
Communications in
Commun. Math. Phys. 71, 65-76 (1980) Mathematical

Physics
© by Springer-Verlag 1980

Differentiability Properties of the Pressure
in Lattice Systems

H. A. M. Daniels and A. C. D. van Enter

Institute for Theoretical Physics, University of Groningen,
P.O. Box 800, Groningen, Netherlands

Abstract. In two recent papers Ruelle gave a heuristic theory of phase
transitions, using some techniques introduced by Israel. He proves a version of
the Gibbs phase rule, assuming a differentiability condition for the pressure.
Ruelle already pointed out that his condition cannot always hold. In this paper
we prove that the interaction spaces which he considers are in general too large
for his condition to hold. We also show that the version of the Gibbs phase rule
which is a consequence of this condition does not hold in general. Moreover we
give some constraints on the analyticity properties of the pressure.

1. Introduction

In two recent papers Ruelle [1,2] proposed a heuristic theory of phase transitions.
He shows that every interaction which admits n phases lies in a manifold of
codimension n — 1 of interactions which admit n or more phases, if the pressure is
differentiable in a certain sense.

In this paper we will study his differentiability condition. We will firstly show
that on the usual space of interactions of which the pressure is defined, the
condition never holds. In the second part of our paper we consider a smaller space
of interactions where it is possible to discriminate between differentiability (and
also analyticity) properties at low and high temperatures. We will prove that in a
more phase region the pressure is not Frechet differentiable and therefore not
analytic in the space of pair interactions (Theorem 1) (for 1-dimensional systems
this result was proven by Ruelle [2]). Moreover we show that, in general, spaces of
the type considered by Ruelle are too large to obtain manifolds of more phases
and that the version of the Gibbs phase rule as proposed in [2] cannot be true
(Theorem 2).

We follow Israel considering a quantum lattice (the same results hold for
classical lattices).

I. We consider a lattice TD'. At each point xeZζv, there is defined an identical
m-dimensional Hubert space <r>x. For each finite subset X of TLV the Hubert space

&x = (8) &χ is defined.
xeX
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II. The quasilocal C*-algebra 9ί of observables is the C*-inductive limit of the
local algebras 9ίx of all bounded linear operators on §x. The translations τx, xeZv

act as automorphisms on 91. The translation invariant states are denoted I.
III. An interaction Φ is a function on the finite subsets X of TLV to selfadjoint

operators ΦpQeSl^ with:

a) Φ(x+X)

b) H Φ I I =
OeX

where N(X) is the number of points in X. With this norm the interactions form a
separable Banach space 38. The observable Aφ is defined by

Aφ= Σtfφ^ΦίJOeai.
OeX

IV. The pressure P is a convex function on @H with

\P(Φ)-P(Ψ)\^\\Φ-Ψ\\ for all Φ,Ψε@.

V. The mean entropy s is an affine upper semicontinuous (in the weak*-
topology) function on I.

VI. P(Φ) = sup {s(ρ) — ρ(Aφ)} if P(Φ) = s(ρ) — ρ(Aφ) then ρ is called an invariant
ρe/

equilibrium state for Φ.

VII. s(ρ)= inf (P(Φ) + ρ(,4φ)}. There is a 1 — 1 correspondence between linear
Φe^f

functional on & tangent to P at Φ, denoted α, and invariant equilibrium states for
Φ, denoted ρ, given by

cc(ψ)=-ρ(AΨ) for all Ψe@.

VIII. Every translation invariant state has a unique decomposition in ex-
tremal invariant states. If ρ is an equilibrium state for Φ, the decomposition is in
extremal invariant equilibrium states for Φ. We denote the set of invariant
equilibrium states for Φ : Iφ and the set of extremal points of Iφ : Ext(/φ).

We will use the following two notions of differentiability on Banach space
[4a,b]:

a) Differentiability in the Sense of Gateaux

A function / from a Banach space $ to a Banach space 2F is differentiable in the
sense of Gateaux at the point x0, if there exists a linear operator /'(x0) '.S-+3P
such that

b) Differentiability in the Sense of Frechet

A function / from a Banach space $ to a Banach space J^ is differentiable in the
sense of Frechet at the point x0, if there exists a linear operator /;(x0) '.$^2? such
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that

Clearly every Frechet differentiable function is also Gateaux differentiable. The
converse is not true. A well-known example is the following [4b] :

Consider the Banach space C([0, 1]) consisting of real continuous functions on
[0,1] with the supremum norm IHI^. The map 0-HI0l loo *s convex and it is
Gateaux differentiable at each function with a unique absolute maximum of \g\. If
j70 is the unique maximum point of \g\9 then the Gateaux derivative is the linear
map from C([0, 1]) into IR given by:

Λ->Λ(JΌ) if 0(

or

Λ->-Λ(3>0) if 0

The map g^\\g\\^ is nowhere Frechet differentiable.
If P is a convex function from a Banach space into IR, then Gateaux

differentiability is equivalent to having a unique tangent plane [4b].

2. Differentiability on the Space ffi

We will first give two lemmas, which will be used in the proof of Proposition (1).
The first lemma is an immediate consequence of VII.

Lemma 1. Let ΦkE^, for fceN, such that lim Φk = Φ. Suppose ρkεlφk and ρelφ

satisfy w*-limρ, =ρ. Then
k-χχ)

\ims(ρk) = s(ρ).

Proof. Using the variational principle VII we have

s(ρ) = P(Φ)-ρ(Aφ)

and

Hence

\s(βk) - s(ρ)| ̂  \P(Φk) - P(Φ}\ + \βk(AΦι) - βk(Aφ)\ + \Qk(Aφ] - β(Aφ}\

^2 \\Φk-Φ\\+\(ρk-ρ)(Aφ)\.
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Therefore

lims(ρk) = s(ρ). D
fc^oo

The second lemma follows from a result in [3].

Lemma 2. Let Φe& such that n+l pure phases coexist for Φ which will be denoted
by σ0, . . ., σn. So Iφ is a n-dimensional simplex and Ext(/φ) = {σ0, . . ., σn}. Then there
exists a sequence of interactions {Φk}C& and a sequence of states {ρk} Cl such that

(i) lim Φk = Φ.
/c->oo

(ii) Qk is an extremal invariant equilibrium state for Φk.
(iii) w*-limρfc = ρ and ρelφ.

(iv) \ \ ρ k - ρ \ \ = 2 f o r a l l k.

Proof. It follows from Theorem 3C in [3] that there exists a sequence {Ψ^} Cέ% with
lim Ψj = Φ and for each ψ, there exist uncountably many ergodic equilibrium

/->• oo

states. Because Iφ has only n+1 extremal points we can choose for each £ a state
ρ^eExt(/^), such that Q^φlφ. Since the unit ball in $ί* is w*-compact there exists a
w*-convergent subsequence {ρ J, each ρk equilibrium state for some Ψ^ which will

be called Φfc, such that w*-limρ. =ρ. (Note that we can deal with a subsequence
fe-> 00

instead of a subnet since the unit ball of 91* is metrizable, because $1 itself is
separable.) Let αfe denote the tangent to P at Φk corresponding to the state ρk then :

+ otk(Ψ). (1)

Since w*-limρfc = ρ we also have w*-limαfc = :α defines a linear functional on &.
Taking the limit /c-*oo at both sides of (1) we obtain

V Ψe ® : P(Φ + Ψ) ^ P(Φ) + α( Ψ)

hence α is a tangent to P at Φ, and therefore ρe/φ.
The only thing left to prove is (iv). It follows from [3] that ||ρfc — ρ|| = ||μfe — μ||,

where μk and μ denote the measures on / with barycenter ρk respectively ρ.
Obviously μk is a (5-measure concentrated at the point ρfc. The measure μ is
concentrated at the extremal points of Iφ. Since ρkφlφ we conclude

and therefore

\\Qk-Q\\=2. Π

Remark. In most cases of physical interest the result follows more directly, without
using Theorem 3C in [3]. It has been proved by Griffiths and Ruelle in [5a], for
classical systems, that the pressure is strictly convex on the space of interactions

with | |Φ| |= Σ |Φ(30I<°0 In [5b] Roos proves the same result in the quantum
OeX

case, for the space of interactions with | |Φ|| = £ \\Φ(X)\\eN(X}<co. In both cases
OεX

we could simplify the proof of Lemma 2 by taking for Φk interactions at different
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temperature. So Φk = βk Φ with βk->!9 and the ρfc's extremal invariant equilibrium
states for Φk. It follows then from the strict convexity of the pressure that ρkφlφ.

In the following proposition we will prove that the pressure is nowhere Frechet
differentiable.

Proposition 1. The pressure P is not Frechet differentiable at any

Proof. It is clear that we may restrict ourselves to Φe^ for which the pressure has
a unique tangent at Φ, otherwise the pressure is not even Gateaux differentiable.
So Iφ consists of a single state say ρ. The Gateaux derivative at Φ is the linear map
Ψ-+— ρ(AΨ). We now use Lemma 2 (for the special case n = 0) to ensure the
existence of sequences {Φk} and {ρj with the properties (i) to (iv). It follows from
[3] that ||αfc — α|| = \\Qk — ρ\\ =2, where αfc and α are the tangents to the pressure at
Φk resp. Φ corresponding to ρk and ρ. Hence :

sup \(ρk-ρ)(AΨ)\= sup |(αk-α) Ψ\ = ||αk-α|| =2. (2)
\\Ψ\\=i (\Ψ\\=l

Choose (5>0 arbitrary. Using Lemma 1 and Lemma 2 (iίi) we have

\s(Qk}-s(ρ}\<^δ (3)

and

lfe-e)(Λ>)l<i<s (4)
if k is sufficiently large. Note that VI implies

and therefore

P(Φ + Ψ) - P(Φ) + ρ(AΨ) £ s(ρk) - s(ρ) + (ρ - ρJ(Aφ) + (ρ - Qj(AΨ) . (5)

Using (3) and (4) we obtain :

P(Φ +Ψ)- P(Φ) + ρ(AΨ) ^ (ρ - Q^(AΨ) - δ .

It follows from (2) that

\P(Φ+Ψ)-P(Φ) + ρ(AΨ)\

\m** \m\

Since δ was arbitrary, P cannot be Frechet differentiable at Φ. Π
Let us now clarify the relevance of the notion of Frechet differentiability for the

Gibbs phase rule, by citing the following theorem of Ruelle [2]. Let ^0 be a
subspace of & with norm || ||0.

Theorem. Let ΦE& and let Iφ be an n-dimensional simplex with Ext(/φ)
= {σ0, ...,σn}. Let β0,...,βn denote the corresponding tangents. Suppose that
βi ~β& β2~βo> -'^βn~ βo are Hnearly independent and let 9C be the linear space:
% = {ψ(Ξ ^Q\β0(ψ)= ... = βn(Ψ)}. % is of codimension n. Assume that

(R) : The restriction of P to the linear manifold Φ + 2£ is Frechet differentiable at Φ.
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Suppose furthermore that there is a n-dimensional subspace ®/ of ^0 such that
&®& = &0 and λ^O such that if Ωe& and xe2£v there exists Φxe^0 with:

ρ(AΩ AΩ o τ*) = ρ(Aφχ) for all ρ e /

IIΦJo^ IIΩIIo
For every non-empty subset K = {i0, ...,ίk} of {0,1, ...,n}5 let

There is a homeomorphism h of a neighbourhood (9 C ̂ 0 of Φ to a neighbourhood of
Φ such that h is strictly differentiable at Φ, with derivative the identity and for every
Ψreh((Φ+ί?Γk)n0) at least fc+1 phases coexist.

On the basis of our proposition we will show that condition (R) does not hold if
^0 = ̂ . Because all tangents to P at Φ coincide on <F, the restriction of P to the
linear manifold Φ + 3£ is Gateaux differentiable at Φ and the Gateaux derivative is
the map Ψ^ — σ0(AΨ). We will prove:

-, w \P(Φ + ψϊ - P(Φ) + σθ(Aψ}\
3 ε>o v<5>o sup — ^ε

year, 11^11=5 \\Y\\

and therefore P restricted to Φ + ̂  is not Frechet differentiable at Φ.
We use Lemma 2 again to guarantee the existence of sequences {ΦJ and {ρj

with the properties (i) to (iv). As in the proposition we have:

sup l(ρk-ρ)(A,,)| = sup |(αk - α) !P| = 2

where αfc and α are the tangents corresponding to ρk resp. ρ.
Now let Px and P^ denote the projection operators on & respectively ®J

defined by the direct sum &©& = &. It follows from the closed graph theorem [6]
that both P^ and P^ are bounded. Since αk-»α pointwise on ̂  and dim^ = n we
have αfcoP^^α°P^ uniform on ̂ . Hence:

2= sup |(o( (x)f I = sup |(oί oC]°F

^ sup |(αk-α)of

if /c is sufficiently large. From this we easily deduce:

sup |(αk-α)!P|^—-r. (6)

Fix ^>0 arbitrary. Using (6), Lemma 1 and Lemma 2 we can choose fe large
enough to ensure that :

sup fo
aΓ, | |«F| |=,5

(8)
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Note furthermore that ρ coincides with σ0 on observables of the form Aψ with
. Combining (5) with (7), (8), and (9) we obtain:

SUp
\Ψ\\

which completes the proof. Π
Israel has shown in [3] that the space of interactions considered is, from the

physical point of view, too large. It might be conjectured that Ruelle's theorem
holds in smaller spaces. In the next sections we will show however that even in
smaller spaces, e.g. the space of pair interactions the pressure is not Frechet
differentiable in more phase regions.

3. Frechet Differentiability in Smaller Spaces

Firstly we prove a lemma which will be used in the proof of Theorem 1.
Let ρ be a density matrix on a finite lattice Λ C Zv, ρ the corresponding state.

Let X C Zv, define the operator Rx by

and

if jφX and

—where Z)v 2 '(π, r) is a unitary mxm matrix, such that Rx gives rise to a rotation of
magnitude π around some axis r at each point jeX. So Rx rotates in particular the
spins in the sublatticeX over an angle π.Rx

lQ is the density matrix corresponding
to ρ°Rx.

Lemma 3. The entropy of the state ρ, Sρ(A\ equals SρoRχ(A)( = SρoRχnΛ(A)).

Proof. Rx

 1 is unitarily implementable on ξ>(A) by the unitary matrix U.

ί = l

mN(Λ)

= - Σ (Uφί,ρlrίρUφί)=-Ύΐ^
i = l

Without loss of generality we will further assume that Rxs
z

0= — sz

0 if Oe^. Π

Definition i. We will define a state to be a periodic equilibrium state for Φ, if it
appears in the decomposition at infinity [9] of some element of Ext(/φ) and is
invariant under some subgroup of the translations. We will denote the periodic
equilibrium states for Φ : lp

φ and the extremal periodic equilibrium states for
Φ : Ext (/£). Clearly IφcPφ.

If some periodic state ρ of period n1 ? ...,n v in the v directions is an equilibrium
state for Φ then the states ρ°τ are equilibrium states for Φ for i = 1 to n ,j = 1 . . . v.

1 HI nv

The state ρ= - £ ••• Σ £°τίι, ..,iv

e^φ ^e w^ fr°m now on

nl ...nv ίl = 1 ίv=1

consider periodicity in one direction.
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Definition 2. An interaction Ψ does not break the symmetry at Φ if ρ(Aψ) has the
same value for all ρeExt(/φ). Note that if ρ1 ?ρ2e/^ with period n and Ψ does not
break the symmetry at Φ then

1 n

Qι(AΨ) = Q2(AΨ) where ρ.= - ]Γ ρ.Tj.n j = ι

We will now consider mappings Rx where X is chosen such that Rx is a
symmetry of the system which leaves the interaction invariant. In many models
(e.g. ferro- or antiferromagnetically ordered Ising or Heisenberg systems) X = ZV, in
other models (e.g. the Baxter- Wu model) X will be a periodic sublattice of Έ*. We
are interested in the case where this symmetry is broken. For simplicity we assume
that Ext (7φ) (Ext (/£)) consists of 2 states (possibly together with their translates).
However the following theorems can be generalized to all cases where the
subspace of pair interactions, which do not break the symmetry, has infinite
dimension.

Theorem 1. Let Ext(/φ)(Ext(/J)) = {ρ1,ρ2} (and possibly their translates). Let Rx

be such that Q2 = Qι °RX and ρ2( So):Φ:ί?ι(so) Then the pressure is not differ entiable in
the sense of Frechet on the subspace of pair interactions which do not break the
symmetry at Φ.

Proof. Divide the lattice in layers L^ of thickness N in one direction

Assume that ρ1 and ρ2 have period n in that direction. ThenX has a period which
is at most n, for if Q^R^^Q^) i.e. OeZ then ρ^Λ^Φρ^τ^) i.e.

Define operators RN by

RN = RY with Y=Xn((jL*i+l

I *
So RN rotates part of the spins in half of the layers (if X = TLV all the spins in half of
the layers are rotated).

We define ρNn by

2Nn / 2Nn \

Q2(RlfnτlA)\.

Note that ρNn is translation invariant (by construction) and s(ρNn) = s(ρί) by
Lemma 3 and the fact that s is affine [12, Chap. 7].

Let Ψ be a finite range interaction (so Aψ is local), which does not break the
symmetry at Φ. Then

1

2Nn

2Nn

ΐ = l

Qι(A)=- Σ Qί(τιA) so

n = ι
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I

Only those τtAΨ contribute to the sum that have support in two neighbouring

layers, for N large enough, the other terms vanish because -
ni=l

i n n
= ~ Σ Qι(τίAψ) (Ψ does not break the symmetry at Φ) and hence, if Σ τί+jAΨ has

ni=l j=ί
n n

support in one layer £ Qι(RNτi+jAΨ) = £ Q^i+jAw}.
j = l i = l

So if 91° is the linear subspace of 91 on which the restriction of both ρx and ρ2

coincide ρNn converges to ^ on the local elements of 3ί° and hence on 91°
pointwise if N tends to infinity.

We now consider the product of two spins in the z direction at a distance which
is equal to the thickness of the layers.

Let

limρ, 2(sz

0τNns
z

0) = mί>0 (11)
N — > oo

where N runs through some subsequence of N (this follows from the weak cluster
property which is consequence of extremal invariance [12, Chap. 6; 15]).

Then

(12)

by noticing that inside a layer a fixed fraction of at least - of the spins is rotated.

Let ΨN be the Kx-invariant pair interaction between spins with distance N and
strength 1 such that AVN = ^(S^NSZQ + S^_NSZQ). Note that the norm of ΨN does not
depend on N. Now

N)- P(Φ) + ερ , (AΨlf) ^ s(ρN) - ρN(Aφ) - sρN(AψN) -s(ρί)

+ ρ1(Aφ) + ερ,(AψN). (13)

So if N = N^n sufficiently large, by (10), (12) and the fact that s(ρN) = s(ρί) we have

and therefore P is not Frechet differentiable. D

Theorem 2. Let Φ be as in Theorem /. Then there exists for all ε>0 and all
some ξ in the space of pair interactions such that \\ξ\\<ε and in the decomposition at
infinity of some element of Ext(Iφ + ξ) there exist at least N more periodic states than
in the decomposition of any element of Ext(/φ).

Proof. We consider again ρN as in Theorem 1. It follows from a theorem of Israel
[3] (see also Ruelle [1, 13]) that there exists a pair interaction ξ with ρφ + ξ£lφ + ξ

such that

sup \QΦ + ξ(AΨ)-ρN(AΨ)\ ^ 1/ε (14)
Ψ pair interaction
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and

\\ξ\\ ^ -^(P(Φ)-s(ρN) + ρN(Aφ))^ ]fl (15)
1Λ

for N = N1n large enough.

We now choose J/ε <^(m1 — m2).
Note that QN has, by construction, a non trivial decomposition into extremal

periodic states of period 2N and

1 k

,limτ: Σ M^2N^H(ftv(Φ)2

K -» CO ft, j = 1

Since by (14) ρφ + (* and ρN are almost equal on a suitable set of Aψ, we have also

1 k

lim-
K -> GO

if ε is small enough, and therefore ρφ+^Ext(/φN). Hence ρφ + ξ has a decomposition
in at least 2N periodic states.

D
Examples where our theorems hold are all even classical interactions with

ferro- or antiferromagnetic ordering, all systems where the rotation symmetry of
the interaction is broken and with an obvious modification, the Baxter-Wu model.

4. Constraints on Analyticity Properties

The following theorem of Hille and Phillips makes it possible to prove constraints
on analyticity properties [7].

Theorem. // a function f is analytic in some open domain (which means analytic in
all directions, locally bounded and Gateaux differentiable) then f is Frechet
differentiable in that domain. Moreover the Taylor expansion has a finite con-
vergence radius for all points in the domain.

It follows directly from Theorem 1 that at all interactions which satisfy the
conditions of Theorem 1 the pressure is not analytic in the space of pair
interactions which do not break the symmetry. Let g be a positive function on the
subsets XcZv such that έ%g is the corresponding subspace of ̂  determined by

\m\g= Σgm\\ψw\\«χ>
OeX

then in view of Theorem 1, the pressure, in the case of more phases, can be analytic
at best in a subspace &g where g is a positive function which increases as the
diameter oΐX, D(X\ increases for N(X) = 2 (so the pair interactions in ̂ g form - a
smaller - subspace of the interactions considered in Theorem 1). In fact one has to
impose a stronger condition on g to obtain analyticity as the following theorem
shows.
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Theorem 3. // for N(X) = 2 lim =0 and Φ is as in Theorem 1 then the
range (X)- oo ]/ D(X)

pressure is not analytic in 3Sg.

Proof. If P were analytic then 3C1? C2 >0 with

C \\Ψ\\2

for all Ψ with || Ψ\\g ̂  \ C2 (as follows from the uniform convergence of the Taylor
expansion [7]).

Without loss of generality we will assume that the elements of &g do not break
the symmetry at Φ (if they do the theorem is obvious).

We will give the proof for Φ finite range, the general case can be proven with a
little more effort. We will use the notation of Theorem 1. Let ΨN be the pair
interaction with strength 1 and range TV. Define g'(N):= H^l^.

From (13) we have

(17)

We choose SN dependent on N

= 4 1| Φ || (range (Φ))
£N (m,-m2)N

then for N large enough and C19 C2, m l 5 m2 fixed

and with (17) and (18):

(18)

C C
>?— -F2n'(N}2 — ?— — HP Ψ I I 2

= Δ

Γ 2 b N 9 \ ^ ) ~Z'Γ2\\bN*N\\g'

^2 °2

Now (19) contradicts (16). Π

On the other hand it is known that at low densities or high temperatures the
pressure is analytic in a space <%g where g is only dependent on the number of
points in X [8, 10, 14].

For classical systems lagolnitzer and Souillard proved some theorems giving
the equivalence between analyticity properties and strong cluster properties of the
correlation functions [11].

They conjectured that it might be possible by analytic continuation to conserve
the same analyticity and cluster properties in a pure phase below the critical
temperature on a given side of the phase transition as in the low density region,
provided one does not have symmetry breaking interactions. Our Theorem 3
shows that this is not true but that there are less analyticity properties in the low
temperature region than in the high temperature region.
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