-Markov property of \/ Tkn,. If only one

kl=n

of them has this property then again we have a contradlctlon to the pre-Markov
property of \/ Tk, because the total number of increasing components of the
[kl

boundary of A 1s not less than two and therefore at least one of them lies inside
T,C,.

Thus we have at least two increasing components of the boundary of T,C,
intersecting . If A is not a quadrilateral then at least two increasing components
of the boundary of A4 are also increasing components of &. But in view of the pre-

Markov property of \/ Tk, it is possible only in case 2=T,C, because

otherwise increasing components of 4 will lie inside T,C,.
If 2=T,C, then 9 is a polygon which is non-adjacent to (J S, This
—m=<k=<mn
means that & cannot belong to the n-th necklace of | ) S,. Asa result we get that
KZm
A has only two increasing components and therefore it is a quadrilateral.

The intersection T} 'C,;NA can be treated in the same way. If A=2nT,C,
is not a non-adjacent polygon then the same arguments applied to
T, 'CinZnT,C, will yield the desired result. Q.E.D.

Taking everywhere T, ! instead of T, we can construct in the same way the
partitions ny=#n, <n;{ <...=#, for which the same lemmas are valid.

Lemma5.1". T, I )T ), n=0,1,....

Lemma 5.2'. Connected components of elements C(y, ) which are polygons, non-
adjacent to \U S, are quadrilaterals.

—mn<k<m

We also point out that the necklaces 2™ coincide for both sequences of
partitions. We shall introduce now the notion of rank for non-adjacent elements of
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the partitions #,". If C(y7) is a non-adjacent element of 7 then by definition its
rank is equal to zero. Elements of 7] belonging to 2% — 2™ have a rank equal to
one. Other non-adjacent elements of #; have a rank equal to the rank of the
containing element of 5. In the general case we put the rank of an element of 5,7
belonging to 2™, — 9™ equal to n. The rank of an element of 5, belonging to

1—1 -1
(Ti@f,'"_) — U T’f@ﬁ,"‘_’J—(Ti@f,""— U T’f@f{'”) is equal by definition to n—I,
k=1 k=1
1 £1<n. By definition the rank of every non-adjacent element of »,/ which is con-
tained in a non-adjacent element of 5,7, is equal to the rank of this element of
Mot
In the same way we can define ranks of elements of n,". Let us put n,=#," v, .
If C(n,)=C,(n5)NC,(n,) then we put r, (C(n,), r_(C(n,) to be equal to the
ranks of C,(n,)), C,(n,) correspondingly. It is easy to see that #, has the pre-
Markov property.
Lemma 5.3. Let C(,)=C,(n)nC,(n, ) be such that C,(n,") and C,(n,’) are non-
adjacent elements of u,7, n, correspondingly. If r (C(n,))=k, r_(C(y,))=1 then 1)
I'(T,C(y)SI'(C'(n,_,)) where either r . (C'(n,_,))=k—1or C'(n,_,) is polygon
adjacent to U Sy 2) T(T7'C(n,)CI*(C"(n,_,)) where either

mn—k—1)Z<ps<m(n—k)

r_(C"(n,-)=1—1o0r C"(y,_,) is a polygon adjacent to U S

min—k—1)Zp<min—l)

The proof follows directly from the definitions.
Corollary. In conditions of Lemma 5.3

F(TEC,) CI(C (o), T(T'C0,) CT™(Cy(no)) -

Let = \/ 1, We shall show that % is a Markov partition whose elements are

parallelograms and satisfies all assertions of theorem.

First we remark that it follows easily from the construction that each element
C(n) has +-ranks. Indeed every element C(y) can be represented as
Cin)=Cn,)nCH,.)N... where C(y,) is a non-adjacent element of ¥, and
Fo(C1)) =1 (Clys )= r_(Cl1,))=r _(C(n,, )= ... and do not depend on .
Therefore we can put v (C(y))=r,.(C(n,)), ¥ _(C(n)) =r_(C(n,)). Let M, . (M, _) be
the set of C(y) for which r_(C(n))=k (r_(C(n))=k).

Lemma 5.4. For sufficiently large k and some o, 0<a <1,

WM, ), (M, _)Sd.

Proof. Let II, be the union of all elements of n, adjacentto | ] S, v(I1,) =8,

—m=<k=<mn
It is obvious from the construction that v(M, ,)=<v(II,). From the contractive
properties of T it follows that

V( U Tf@ﬁ")) SAninBi-1-
0ssZk—1
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In view of the measure preserving property of T, we have

TGP S Ay -

min

From the construction it follows that IT,= | ) T2,
O0<s=<k

So we obtain

V(Mk, HE24,0B -
This inequality can likewise be proved for the set M, _. Q.E.D.

We denote by k, a minimal natural number for which v(M, ,)>0,
(M, _)>0.

Lemma 5.5. # is a countable partition.

Proof. It is sufficient to prove the assertion of lemma for partition n* = \/#,". Let
n
us put 0, =v(2™), vn-——v( U T{‘@f{”’). It is easy to see that Y v,<oco. We shall
O0<k=n n
give an abstract version of the assertion which we need.

Suppose that we have a sequence of finite partitions £, <¢,<...<¢,<... ofa
measure space (M, 2, v) and a measure-preserving transformation T, with the
following properties: for each n there exists a set &, of elements of ¢, such that
if #,= |) T2, then Z,

O0<kzn

=, (M, —Z,). We shall show that \/¢, is a countable partition provided

Y WF,)< .
In order to show the last statement we put &,= | ) %, and M,,=M,—é,.

kzn

Then M, ~&, consists obviously of elements of the partition \/¢&,, ¢, M,

consists of elements of &, ., and &,,,|(M,—~%,)

=¢ M, foralln, znand \/ & [M,,=¢&IM,, Thus \/ &, M, for all n, 2n is

nizn ny
equal to &,|M,. But &, M, is a finite partition. From our conditions it follows that
v(&,)—0.
The statement of the lemma for {5} is a particular case of this general
assertion and therefore n* =\/#%,; is a countable partition. In the same way
n

n~=\/n, is also a countable partition. Therefore n=n" v 5~ is also a countable

partition. Q.E.D.

Lemma 5.6. 7 is a Markov partition.

Proof. We must show only that every element of # is a parallelogram. Let xe C(y),
ro=r (Cm), r_=r_(C@x), Cln)=CH*)NC@H™). It follows from the construction
that C(n")CC(n,), r.(C(n))=r, for all sufficiently large n. Let k be equal to the
minimum of all such n. It is easy to see that k=[57, ]. From Lemma 5.2 C(n,) is a
quadrilateral. Therefore it is sufficient to show that if y*)(x) is a maximal smooth
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unstable transversal curve for x then y®(x) intersects both components of the
boundary I'®(C(n,")).

If it were wrong then y*(x) would intersect I'™(C(n,")) or I'*(C(n,)) for some
s>k and xe C(n)CC(n,}). We have seen above during the proof of Lemma 5.2
that C(n,")— C(n;5) consisted of a finite number of strips whose stable boundaries
belonged to I'Y(C(n,”)). Let y{°(x) be the connected component of y™(x), xey$(x)
and at least one of the end-points of y{(x) belongs to I'(C(n,")). The curve y%(x)
cut the connected component of C(y,) containing x into two parts which we
denote by 4 and B. We remark now that C(n;")— C(y) is a union of an infinite
number of similar strips as above and this union is everywhere dense in C(y."). It
means that infinitely many strips will intersect y{(x) and therefore y{(x) will
intersect at infinitely many points the set U S, But this is impossible

sm+1=k<o
because the inner part of y{(x) cannot contain the points of U S, because
sm+1sSk<ow
every intersection makes a break of the derivative of y{)(x) which contradicts the
smoothness of y§’(x).
The same arguments show that y)(x) intersects both components of I'“(C(;))
and therefore C(n)=C,(n")nC,(n~) are parallelograms. Q.E.D.

6. Symbolic Dynamics and Other Properties of the Partition 5

Let 5 be the Markov partition constructed in the preceeding section. We label the
elements of C(y) by natural numbers, i.e. C{n)=C,, i=1. The +-ranks become the
functions of i which we denote by r_ (i), ¥ _(i). We can choose the labelling in such a
way that r (i) 27, (i,) if i, 2 i,. ¥, £* are the measurable partitions of M, whose
elements are maximal regular ls.t.f and lLutf y9(x), y*(x), 4= vy,
N =EW vy, A parallelogram C is u-embedded in a parallelogram % if CC 2 and
for every xe C we have y%(x)=7%(x). In an analogous way one can introduce the
notion of s-embedding.

The content of this section is similar in many respects to the corresponding
parts of [2, 3]. Therefore we shall omit some details in the proofs which are the
same as in [2, 3].

If ¢ in the construction of #, is small enough then an infinite product

N T7C; (n) cannot consists of more than one point. If it consists of one point then
— 00

all intersections C; (n)NT,C,  (7)=+0, — o0 <s<oo. The inverse assertion is also

Is+1

true: suppose that for a sequence of elements C, () all w(C, () T,C,_, (7)>0;
then the product () TC; (n)#0. The usual proof (see [2, 3]) is based upon the

canonical isomorphism between different y{,7$ C C,() and can be applied in our
case too. Therefore let us introduce the matrix of intersections IT=|x;;[| where
n;;=11if v(C;NT;C;)>0 and 0 otherwise. We construct the space 2 of sequences
O={. 0y Oy ooy 0y}, 0;=1,2,.. and 7, , =1, —co<n<oo. If we
introduce discrete topology in the space of natural numbers then @, will become a
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topological space with the topology of the direct product of topological spaces.
The space Q; is invariant under the shift T, in Q.

As in [2,3] we define the mappings ¢ : Q;— M putting p(w)= () 17C, (). It

follows from the Markov properties of # that ¢ is defined everywhere on Q.

Lemma 6.1. The mapping ¢ is one-to-one mapping of ,; onto its image. The image
©(Qyp) is a subset of M, of full measure. The inverse mapping ¢~ is continuous.

Proof of Lemma 6.1 is the same as the proof of the Theorem 3.1 in [2].

Using ¢ one can introduce the induced measure v, on ;; via the formula v,(C)
=v(¢(C)). From Lemma 6.1 it follows that ¢ is an isomorphism of measure spaces
(M, 2, v) and (Qp, Ay, v) where N, is the completion of the Borel o-algebra of
Qp using v, It follows from the relation ¢ T, = T;¢ that Ty preserves the measure
Vo

The triple (Q, Ay, v,) is called a symbolic representation of the initial
(M, %, v). The rest of this section is devoted to the analysis of properties of the
measure space (2, Wy, vo). It is based upon two facts.

1. Let us introduce measurable partitions (¥, {~ of Q, where an element
C.+(C,-) is defined by a semi-infinite subsequence wg,wy,...,q,, ...
(...v_,, ..., 0_;,,) and consists of all w which have this subsequence on
corresponding places. An element of {*({™) containing we Q;; will be denoted by
Cri(w) (Cp-(w). If weC,Cp- and p(w)=xeM; then ¢(C,.(w))=C, w(x),
P(C,- () = C,ol)

2. Let o={w,;}, —oo<i<oo, r (w)=r.(C,).

If r(w)=k>ky r_(w)=k>k, then from Lemma 53 r (w,_,)=k—1,
"—(a)i+1)=l€_1~

Lemma 6.2. There exists a constant o, 0<o, <1, such that for all sufficiently
large v

Vo017 (@) ZNE L, Vol (g2 ) S0

The statement of the lemma is a reformulation of Lemma 5.4.
Let A4, ,, be the set of all C;=C(x) such that r () <n, r_()<n,.

Lemma 6.3. There exists a constant k=k(n,,n,) with the following property: if C, .,
e C(n)CA,, . then v(CilTl"C"(u,)>O for every C,CA The same statement is true
for n®.

The proof follows easily from the fact that n*, #® are K-partitions for T,
[1,6]. The next lemma estimates the growth of k(n,,n,).

nyny nyna’

Lemma 6.4. There exists a constant k, such that

k(n;,ny)=2ky+n, +n,.



276 L. A. Bunimovich and Ya. G. Sinai

Proof. Let v =minr (i), r_ =minr_(i), ky=k(r,r_). If C{(n) is an element of

then it follows from the construction of # that for some s

Py rot

ro()—r ss=r. (), chi(i’])CCj(T’])CA

The parallelogram T;{C(y) is u-embedded in C,(n) due to the Markov properties
of . For the same reason T}7*C()nC,(n) is a parallelogram of positive mea-
sure u-embedded in C,(n) for every C,(n)€A,, , . In the same way for an
arbitrary C,imcAa one can find s, r_(i;))—r_=<s,=r_(i;) such that

T %€, (17)CC (mEA,, .. The parallelogram T, C;(#) is s-embedded in
C () due to the Markov properties of #. Therefore v(Ty *:C; (1)

T”""C (m)>0, ie. WC, (MNT;****C)>0. But it follows from the fact
that C, (1), C(n) are parallelograms that w(C, (1)] Ts‘+k°Cn(.,))>0. Q.E.D.

Our next task is to investigate one-sided conditional probabilities
Volwglw_y, ...,w_,, ...) existing with v,-probability one. In case of Markov chains
of finite memory this probability depends only on a finite number of coordinates.
We shall show that in our case these conditional probabilities can be in a sense
very well approximated by probabilities with finite memory. Taking constants
0ygy On1sUpay 0<y0,0,,,0,, <1 we introduce the sets:

nl ny

U, ={x:dist(x,S,) <%},
V,={x:T¢U,,m=[n">],lkl<n and TxeU, for [i|>n},
={x v(V,|Cyox))>1— O‘zl/z .

It is clear that W, consists of elements of 7.

Lemma 6.5. Let C,- ,Cg;correspond L0 gy g5 @y 5@y O gy

Oy D gy ooy Oy, @ 07y, ... and Cy,Cl-e@™Y(W,). Then one can chose
On0s Oy, Uyy and o,, 0<o, <1, in such a way that

ZIV(wllC’ )= W@, |Ci-) <oy

The proof of the lemma is based on properties of the canonical isomorphism of
different Cj), C») lying in the same element of the Markov partition 1. The
canonical isomorphism (see [2, 5]) transforms the conditional measure on Cj,
induced by v into a measure which is absolutely continuous with respect to the
analogous conditional measure on C,,. For C,, Cy e W, the corresponding
Jacobian differs from one by a number whose modulo is no more than o} for some
o4, 0<ay <1, for points belonging to V,. Indeed, it can easily be estimated on the
basis of the formula for the Jacobian (see [5]). The last statement is equivalent to
the assertion of Lemma 6.5. In terminology of statistical mechanics Lemma 6.5
shows that the potential —Inv,(w,|wy, @_,, ...) for which v, can be considered as
a limit Gibbs state (see [8]) is of a short-range character. Further we assume that
Oy00 0a1, Uy, 0 are chosen in such a way that Lemma 6.5 is valid.
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The last property which we shall consider is an analogy of the so-called
Doeblin’s condition in the theory of usual Markov chains. Let us introduce
conditional probabilities

T (@31 15 > D) = VD34 15 005 DO 4 s e, 0), Ty (W 3 45 - D)

— 1" "
=V O34 15 o> Dl O s 15 -5 D)

We have the probability distributions 7,, 7, on the space of words w,,, ;,...,®,
under different conditions w’_,, ;,...,0, and 0”4, ..., @g.

n

Lemma 6.6. Suppose that r (w)=n, v (w])=n, 1=<i<n. Then there exists a
constant o, 0<o, <1, such that for all large enough n

Var(n,,m,)=3% > 70 ( @34 1 s D) = Top(@3 4 15 e or D) <Ol

Proof consists of three steps.
1. It follows from the construction of # that there exists a finite collection of

elements of # A=(C,(y), ..., C,,()) such that for every C(y)¢ @1 Ci{n) TC() is

another element of .

Let us consider two C,), Cy) CCy(n) for some i, 1 <i<m. They are canonically
isomorphic because C,(y) is a parallelogram. The induced conditional distributions
are equivalent and the corresponding density depends on expansion coefficients
along the semi-trajectories (see [ 5] where one can find an exact expression for the
density in case of Anosov systems ; the same expression is valid in our case too). It
means that for every d, 1 <d < oo, one can find a parallelogram 2,CC,(), 1 <i<m,
which is u-embedded in C(y) such that w(2,)=(1—d~ ') v(C{(n)) and the restriction
of the density to 2,nC, is contained between d~' and d uniformly over

wisn Crisrr Thus WP |C, ) 27, >0 for all C,,, C C(n) where y, =7y,(d) depend on d.
Using the language of symbolic dynamics one can say that

i< Vol @ @ 4 15 s | Cr- V™ H(D)))
T V(0 D1 15 - 0| CL- 00T HDY)

<d

for arbitrary k,I,k<I. Here C;- =9~ 1(Cy), Ci-=¢ (Cy»). It is also obvious
that one can take as a condition ¢ ~'(2,) instead of C,-n¢~1(Z,) and the same
inequalities will be valid.

2. Let C,,CC(n) and r,(C(n))=n. We shall show that one can find [, <3n
and o, 0 <oy <1, not depending on n such that for all [>1

W(T{ CmICy0)=v(CmI T lC,,(s)) 2as, 1sism.

Indeed from Lemma 6.4 one can find [, =2n+k,, for which Tl‘“Cn(s) =CCCyfn)
for some i, 1 <i<m. Let be [=[,>1, and [,—[, be large enough. We have

V(Tllcj(n)lcy,m) = V(Tf - llcj(ﬂ)l 1 I‘C,,m) = V(Tll _"Cj(r,)m@JC;’(S,)
>d" (T C D).
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Because T is mixing w(T{ ~"Cn)|2,) = 3 W(C,(n)). Also for all 121,

I d=?
WT{ECIT ™ C o) 2d U TIC ) 2) 2 S5~ min w(C ).

1

Putting a5 =%d~? min v(C (1)) we get the desired inequality.

1<j<Em
4n
3. Let B be a set of the form (7} T{C, (n). We have
i=3n+1

V=Var(n,m,)=)" (v(B

;fc(,,im))w(B ] ;fcw,(n))),

where ) * here and further means that the summation is taken over positive terms.
We can write

v=3" [ [ WBICw v~ f v(B[C;;(S,)dv”:l,

n—1 n—1
ChaC (Y T7'C0) ClinC () T Cl)
=0 =0

-1 n—1 X
where dv', dv” are normed measures on C;, C ﬂ T, 'C,,, (), CroC () Ty 'C el
respectlvely Further =0

;(s)> v’

+ [ X" DBICWNT"D) - WT"D |Cw) =/BICiy N Ti"D)
ﬂT ‘Coil) ﬂT ity >

9 ) V(B‘(Ml - O TE"Q;’) mC;,(s)> : v(<M1 - C) T13"@i>
B '_'Ole‘Cw;(n) i=1 i=1

: V( T13n@j|cg(s))] dv' dv' = v(( U 3n@ )
i= i=0

;icw,(r,))

o0 T EBIGWn T WT | C)
N1 Coln) (VT Copln 7
1=0 =0

WBICHN T'D) WTF"D, |C"m)} i iy
V(Blc,,mm T3n@) W12 AChe)

We remark that  V(B|Cpon T2 ) =W(T; *"B|Z;n T *"Cy).  The  set

CmNT; > Cyy is a finite union of some C,,(s) The set @ JmT 3"C,,(,) is the same

union of &, mC s The same statement is valid for C T 3"C”(s) Now it follows

from 1° that

V(BIC) TP ) 2d™ WBIC,wnT"D).
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Also from 1° and 2° W12 |Cy)/W(TY" D | Crie)) Z o5y =7,. Therefore

WBICWNTG) WTD |Cye)
VBI|Cy N T"D ;) WT7"D | Cry)

é 1 _yzd_ !
and

ng(Ml— U 122,
i=1

n—1 .
iOO Tl_icw{(n)) +(1 _?2d~1)(1—V(M1 - U Tf"@i\

i=1

n—1 m
N rcsm))i-ra (1= 0 1,

0, 1Cum))

m n—1
But it follows easily from 2° that v (M — U T N Tl“'Cw,(n)>§y3 where
i=1 i=0 !

y;—0 as d— oo. Therefore the last expression is uniformly less than 1. Q.E.D.

7. Concluding Remarks

1°. We shall describe a more general case to which the whole construction can be
applied. Suppose that we have an infinite configuration of convex non-overlapping
scatterers on the plane R? such that

1) the curvature of the boundary of each domain is continuous and bounded
from above and from below by some positive constants;

2) the length of an arbitrary straight segment which does not intersect any of
the scatterers is bounded from above and from below by some positive constants;

Let us consider the motion of a single particle between the scatterers with elastic
reflections from the scatterers. We denote by M{ the set of x=(q,v) where ¢ is a
point of the boundary of the i-th scatterer, v is the velocity vector directed outside

the scatterer. We put M, = | ] M) and consider the transformation T:M,—>M,

generated by the motion of the particle. The transformation T preserves the
infinite measure v whose restriction to M{) takes the form dv=dq d¢ cos¢.

One can introduce the definition of Markov partition in the same way as in
Definition 1. Our construction can be performed without any changes under
assumptions 1), 2). This gives the existence of a Markov partition in this case too.
The properties of this partition can be investigated in the same way as in Sect. 6.

2°. Let o be the transformation of M| which is induced by the involution in the
phase space M which is generated by changing v into —uv. It is easy to see that the

set of discontinuity curves [ ] S, is invariant under o. One can easily modify the
[Kl=m
construction of the Markov partition in such a way that it will be also invariant

under o.

Acknowledgements. Ja. B. Pesin, A. Kramli, and D. Szasz have read the whole text and made many
useful remarks. We express our sincere gratitude to them.



280 L. A. Bunimovich and Ya. G. Sinai

References

1. Sinai,Ya.G.: Russ. Math. Survey 25, 137-189 (1970)

2. Sinai,Ya.G.: Funct. Anal. Appl. 2, 64-89 (1968); 2, 70-80 (1968)

3. Bowen, R.: Equilibrium states and ergodic theory of Anosov diffeomorphisms. In: Lecture notes in
mathematics, Vol. 470, p. 108. Berlin, Heidelberg, New York: Springer 1975

4. Ruelle, D.: Thermodynamic formalism, p. 180. New York: Addison-Wesley 1978

5. Anosov, D.V,, Sinai, Ja.G.: Russ. Math. Survey 22, 103-167 (1967)

6. Gallavotti, G.: Lectures on billiards. In: Lecture notes in physics, Vol. 38, pp. 236-296. Berlin,
Heidelberg, New York: Springer 1975

7. Keller, G.: Diplomarbeit, p. 203. Erlangen (1977)

8. Sinai,Ya.G.: Theory of phase transitions. Rigorous results, p. 160. Moscow: Nauka 1980

Communicated by A. Jaffe

Received April 29, 1980





