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Abstract. For the model of ^-interaction the postulates of the renormali-
zation group are stated within the abstract approach of quantum field theory.
In the massive case these postulates follow if an on-shell formulation of the
model is assumed to exist. For the massless model the postulates of the
renormalization group imply that the propagator has a pole at momentum
zero. Consequently there is no dynamic mass generation and the propagator is
normalizable on the mass shell. It is shown that the 5-matrix elements scale
with canonical dimensions. A general method of rescaling parameter values is
developed which takes into account the possibility of propagator zeros and
stationary points of the effective coupling.

1. Introduction

Originally the renormalization group was introduced by Petermann and
Stueckelberg within the framework of the perturbative treatment of Lagrangian
field theory [1]. The work of Gell-Mann and Low, as well as Bogoliubov and
Shirkov, has made evident that the concept of the renormalization group goes far
beyond perturbation theory [2, 3], Consequences for the infrared and ultraviolet
behavior of Green's functions were derived which correspond to summing up
contributions from all orders of perturbation theory. The results obtained modify
or sometimes even contradict the approximative statements of perturbation
theory. In recent years renormalization group properties have been extensively
studied further [4-19]. In particular, new powerful methods were developed by
Callan and Symanzik [6, 7]. Among the many important conclusions of the
renormalization group approach the most remarkable one is perhaps the phenom-
enon of asymptotic freedom which has had an enormous impact on our
understanding of elementary particle interactions [17-19].

The purpose of this and a forthcoming paper is to set up the renormalization
group within the abstract approach of quantum field theory, independent of
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perturbation theory and without reference to an ultraviolet cut-off. In addition to
the usual postulates of abstract field theory* some general information is taken
from Lagrangian field theory concerning the existence and uniqueness of solutions
for the model considered. Perturbation theory is only used where applicable,
namely in connection with the asymptotic behavior of Green's functions in the
small coupling limit.

In this first paper the model of a neutral scalar field A(x] with quartic
interaction will be studied. The renormalization group will be defined as the group
of all equivalence transformations

A(x)^z1/2A(x), z>0, (1.1)

which multiply a field operator by a finite positive number. Obviously, such
transformations have no other effect than changing the normalization of the field.
The concept of the renormalization group thus merely reflects the arbitrariness in
normalizing quantized field operators.

For the massive model a uniquely distinguished normalization of A(x) is
suggested by the asymptotic behavior of the system in scattering processes.
According to the Haag-Ruelle scattering theory A(x) approaches asymptotic fields
^4in(x), ^outM f°r ^o^ i °° [23, 24]. The field operator ^4(x) is then normalized on
mass shell by applying the standard normalization of a free quantized field to the
incoming field operator. This is equivalent to requiring that the residue of the
propagator pole equals its free field value. Under this normalization condition it
will be postulated that field operators A(x, g, m) exist which describe the model for
given renormalized mass m > 0 and suitably defined coupling constant g below an
appropriate bound. A(x, g, m) corresponds to the conventional perturbative expan-
sion. The precise connection to perturbation theory is made by requiring that the
derivatives of the time-ordered Green's functions with respect to g at g = 0 coincide
with the corresponding expressions of the respective expansions2.

For discussing the limit of vanishing mass the on-shell normalization is not
appropriate since it may cause an infrared singular behavior of the Green's
functions for m->0. The field operator should therefore be normalized off-shell
employing a normalization mass κ2<0. Moreover, the symmetry point of the
vertex function defining the coupling constant should be chosen off the mass shell.
By suitable redefinition of field operator and coupling constant it will be verified
that such an off-shell formulation of the massive model is always possible. The
properties of the renormalization group then follow in the form of statements on
the existence and uniqueness of the field operator for given mass m, coupling
constant g and normalization mass K. This implies the differential equation of the
renormalization group in their standard form [4, 8].

The derivation of the renormalization group properties thus obtained is similar
to the approach chosen by Wilson in his presentation of the Gell-Mann Low

1 For the formulation of the postulates of abstract quantum field theory see the monographs
[20-22]
2 This requirement excludes solutions of the model which are not linked to the perturbative
expansion in the weak coupling limit. An example of such a solution has been given by McCoy and Wu
for the massless Thirring model [25]. It is of particular interest that this solution shows the
phenomenon of mass generation
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analysis of quantum electrodynamics [10]. Starting point in Wilson's work is the
conventional renormalization scheme of quantum electrodynamics from which an
off-shell formulation is constructed which remains valid in the limit of vanishing
electron mass. Renormalization group properties then hold for the off-shell
formulation which imply the Gell-Mann Low equation of the photon propagator.

For the massless ,44-model it would not be justified a priori to normalize the
field operator on the mass shell. For asymptotic fields cannot be defined in the
perturbative treatment since the propagator develops a singularity of the form

Therefore, the renormalization group properties of the off-shell formulation are
postulated for the massless model - by analogy to the massive case in which these
properties can be proved. No assumption on the position of the propagator
singularity is made since this would not be independent from the other postulates.
The absence of an intrinsic mass is indicated by the scaling relations which express
the fact that the normalization mass is the only dimensional parameter of the
model.

On the basis of these postulates it will be proved that the propagator of the
massless model is singular at momentum zero. Therefore, massless modes must be
present. Spontaneous mass generation is thus ruled out for solutions of the
massless ^4-model which satisfy the postulates of the renormalization group3.
This is a special case of a general phenomenon found by Gross and Neveu for
infrared stable massless models with one coupling constant [26]. Moreover,
Symanzik's result follows that this singularity of the propagator must be a pole
with a cut also starting at momentum zero3. Hence the exact propagator does not
suffer from the infrared problems present in perturbation theory. Accordingly the
field operator may be normalized on-shell and an S-matrix can be defined. It will
be shown that as a consequence the S-matrix elements satisfy Callan-Symanzik
equations with no anomaly of the dimension. This confirms a result by Gross and
Wess [27, 28] that 5-matrix elements of massless models - if they exist - always
have canonical dimensions.

In a general treatment of the renormalization group two complications arise
which are not present in perturbation theory. The first one concerns the
uniqueness of field operators for given parameter values. For massless models with
one coupling constant it was shown in [29] that extrema of the effective coupling
are compatible with the requirements of the renormalization group. In this case
the quantities of the system become multivalued functions of the coupling
constant. The extremal values of the effective coupling are zeros of β at which β~ 1

is still integrable. An example of a model showing such behavior was given in [30].
In the present paper it will be discussed for the ,44-model that a similar
phenomenon may already occur in the on-shell formulation of a massive theory.
The reason is that the functional defining the renormalized coupling constant may
have extrema in terms of another parametrization. In such a situation distinct field

3 These statements would not apply to solutions of the model which are not related to conventional
perturbation theory in the weak coupling limit (see footnote 2 and [25])
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operators exist with equal parameter values g and K. In view of this the uniqueness
postulates of the renormalization group should only be formulated locally for field
operators of sufficiently weak coupling. By applying equivalence transformations
(1.1) the field operator of the massless model can then be constructed as a
(multivalued) function of g and K for the full range between the weak coupling limit
and the first ultraviolet fix point.

Another complication arises if the propagator becomes negative in part of the
Euclidean region due to subtractions of the Lehmann representation. For negative
values the propagator cannot be normalized in the conventional manner.
Appropriate modifications of the normalization procedure will therefore be
proposed.

In Sect. 2 the renormalization group properties of the massive ^44-model are
derived from the assumption that solutions of the model exist which can be
normalized on the mass shell. For the massless model the postulates of the
renormalization group are stated in Sect. 3 and used for proving some general
consequences. Applications to the propagator and the effective coupling are made
in Sect. 4. It is shown that the propagator and the effective coupling are made in
Sect. 4. It is shown that the propagator of the massless model has a pole at
momentum zero so that mass generation cannot take place. A general method of
rescaling parameter values in the presence of propagator zeros and stationary
points of the effective coupling is given in Sect. 5. In Sect. 6 some comments on the
ultraviolet limit are made. In conclusion it is shown that the S-matrix elements of
the massless models scale with canonical dimensions (Sect. 7).

2. Massive Model of ,4 4-Coupling

In this section we consider the model of a hermitean scalar field A with
.44-coupling describing the interaction of massive neutral particles of spin zero.
The discussion of the massless case will be postponed until the following section.
The model will be considered for values of a renormalized coupling constant g0

and mass m from a domain

(2.2)

with suitable bounds η0 and m + . η0 and/or m+ may be + oo. It is assumed that for
given parameter values g0 and m from the domain (2.1-2) a field operator

A = A(v9?09»t2) (2.3)

exists which describes the model of ,44-coupling and satisfies the conditions

-ί(k2-m2)Δ'F(k2,g0,m
2}=l at k2 = m2 (2.4)

)=-ig0 (2.5)

for the propagator Δ'F and the four-point vertex function Γ. /c°, ...,&£ denote a
choice of constant vectors on the mass shell k®2 = m2. The conventional symmetry
point with

k°2 = m 2 , (fcp + fc^fm2, ίΦ;, (2.6)
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may for instance be taken provided the vertex function can be continued
analytically to this point. In the limit of small coupling the operator A(x,g0,m

2)
should yield the perturbative expansion of the Lagrangian formalism which is
invariant under the reflection A-+ — A. A precise formulation of this connection to
perturbation theory will be given below in terms of time-ordered Green's
functions4.

The usual postulates of quantum field theory, such as Lorentz invariance,
locality, spectrum conditions, etc. are supposed to hold for the field operator
[20-22]. The Wightman functions should satisfy the scaling relations of dimen-
sional analysis

= a"W(ax1, ...,axn,^f0,m2), (2.7)

which express the fact that the dimensionless quantity m~nW only depends on
dimensionless variables.

In this section it will be assumed that in momentum space time-ordered
functions τ can be constructed from Wightman functions W without subtractions.
The Lehmann representation of the propagator then does not require sub-
tractions. This assumption is not essential and is only made in order to simplify the
discussion of the present section.

We now state more precisely how the field operators A(x, g, m) are related to
standard perturbation theory. In the Lagrangian formulation of the massive
,44-model the expansions of the time-ordered Green's functions with respect to
powers of g0 are uniquely determined by the normalization conditions (2.4-6). The
operators A(x,g,m) are assumed to exist with the property that the conditions
(2.4-6) hold and that the derivatives of their time-ordered vacuum expectation
values with respect to g0 coincide at g0 = 0 with the corresponding perturbative
expressions of the Lagrangian formulation.

The scaling relation (2.7) implies that the model can be extended from (2.2) to
any positive value m > 0 of the mass so that the domain of admissible parameter
values becomes

0^00<J7o, m>0. (2.8)

The restriction on the coupling constant may be essential for the existence of a
solution A(x,g0,m

2} since the admissible values of g0 must belong to the range of
values which the vertex function can assume at the chosen reference point.
Examples for such a situation will be provided by the following discussion.

For the model considered there is no unique choice for the definition of the
renormalized coupling constant. In principle, a coupling constant G could be
defined by any finite functional Φ(A) of the field operator provided it is
continuously differentiable as a function of g0 and behaves like

(2.9)

4 We do not consider solutions with spontaneous breaking of the reflection symmetry A-* — A. The
existence of such solutions has not yet been established rigorously in perturbation theory. I am grateful
to Dr. Becchi for a discussion of this point
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for small values of 00. The new coupling constant G is then defined by requiring

Φ(A) = G. (2.10)

A'(x, G, m2) denotes the field operator determined by the normalization conditions
(2.4) and (2.10). G is a function of the original coupling parameter gQ

2 ) , (2.11)

which can be inverted

00 = 00(6) (2.12)

in an interval 0:gg0<C since

^ = 1 at 9o = 0. (2.13)
°9o

In this interval

A'(x, G(00), m2) = A(x, g0, m
2} .

At some value of g0 the function G may have a maximum. Then g0 is not uniquely
determined for given G so that the model admits distinct field operators with
identical normalization conditions (2.4) and (2.10). On the other hand (2.4) with the
new condition (2.19) may permit a larger range

O^G<ηf (2.14)

for a unique parametrization of the field operator. If g(G) has extrema in this
region the model admits distinct field operators with identical normalization
conditions of the conventional type (2.4-6). Let

G 1 <G 2 <.. .<G α (2.15)

be the positions of the extrema of g0(G) in (2.14). In terms of gQ the field operator
may be parametrized by different branches

A(x, 00, 0, m2) - A'(x, G, m2) , 0 ̂  G ̂  Gv

(2.16)

A(x, 00, α + 1, m2) - A'(x, G, m2) ,

In this notation (2.3) represents the branch 7 = 0. The bound η0 of (2.1) must be
chosen less or equal to G1? the position of the first maximum.

The normalization condition (2.4) states that the propagator — iΔ'F has a pole
at k2 — m2 with residue one. This normalization on mass shell is the natural choice
from the view point of scattering theory since then the field asymptotically
approaches the conventional incoming and outgoing fields. For the discussion of
the limit w->0, however, the normalization on mass shell is problematic. In
perturbation theory the propagator and the vertex function develop logarithmic
singularities near the mass shell for w->0. For this reason the possibility of
normalizing the field operator off-shell will now be studied, at first for the massive
case m > 0.
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A transformation of the form

A'(x)-*A"(x) = zll2A'(x), z>0 (2.17)

will be called an equivalence transformation. It is trivial in the sense that it only
changes the normalization of the field by a finite positive factor. The re-
normalization group is defined as the group of all equivalence transformations.

We now apply an equivalence transformation to the field operator (2.3) or
(2.16)

or z>0. (2.18)

Let ̂  denote the family of all operators which can be obtained this way. In the
work that follows some properties of the family ̂  will be derived. First we try to
define the coupling constant by an expression which is invariant under the
renormalization group. We observe that the quantity

4

F(k1.../c4)-i Π /-i^-ro2)^.)/^!".^) (2.19)
j = ι

is an invariant of the renormalization group. According to Wu the connected time-
ordered functions with more than two coordinates can be expanded in the form

[31]

,9...9 kj . (2.20)

Here F is given by Wu's renormalized version of the skeleton expansion as a
functional of (2.19) alone. The function (2.19) may therefore be considered as a
measure for the strength of interaction. Now we define the effective coupling Q as a
function of k2 by

Q(k2)=V(kί...k4) (2.21)

with the momenta

kj = kj(k2) (2.22)

taken at the symmetry point

ΪΦ7. (2.23)

By definition Q is an invariant of the renormalization group. Due to (2.4) the
relation (2.5) for the coupling constant may be written in the form

o,m
2) = g0 at k2 = m2. (2.24)

Within the family & we construct an operator

z1ι2A(x,g0,m
2), (2.25)
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which is normalized off the mass shell by the condition

-i(k2-m2)Δ'F(k2)=l at k2 = κ2<m2. (2.26)

Since

A'F(k2) = zA'F(k2,g0,m
2) (2.27)

the factor z is given by

z~i = - i(κ2 - m2)A'F(κ2, gQ9 m
2). (2.28)

If the Lehmann representation of the propagator is unsubtracted, as it is assumed
in this section, the value of z is uniquely determined and positive. Since the
effective coupling is an invariant of the renormalization group we have

0o, m2). (2.29)

Hence the defining Eqs. (2.5) or (2.24) of the coupling constant becomes

Q(k2) = g0 at k2 = m2. (2.30)

Since the vertex function becomes singular on the mass shell for m->0 we redefine
the coupling constant by the value

o>3=Q(κ2) = e(^oX) (2.31)

of Q at the normalization mass K < m. It is

g = g0+o(g2) . (2.32)

Since

0(θ,-^=0, |0-(0,^=1. (2.33)
V m ) 8g0\ m2)

g is a positive function for small positive gQ. Therefore it can be inverted,

for 0^9 <1 (2 34)

and the field operator A(x) expressed in terms of the new coupling constant g,

κ2<m2. (2.35)

It is obvious from the derivation that this field operator is uniquely determined by
the conditions (2.26) and (2.30) within a local neighborhood of 3F . In perturbation
theory these conditions uniquely determine the time-ordered functions for any

(2.36)

with no restriction to a local neighborhood. But this uniqueness property in this
global sense may well be violated independent of perturbation theory.

The results obtained will be summarized by the following statements which
hold for the family J^ of field operators.
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A. Invariance under the Renormalization Group

If the field operator A belongs to the family 2? any operator A' obtained by an
equivalence transformation

A'(x) = zll2A(x), z>0, (2.37)

also belongs to OF .

B. Existence and Uniqueness of Normalized Field Operators

In the family $* exists a normalized field operator

A = A(x,g,κ2,m2) (2.38)

for all parameter values

, κ 2 ^m 2 , m 2 >0, (2.39)

which satisfies the following three conditions B.l-3 for its propagator A'F and
four-point vertex function Γ.

B.I. Normalization of the Field Operator

-i(k2-m2}Δf

F(k2,g,κ2,m2} = l at k2 = κ2^m2. (2.40)

B.2. Value of the Renormalized Coupling Constant

Q(k2,g,κ2,m2) = g at k2 = κ2^m2. (2.41)

B.3. Position of Mass Singularities

A'F(k2,g,κ2,m2Γl=V at k2 = m2. (2.42)

In a sufficiently small neighborhood of A(x,g',κ'2,m2) the conditions (2.40-42)
uniquely determine the field operator A(x,g,κ2,m2}5.

C. Small Coupling Limit

For 0— >+0 all derivatives of the Green's functions with respect to g exist as
distributions in the coordinates and are consistent with the perturbative expan-
sions of the Lagrangian formalism obtained under the conditions (2.40-42).

5 A neighborhood of A(x,g',κ'2,m2) could for instance be characterized by

A(x} = z1/2A(x,g",κ"2,m2)

with

and a, b, c chosen sufficiently small
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D. Scale Invariance

The Wightman functions of the normalized fields satisfy scale invariance in the
sense of dimensional analysis

W(xl9 . . ., xπ, 0, a2κ2, a2m2) = anW(axly . . ., axn, g, κ2, m2} (2.43)

(similarly for time ordered functions).

Field operators related by an equivalence transformation (2.37) are called
equivalent. Two pairs of parameter values gl9 κ2 and 02, κ\ are equivalent

if the corresponding field operators are equivalent. By these equivalence relations
the family 3F and the set of all possible parameter pairs are divided into
equivalence classes.

From the stated postulates it is straightforward to derive the form of the
transformation between two fields belonging to equivalent pairs of parameter
values. To this end we introduce the dimensionless function

R(k2,0, κ2, m2) = - ί(k2 - m2)A'F(k2, g, κ2, m2). (2.44)

As a consequence of statement D on scaling the function R and the effective
coupling Q depend only on g and the dimensionless ratios k2/κ2 and m2/κ;2

ίk2

«-«&> ,,
(2.45)

/ίC- m< \

Q=Q(-,

The normalization conditions (2.40-41) are

Λ 2 \

-1 at w = l , (2.46)

g = g a t tι = l . (2.47)
κ I

We now apply an equivalence transformation to the field operator with parame-
ters g^κ\

A(x) = zll2A(x,gl9 κ\, m2) (2.48)

and try to satisfy the conditions (2.40-42) for A(x) at other values 02, κ
2. Requiring

the condition (2.40) to hold at k2 — K\ the value of z follows,

If the Lehmann representation of the propagator is unsubtracted z exists and is
positive for any κ2

2=m2. Condition (2.41) yields the value of 02,

π
02 = 6 - > 0 ι > - τ (2.50)

κ\
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The Green's functions of the new operator (2.48) fulfill the normalization
conditions (2.40-42) for the parameter values g2 and κ2. By taking κ2 sufficiently
close to κ\ the new operator will be in a neighborhood small enough that the
uniqueness postulate applies. Hence

We thus have the transformation law

A(x9 g2, κ\, m2) = z1/24(x, 015 κ\, m2) if g2,κ
2

2~g^ κ\ (2.51)

with z and g2 given by (2.49) and (2.50). For the Fourier transform of the time-
ordered functions we find

τ(k,.. .kng2, κ2

29 m
2) = z^/q . . .kngv κ\, m2} . (2.52)

Differentiating with respect to κ\ and setting κ\ = κ\^ κ2 the differential equation

(2.53)

follows. The coefficients β and y are given by

m2

(2.54)
nΛ 3Q(«^

β\9^\ =' κ 2 j d u

W W
9>: (2.55)

du

The invariance of the effective coupling under the renormalization group,

implies the differential equation

= 0. (2.57)

3. Postulates for the Massless Model

For the massless model of ,44-coupling the propagator and vertex function should
not be normalized a priori on mass shell since perturbation theory indicates the
possibility of infrared singularities. The off-shell formulation, however, is known to
be infrared convergent in perturbation theory. We therefore base the formulation
of the massless model on the properties A-D of the off-shell formulation which
were derived in the previous section for the massive case. These statements will be
formulated below as postulates for the massless model. But no assumption on the
position of the mass singularity (statement B.3) will be made. For it will be shown
later that the vanishing of the renormalized mass can be derived from the other
postulates.
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In the present section the possibility will be included that subtractions may be
necessary in the defining equations of the time-ordered functions. The Lehmann
representation of the propagator, for instance, may involve subtractions. However,
a unique prescription for constructing time-ordered functions from Wightman
functions should be selected and used in the normalization conditions below.
Apart from such obvious requirements the precise definition of the time-ordered
functions is not relevant.

We now state the postulates A-D for a family J^ of field operators A
pertaining to the massless model of A4-coupling6.

A. Invariance under the Renormalization Group

If the field operator A belongs to the family 2F any operator A obtained by an
equivalence transformation

(3.1)

also belongs to 3F . Moreover, the time-ordered functions should be constructed
such that they transform under the renormalization group as the Wightman
functions, namely,

B. Existence and Uniqueness of Normalized Field Operators

In the family 3F exists a normalized field operator

A = A(x,g,κ2} (3.2)

for the parameter values

κ2_ <,κ2 ^κ\ <0 ,

which satisfies the following three conditions B.l-2 for its propagator Δ'F and four-
point vertex function Γ.

B.ί. Normalization of the Field Operator

g,κ2) = l at k2 = κ2. (3.3)

B.2. Value of the Renormalized Coupling Constant

,κ2} = g at k2 = κ2. (3.4)

In a sufficiently small neighborhood of A(x, g',κ2) the conditions (3.3-4) should
uniquely determine the field operator A(x, g, κ2}.

C. Small Coupling Limit

For 0-» +0 all derivatives of the Green's functions with respect to g should exist as
distributions in the coordinates and be consistent with the perturbative expansions
of the Lagrangian formalism obtained by imposing the conditions (3.3-4).

6 Recently Eckmann and Epstein have shown the existence of time-ordered products assuming an
extended form of the Osterwalder-Schrader condition [35]
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D. Scale Invarίance

The Wightman functions of the normalized field operators satisfy scale invariance
in the sense of dimensional analysis

W(xi9..., xn, g, fl2, κ2) - anW(ax^ . . , axn, g, κ2) (3.5)

(similarly for time-ordered functions).

The effective coupling Q may be defined by (2.21-23) with w = 0. (3.4) is then
equivalent to the condition

Γ(k1...k4,g,κ2)=-ig (3.6)

at the conventional symmetry point off-shell

Another convenient choice of the symmetry point is given by the collinear vectors

fc, = fc/fc2), ; = 1,2,3,4

with

feι=fe2 = fc3==/Cj fe4=-3fc.

The coupling constant is then given by

JΓ(fc,fcΛ-3fc)=-i0 at k2 = κ2, (3.7)

or equivalently by (3.4) with the effective coupling

Q(k2) = - i(k2}2Δ'F(k2)2Γ(k, fc, fc, - 3k) , (3.8)

The advantage of this definition is that Ruelle's general results on the analytic
properties of time-ordered functions in momentum space can be applied immedi-
ately [32]. For the discussion of the analytic properties of the effective coupling
thus defined see [33]. In particular, Q is regular analytic at any point k2 <0 where

The scaling relation (3.5) implies that the model can be extended from (3.3) to
any value κ2<0 of the normalization mass K so that the domain of admissible
parameter values becomes

κ:2<0.

The form of the global renormalization group transformations may be derived
from the postulates as in the previous section. The effective coupling Q and the
function

R(k2,g,κ2)=-ik2A'F(k2,g,κ2) (3.9)

depend only on g and the dimensionless ratio

k2

Q = Q(u,g), R = R(u,g), u=-j.
K
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The conditions (3.3-4) take the form

R(u,g) = l at w = l , (3.10)

Q(u,g) = g at w = l . (3.11)

For equivalent pairs of parameter values

one finds the transformation law

A(x, g', κ'2} = zlί2A(x, g, κ2), (3.12)

(3.14)

(3.15)

κ'2 should be chosen close enough to κ2 so that the uniqueness assumption applies
and z>l.

From (3.13) the differential equation (2.53) of the renormalization group
follows with the Callan-Symanzik functions

(3.16)

y(g)=

du

δR(u, g)

du
(3.17)

as coefficients. No differentiability assumptions need be made in connection with
(2.53). As a consequence of the scaling law (3.5) the Green's functions may be
differentiated with respect to κ2 any number of times. In deriving (2.53) the
existence of the ^-derivative follows for all values at which β(g) Φ 0. By comparison
with perturbation theory postulate C implies the Taylor formulae

(3.18)

(3-19)

with finite limits

b= lim%)>0
<7-»0

T / ^ (3.20)c-hmφ). v ;

g-*0

On the basis of the postulates it is expected that the effective coupling Q(u, g) is
a monotonously increasing function of u for 0<g<η, Q<u<v with suitable bound
v. In the remainder of this section a detailed proof of this statement will be given.

We first use the uniqueness postulate in order to show that g\ as given by
(3.15), is a monotonic function of κ'2 in a neighborhood of κ2 provided 0<g<η.
To this end we note that by the uniqueness postulate the solution κ'2 of (3.15) is
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unique so that gr can be inverted with respect to κ'2. Since Q is continuous in κ'2 it
follows that g' is monotonic in κ'2 for the domain considered. Equivalently,
Q(u, g) is monotonic in u near M = 1 for 0 < # < 77.

It will next be shown that the transformation (3.12-15) which holds locally can
be extended to any values g, g' from the interval

0<g,gf<η (3.21)

with arbitrary κ2 <0. To this end a sequence of parameter values

9 09 K0 ~ 9 u * 1 ~ ~ 9n> Kn >

A(x, gj+l9 κ2

+ ,) = zjί2A(x, gp κ2) , (3.22)

will be used with the property that the field operator A(x,gj+ί,κ
2

+l) lies in the
neighborhood of A(x, gp κ2). Then

and the equivalence transformation (3.12-15) exists. It must yet be shown that a
sequence (4.2) can always be constructed. Suppose there are values g' with
g<g' <η for which a sequence (4.2) cannot be given. Then there exists a value h
such that the construction is possible for all g' < h, but not for g' > h. Let g'<h and
g" ' >h be sufficiently close to h. The solutions κ'2 and κ"2 of

are continuous functions of g' or g" respectively near g' = g" = /?. Moreover,

are continuous near κ'2 = κ"2 = λ2. Choosing g' and g" close enough to h the field
operator A(x,g',κ'2) will be in a neighborhood of A(x,g",κ"2} which is in
contradiction to the hypothesis on h. Similarly (3.22) can be derived for 0<g' <g.
This completes the proof that the equivalence transformation (3.12-13) can be
extended to any pair of values g,gf from the interval (3.21).

We may now enlarge the domain where Q is monotonic in u and R positive.
For the sequence (3.22) we have

,^-! = β ( - 2 , 9 , (3.23)
K - \K I

_!•..20>0. (3.24)

Since g' is monotonic in κ'2 it follows that Q is monotonous in κ'2jκ2. For suf-
ficiently small values of g it is β(g)>Q and therefore Q increasing because of
(3.16). By (3.23) β is increasing as a function of κ'2/κ2 for any g from the interval
0<g<η. If κ'2/κ2 is made arbitrarily small g' will stay within (3.21) since Q is an



54 W. Zimmermann

increasing function of κ'2. Moreover, the value κ'2/κ2 = l is always permissible
since then 0 < g = g' < η. Therefore,

Q = Q(u,g), V<g<η, (3.25)

is a monotonicly increasing function of u in the domain

0 < w < u , v>l. (3.26)

v depends on g, it is the smallest solution of the equation

η = Q(v,9) (3-27)

The inversion of (3.25)

(3.28)

is a monotonicly increasing function of Q in 0 < Q < η. From (3.24) and the domain
(3.26) of the variable u = κ'2/κ2 it follows that

R(u,g)>0 for 0<w<ι>, 0<g<η. (3.29)

As a consequence, the effective coupling Q is regular analytic at any point u with
0 < M < i; if 0<g<η since D'F does not vanish in this region.

4. Effective Coupling and Propagator

In this section some basic properties of the effective coupling and the propagator
will be discussed for the massless model. The postulates stated in the previous
section imply the differential equations [see (2.53) and (2.57)]

"K
*%->%+*

with the notation

2 ) , (4.3)

k2,g,κ2}. (4.4)

The coefficients β and y are the Callan-Symanzik functions defined by (3.16-17)
with the weak coupling behavior (3.18-20).

Let

be equivalent sets of parameters from the region 0 < g, g' < η where the validity of
the postulates has been assumed. Then the identities

,κ2), (4.5)

g,κ2) (4.6)
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hold with g and z given by (3.14-15). Differentiating (4.5-6) with respect to k2 and
setting k2 = κ'2, u = κ'2/κ2 one finds the relations

u^Γ, (4.7)ou

ss
with

Since Q is regular analytic at any point u > 0 below v it follows from (4.7) that β can
have only a finite number of zeros in the interval 0 < Q < η, namely

β(g) = 0 at g = g(1\...,g(a} in 0<g<η. (4.9)

At these zeros the effective coupling is stationary [see (4.7)] but does not have an
extremum. By (3.28) we may introduce Q and g as independent variables in (4.7-8)
and obtain the differential equations

(4.10)

(4.11)

β(QY

y(δ)n

for the inversion (3.28) and

R = R(u(Q,g),g).

I indicates that the derivative is formed at a constant value of g. With the initial
conditions (3.10-11) the differential equations (4.10-11) have the unique solutions

(4.12)

(4.13)

At the zeros (4.9) of β the integrals of the exponentials are convergent since the
functions Igw and IgR have existing limits for Q-+g(a\ The integrability of β'1 at
such zeros was also shown in [33] as a consequence of the analytic properties of Q.

Alternatively, (4.13) may be derived from the differential equation (4.2).
Introducing g and Q as independent variables the differential equation takes the
form

dR

which with (3.10-11) again leads to (4.13).
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The relations (4.12-13) have important consequences for the exact infrared
behavior of the model. (4.12) implies

lim Q(u, g) = 0 or lim Q(k2, #, κ2) = 0 , (4. 14)
w-»0 ^ k2->0

because of (3.18) and (3.20). With this the infrared limit of R becomes

Thus the infrared behavior of the propagator is determined by

?*ίU
- i lim k2D'F(k2, g,κ2) = e9 β(x} . (4. 16)

The integral on the right-hand side converges since the integrand γ/β approaches
the finite limit

c

* - ( > β(x) b

[see (3.18-20)]. Hence the infrared limit (4.16) is finite and the propagator has a
pole at fc = 0. This shows the existence of massless one particle states. According to
the collision theory developed by Buchholz [34] for massless bosons asymptotic
states of these particles can be constructed and the corresponding S-matrix
elements are well defined.

Formula (4.16) for the residue

r=-i lim k2D'F(k2, g, κ2} (4. 1 7)

was derived for values of the coupling constant from the original domain of
definition with Q<g<η. In general, r satisfies the differential equation

dr
β +yr = Q (4.18)

dg

which can be solved by the methods of the following section. If the effective
coupling has extrema in the Euclidean region r becomes a multivalued function of
g. For any value of g which can be introduced by an equivalence transformation
the residue (4.17) must of course converge since it is a finite multiple of (4.16).

5. Rescaling of Parameter Values

So far field operators were only considered for the original range of coupling
parameter values as specified by the postulates. Field operators will now be set up
for any value of the coupling parameter which the effective coupling may assume
in the Euclidean region. We start out from the normalized field operator
A(x, </o, KQ) for the original domain of definition with 0<gQ<η and κφ<0. 00, KO

denote reference values which will be kept fixed in the work that follows. Our aim
is to replace the coupling parameter g0 by any value

9 = Q(u,g0), u = κ2/κ2, κ 2<0, (5.1)
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of the effective coupling. The problem with introducing g as coupling parameter
for the field operators and Green's functions is twofold :

i) The function Q need not be uniquely invertible, so that field operator and
Green's functions become multivalued functions of g,

ii) it may not be possible to normalize the propagator to -f- 1 at the
normalization point.

Moreover, Q may be singular at zeros of D'F. In order to deal with these
difficulties we divide the region of positive u- values up into intervals such that Q is
monotonic and D'F non-vanishing in each interval. To this end let

Uj = uj(g0), 7 = U,... (5.2)

denote the positions of all extrema of Q and zeros of D'F, ordered by magnitude,

Uj<uj+19 7 = 1,2,.... (5.3)

Because of (3.26) and (3.29) the first extremum of Q or propagator zero is above
one,

We further set u0 = 0. In each interval

ι(0o)> 7 = 0,1,2,... (5.4)

the function Q(u, g0) is monotonic. Let ̂  be the range of values which Q assumes
in the interval tfί.. ̂  is an open interval, possibly extending to + GO and/or — oo.
In tfί. the function (5.1) can be inverted uniquely by a monotonic function

u = uU>(g,g0) ge^j. (5.5)

In each %. the propagator does not vanish, hence carries the same sign in the entire
interval.

After these preparations we may now define field operators for any κ2 <0 and
coupling parameter (5.1) by the equivalence transformations

9 g, κ2) = zl>2A(x, 00, κl) , 0 < g0 < η (5.6)

R
κ2

(5.7)

if the ratio κ2/κl falls into the interval

κ2/κ2e^j(gQ). (5.8)

The parameter values g0, KQ and g, κ2,7 are called equivalent,

The supercript 0) labels different branches with respect to the coupling parameter.
(0) denotes the original branch
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In (5.7) the absolute value of R is used so that z>0. The propagator is then
normalized to + 1 at the normalization point depending on the propagator sign in
<%j. The field operator (5.6) satisfies the normalization conditions

~ ' (5.11)

Under the equivalence transformation (5.6-7) the effective coupling and
propagator transform like

(5.12)

^κl}. (5.13)

These relations imply that the position of an extremum of Q or a propagator zero
transform like

« ί Λ (0)=«,(0 0 ) . 1=1,2,...,

(5.14)

o

We further set

and define intervals ^j\g) by

Within each interval UU\*} the effective coupling Q(j) is monotonic and the prop-
agator D(f non-vanishing. The range of values which Q(j} assumes in ^0) is
denoted by ̂ .

It further follows from (5.12) that the values

gl = Q(j\ι4j}(g\g) = Q(ul(g0\g0) (5.15)

are invariants of the renormalization group. gl represents an extremal value of the
effective coupling and/or the coupling parameter corresponding to a propagator
zero provided Q remains finite there. If Q is singular at a propagator zero we have

lim QU(u,g)= lim β(u0,00)= ±00,
u^Ui(g) UQ-^ u^go)

where both limits are taken either from above or below. It follows that the limits of
the intervals ̂ 0) are invariants of the renormalization group and thus independent
of the chosen normalization point.

The point u=l belongs to the interval W}1\ For

uf\g)<l<u^+1(g) (5.16)

follows from (5.14).
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In the remainder of this section we generalize the differential equations of the
Green's functions to arbitrary branches. To this end we consider equivalent
parameter values of the same branch,

Then the equivalence transformation

holds with

From this the differential equations of the j-th branch follows,

/ 2 d ( d 1 (.Λ ω_
K — j -f p — h — ny T ==0

V dκ2 dg 2 I

with the Callan-Symanzik functions

β(j\g)= du

n=l

From (5.12) and (5.22) one can derive the extension

dQ(u9 απ)
W_±I_!±L°L = β(J\O(u a ))

du ' °

of (4.7) to values u from any interval

Writing (5.12) for the i-th branch in the form

e(ί)(",0)=e(
and inserting it into (5.24) we find

c/w

uf(g)<u<uf,1(g),

which generalizes (4.7) to any branch i and values
interval .̂.

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

u taken from an arbitrary
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From (5.13) and (5.23) we get

u

R(u, gQ) du

if

R\~2^g0

Inserting (4.25) and

R(ί\u,g} =

into (5.27) the generalization

)=t- (ί\u,g) du

of (4.8) follows. The inversions

u = u(ί'j\Q(ί\g)

of

and

(5.27)

(5.28)

satisfy the differential equations

du

dQ(ϊ

dR(i}

u

β β(j\Q
(5.29)

(5.30)

which generalize (4.10-11). These equations can be integrated piecewise for any
interval ^. of the variable Q(j\ For the interval ^. the solution of (5.29) is

Q ( l ) (",9)

ί
u = e 9 '

where the normalization condition (5.11) and the inequality (5.16) were used. For
the interval ^,

Q ( ί ' ( u , g )
ί

U =
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if j>ί and uf(g)<u<uf+ ^g]

1, — Ί, p g +1 P"'\ *)u — uj+1e •>+! ,

if j < i and uf(g) <u< uf+1 (g).
Iterating these relations we get

/• dX ί> dX r dX

if j>i and uf(g)<u<u(^+ ^(g)

P dx f dx r ' dx

g P 9i P 9j + ί P

if j < i and uf(g) <u< uf+1 (g).
Similarly (5.30) can be integrated to

lgR(l\u,g)= J pydx+ J n(i+i)dx+ •••+ j ~oϋ}dx, (5.33)

i f ;>i and uf(g)<u<uf+ί(g\

lgR(i\u,g)= l~udx+ J j |J(rru<frc+...+ ί ^ ^y-^, (5.34)

i f7<i and w^^)<u<u (j }

+ ^g).

6. Remarks on the Ultraviolet Limit

For simplicity we assume that the total number of extrema of Q and zeros of D'F in
the Euclidean region is finite. Let Q be monotonic and D'F be non vanishing above
UQ >0. Then the differential equations (5.29-30) are solved by

Q d x

M = M O * Ό * ' , (6.1)

(6.2)

where ' denotes the branch of β and y which is appropriate above the largest
position of an extremum of Q. Since Q is monotonic above UQ it can have only
one accumulation point gm for u-+ao

9^= n'm Q(u>g)= lim Q(j)(u,g). (6.3)
M—>• oo M-» oo

^^ is infinite or a finite number, independent of g because

k2 \ / / r 2 \

. . _ . : , . . . .„ . • " _ ' . " „ . ' (6.4)
K
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A negative or vanishing value of g^ cannot be excluded unless Q is monotonic
for all u>0. In the limit u-^oo (6.1) and (6.3) imply

Jim J y = oo . (6.5)

Hence a finite limit g^ must be a zero of β'

β'(9j = V (6.6)

with non-integrable β'~l. According to (6.2) the propagator is asymptotically
determined in the ultraviolet limit by the behavior of β' and / near g = g00. More
detailed information on how β' and y' behave near g = gaΰ is needed in order to
establish a well-defined scale invariant limit theory for g-^g^. Such a limit theory
cannot exist for #^ = ±00 since the vertex function would diverge in the Euclidean
region by (3.6) or (3.7). It should be stressed that even in case of a finite limit g^ for
(6.3) a scale invariant limit theory need not exist. On the other hand it cannot be
excluded that the system approaches a free field in this limit.

In Sect. 5 it was shown how field quantities can be extended by renormali-
zation group transformations from values g0, KQ of the original domain 0<g0<η,
/CQ<O to functions of the coupling constant g given by any value

of the effective coupling. A further extension beyond the limit value g = gao of (6.3)
is possible by analytic continuation in g. It is also conceivable that solutions of the
model exist which are not related to the perturbative expansion, neither by
renormalization group transformations nor by analytic continuation (see [25]).

7. Scattering Amplitudes

We conclude this section by deriving the renormalization group equation for
S-matrix elements involving the massless particles which are associated with the
propagator pole. The scattering amplitudes are given by

4(Pι •••?„)

p*=0.

τconn denotes the connected part of the time-ordered function in momentum space

before separating the factor δ ί £ k\. r is the residue (4.17) of the propagator pole
V / = ι /

which satisfies the differential equation (4.18). Combining the renormalization
group equation (2.53) with the differential equation

onn=0 (7'2)
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of dimensional scaling one finds the broken scaling equation

Λ τconn= 2 / ϊ ~ (73)

with the anomalous dimension

d(g) = ί + y(g). (7.4)

n

Multiplying by r~n/2 γ[ k2 and commuting this factor with the differential
j = ι

operator

i)-<
follows as the renormalization group equation of the scattering amplitudes. It
should be noted that this equation involves the canonical rather than the
anomalous dimension. This result is in agreement with a paper by Gross and Wess
who obtained the scaling equation (7.5) by investigating some general properties of
the energy-momentum tensor [27,28].

Since the residue of the propagator pole is finite a field operator

An(x,g,κ2) = r-ί/2A(x,g,κ2) (7.6)

may be introduced which is normalized on mass shell by the condition

-ik2Δ'Fn(k2,g,κ2)=l at k2 = U (7.7)

for its propagator. Using the differential equation (4.18) of the residue r the
renormalization group equation

Λ ? ' r Λdκz 3gf

follows again with no anomalous part of the dimension. Obviously the anomaly of
the dimension is only due to normalizing off mass shell and should therefore not
appear in the broken scaling equation of the scattering amplitudes.
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