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Abstract. Correlation inequalities are used to show that the two component
λ(φ2)2 model (with HD, D, HP,P boundary conditions) has a unique vacuum if
the field does not develop a non-zero expectation value. It follows by a
generalized Coleman theorem that in two space-time dimensions the vacuum is
unique for all values of the coupling constant. In three space-time dimensions
the vacuum is unique below the critical coupling constant.

For the it-component P(\φ\2)2 + μφ1ί model, absence of continuous sym-
metry breaking, as μ goes to zero, is proven for all states which are translation
invariant, satisfy the spectral condition, and are weak* limit points of finite
volume states satisfying JV[OC and higher order estimates.

I. Introduction

It is a general fact in statistical mechanics and quantum field theory that the
appearance of multiple phases and spontaneous symmetry breaking occurs more
readily as the number of space dimensions increases. In the case of the statistical
mechanics of lattice systems with a continuous internal symmetry group, spon-
taneous symmetry breakdown can occur for three dimensional lattices [10] while
for two dimensional lattices every equilibrium state is invariant under the internal
symmetry [4], For the two component rotator, absence of symmetry breakdown
implies uniqueness of the phase [2].

Multicomponent quantum field theories can exhibit spontaneous symmetry
breakdown in three space-time dimensions [10], while in two space-time dimen-
sions, a general result due to Coleman [3,11] "There are no Goldstone bosons in
two space-time dimensions" shows that spontaneous breakdown of a continuous
internal symmetry cannot occur, provided the symmetry is generated by a local
conserved current. Given these results, we have considered two questions. The first
is whether absence of symmetry breakdown implies uniqueness of the vacuum
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(clustering of the Wightman functions). The second question is whether the
Coleman theorem is applicable to the models considered so far in constructive
quantum field theory.

Using correlation inequalities for two-component Euclidean (quantum) fields
(with HDD,HPP boundary conditions) with interaction λ(φ2)2, we show that
absence of a spontaneous, non-zero, field expectation implies uniqueness of the
vacuum. We also prove that independence of the (standard) boundary condition in
presence of a non zero external field implies independence of the standard b.c. at
zero external field. Thus in three space-time dimensions the vacuum is unique for
(HD HP D P) boundary conditions below the critical coupling constant.

In two space-time dimensions, we conclude that the vacuum is unique for all
values of the coupling constant by answering our second question. We do not
show that Coleman's theorem is applicable in its original form. We have
generalized it so that we do not need to prove the existence of a conserved current
but we only have to derive estimates on the time component of the current (Sects.
IV and V). For a general n-component quantum field theory in two space-time
dimensions, absence of spontaneous symmetry breakdown (but not uniqueness of
the vacuum) follows from Nτ

loc and higher order estimates.
In the case of the plane rotator on the two dimensional lattice, perturbing the

interaction enabled us, using correlation inequalities, to prove that there was only
one translation invariant equilibrium state [2]. The two-component quantum field
model is more singular and such perturbations cannot be applied directly. We thus
have demonstrated the uniqueness of the vacuum in the sense that a certain state is
clustering but we have not shown that there is only one Wightman state for this
model.

For clarity of presentation, we elaborate the preceding outline and give here a
sketch of the argument, referring to the section where a particular result can be
found.

We Discuss First the Two Component Model

1. It is known that the periodic state <>μ with external field μjφ1 Jx,(μ>0) exists
and is exponentially clustering [7]. Correlation inequalities show that the state
< )μ converges as μ[Q to a state noted < )+ (Lemma IΠ.l and discussion preceding
it). Again by correlation inequalities it follows the <>+ is clustering (Lemma III.3)
and thus has a unique vacuum.

2. If (φί(χ)y+=Q then by correlation inequalities (Theorem III.5) it follows
thet < >+ = < >0, where the state < >0 is obtained from finite volume states with μ = 0
and thus by construction is invariant under the internal symmetry. Thus <>o is
both clustering and invariant under the symmetry.

3. In two space-time dimensions we may prove that <(φ1(x))+ =0 and thus this
theory < >0 exists and is clustering for all values of the coupling constants. In the
analogous situation of the plane rotator on a two dimensional lattice, the absence
of spontaneous magnetization at all temperatures follows from Mermin's theorem
or the more general result of Dobrushin-Shlosman [4]. However in the quantum
field theory case, we are dealing with a continuum quantum theory and the proof
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that (φι(x)y+ =0 is based on the Goldstone [25] and Coleman [3,11] theorems.
In order to apply these methods we must establish the existence of a ''current"
which generates the internal symmetry and such that the vacuum Ω+ (correspond-
ing to the state <>+) is in the domain of the current. It is thus necessary to make a
detailed study of the current.

4. It is straightforward to show that, for suitable $,

Xθ) - j (φ2(x)nί(x) - φ1(x)π2(x))θ(x)dx

generates the internal symmetry (Proposition IV.2). However to obtain the
necessary estimates (in order to prove that Ω+ is in the domain of the current) the
local number operator estimates of Sect. IV (j(9) rg const (//+!)) are not sufficient:
we must consider the commutator [Hμ,j(9)~] where Hμ is the Hamiltonian with
external field μ. Thus we define a time smoothed current jμ(η)
= $dteitH»j(9)e~ίtHlΛη(t). Then the estimates of Sect. IV apply to jμ(η) and to
\H ,jμ(η)\. This allows us to obtain \\jμ(η)Ωμ\\ ^C uniformly in μ(Ωμ is the vacuum
corresponding to Hμ).

5. Nowjμ(η) does not generate the internal symmetry if μφO (since Hμ does not
commute with the symmetry). However we can show that for μ = 0, j(η) does
generate the symmetry (Theorem IV.6). To extend the above estimates to
j(η)(\\j(η)Ω+\\ =C) we need a convergence argument. Correlations inequalities do
not apply to a variable as 7(77). However using the characterisation of field theory as
a state on the algebra of bounded local observables, j/, correlation inequalities
and analytic continuation imply convergence of the states ωμ (corresponding to
the theory with an external field μφ^) on j/ as μ->0.

This fact, the bound onjμ(η) uniform in μ, and a suitable convergence oϊjμ(η) to
j(η) as μ—»0 (Theorem IV.8) allow us to extend the above uniform bound to j(η)
(Proportion V.5). It follows that Ω+ is in the domain of j(η\ and thus we can use
the Goldstone theorem (Theorem VII.2) to show that (φί(x)y+ = 0.

In the case of N-component models (ΛΓ^3) we cannot appeal to correlation
inequalities and cannot prove uniqueness of the vacuum, but we may show
absence of symmetry breakdown via the Coleman theorem (Sect. 6) [3,11]. It is
however a fact that the space component of the current is more singular than the
time component and thus within the constructive framework it is preferable to
estimate only the time component. Therefore we generalize the Coleman theorem
so that a minimal number of hypotheses must be verified (Sect. VII)1.

II. Local Operator Algebras and Euclidean Fields for the N-Component Field φ(x)

A) Free Fields

The Hubert space of states for the n-component free scalar field φ is represented by
n

the Fock space 3F = (X) ^j [8] where ̂  is the usual Fock space for the time zero

1 Of course we can apply this generalized theorem to the proceeding situation N = 2. It is what has
been done explicitly in the paper (see proof of Theorem III.7)
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fields

|/2 LJ^

π//)-^[Mμ

where μ = [— F2-f ra2]1/2, P2 is the Laplacian in s dimensions. Given f=(fl9 ...,/„)
we define

M

n

7=1
H

We denote by ̂ F)= (X) ̂  (F) tne Fock space associated with the field φ(V] with
7 = 1

periodic boundary conditions on the boundary of V. The corresponding fields φ(V}

are defined by replacing μ by μv = [_— P(^} + m2]1/2 where P(^} is the Laplacian for
the region Fwith periodic boundary conditions. There is a natural embedding of
3?(V} into ̂  and the fields φ(V} may be considered to act on ̂  [13,17].

The free Hamiltonian is

where dΓ(μ) denotes the second quantization of the one-particle operator μ [28].
The number operator is defined by

More generally, local number operators are defined by

j=ι

where O^τ^ 1 and O^CM^C^. A similar definition holds for periodic boundary
conditions with the restriction supp ζ C V.

The local operator algebras are constructed in Fock space as follows. Let A
denote an open bounded region of space.

j^(Λ) = von Neumann algebra generated by {eίφ(f\ein(*}}9 supp f ,gCΛ The C*-
algebra of (quasi) local observables is stf — norm closure of (J £0(Λ).

A

Let Γ^g) be an n x n unitary representation of the internal symmetry group G.

Then φ.(x)-> ^ /^J.(^)φj.(x), πf(x)-> ^ Γ^g^^x) defines an automorphism of the
j=ι j = ι

C*-algebra j^, denoted α(gf), which is implemented in Fock space by U(g).
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A similar construction holds for (stf(A)(v) with periodic boundary conditions,
with the restriction AcV.

If the Wightman functions (vacuum expectation values) of φ(x, t) are analyti-
cally continued to purely imaginary times ί, one obtains the correlation functions
(Schwinger functions) of the Gaussian stochastic process φE(x) (the Euclidean free
field) with mean zero

0 7 = 1,.., n

and covariance

-{-V2 is the Laplacian in d = s+l dimensions.
More generally, if $ denotes an open bounded region in Euclidean spacetime

we may define the field φ% with covariance determined by (/,(— P/-f m2)"1^)
where V£ is the Laplacian with any of the standard boundary conditions on dΛ :

Dirichlet (D), Periodic (P), Neumann (N), or Free (F)

The Schwinger functions are invariant under the transformations

Φf(*H Σ Γ

B) Interacting Fields

We consider free or periodic boundary conditions in two space-time dimensions.
Let 0^0(x)^l,0eCo ),supp0CK Λg and Λsuppg are respectively defined by

g(x)=l for xeAg and suρp0CΛ s u p p r At is defined as the set of points within a
distance ί of A.

The Hamiltonian H(g) is defined by

) with

H(g)(V} is defined analogously, with φ replaced by φ(V} and H0 by H0(vγ

Higher Order Estimates [26]

For any κ = 1,2, ... there are constants a,b (depending on g but independent o f V )
such that

NIC Estimates [29]

For any τ gl, there are constants α, b (independent of g and V) such that

where H(g) = H(g) — inf spectrum H(g).
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Note that the proof of Spencer carries over unchanged to multicomponent and
periodic fields. We sketch it in an Appendix.

Furthermore, H(g)(V) — > H(g) strongly on C°°(H0) [18].

Finite Propagation Speed [27, 13]

eίtH(9}^(Λ)e~ίtH(g}Cs/(Λt} and the automorphism eitH(9}^(A}e~itH(g} is independent of
g provided ΛtCΛg and similarly for H(g)(Vγ We may thus define the time evolution
automorphism τ(t] by

itH(d} ΛtCΛg.

The Euclidean theory is constructed by replacing the free measure dμQ by

the subcripts $, b in the Wick ordering indicate that the Wick subtractions are
made with respect to the measure dμ$ b (dμ® b is the measure corresponding to the
free theory with standard boundary conditions b on dA). Half-fc boundary
conditions are defined by :

One obtains the Schwinger functions

.(χ.) is one component of φE(xi).
One is thus generally interested in the infinite volume limit

d

III. Correlation Inequalities for Schwinger Functions
and Uniqueness of the Vacuum

We consider now the two component λ(φ2)2 — σφ2 — μφ1 model, where λ>09 μ^O,
σ real, in d space-time dimensions. The lattice approximation of the finite volume
Euclidean Schwinger functions satisfy the following inequalities, which then carry
over to the continuum finite volume and infinite volume theories. (These limits
exist for d^3.)

Let Jt be the set of finite families of test functions [elements of y(IRd)] and Jl+
the set of finite families of non-negative test functions. For A^Jί we define
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Let \A\ denote the cardinality of A. Let 5 be an open bounded regular set in IRd

with standard boundary conditions [28]. The following inequalities are valid:

a) Ginibres Inequalities [12,5] if A,B^Jί+, \B\ even, and ε= ±1

ifA,BeJΐ+, \A\ and \B\ even, ε1}2 = ± 1

<(ΦL + £ιΦL)(Φ?B + £2^^ P)

b) Generalized Griffiths' Inequalities [l,22a] if A,BE.Jί+

<ΦjAΦjBy^<Φ^<ΦjBy,^ j = l , 2 , (3)

Remark /. The above inequalities together with the φ-bound [7] imply the
existence of the theory for d = 2 or 3 with Dirichlet (D) or half-Dirichlet (HD)
boundary conditions.

Remark 2. In the following we drop the E in φE, and we make the μ dependence in
the above states explicit : < }dμb denotes the Euclidean state in region S with a fixed
standard boundary condition b and external field μ^O.

We suppose the infinite volume limit exists for some standard boundary
condition b : < >μ b = lim < >θ , , for all μ > 0, and we define < >+ b = lim < >μ b. This

9 /Rd ' ' ' μ\0

limit exists since (φ1A)μ b monotone decreases and <φ2^>μ b monotone increases
as μ|0 by (3) and (4). For |β| odd (φ1Aφ2Byμ = V and for § |B| even (φlAφ2B\b

converges as μ|0 by (2). In fact, we have the estimate :

III.l. Lemma. Let μ>0 then:

Proof. For \B\ odd the left hand side is zero. For \B\ even, by (2)

± = (

By the same proof we have

111.2. Lemma.

\(ΦlAΦ2B\μfb-<ΦlAΦ2B\0,b ^ <Φ 1 AΦ 1 B\μ, b ~ <Φ 1 AΦIB>», 0, b

111.3. Lemma. If there exists a sequence μw->0 such that <>μn;b has the cluster
property for all n then <>+ b has the cluster property.

Proof. By a density argument and multinearity we have only to show clustering for

the set {φAφ
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Using Ginibre's inequality one can show the generalized Dunlop-Newman
inequalities [6] \/A,B,C,DeJΐ+

if \B\ even and

if \B\ odd.
These inequalities extend to the limit state <>+. Thus we have only to show

clustering for the field 01. That is we must show

Km (ΦίAτxΦiBy+ίb=(ΦlAy+tb(ΦίBy+ίb,|x|-»oo

where τxφ1B= f] φ^τj).
feB

But

^<ΦίAτχΦίByμn,b |xHoo

 ) <ΦlA>μn,b<ΦlB>μn,b

Since (Φ1A\nίb\£ΦίAy+tb it follows that

^ao<ΦίAτ

XΦlB>+tb = <ΦiA>+ίb<ΦίB>+tb'

Tίiis concludes the proof. [See also [28] p. 357.] Π

111.4. Lemma. //<ψ1(/)>+ifr=OV/6^(Rd) then <φiAy+tb = <φ2Ay+

Proof. Since <φ2(/))+ b = ® by construction, the proof of this lemma is contained
in the proof of Theorem III.4 of [2]. Π

111.5. Theorem. // Hm<<M/)>μ,* = 0 then O+tb = <\b-

Proof. By (4) and (3) and the φ1^>φ2 symmetry of the μ^O state we have

for Ae^+.

From Lemma III.4 it follows that lim <Φι^>ds0,& exists and is equal to

(ΦiAy+,b- Similarly for <Φ2B>0&.

From Lemma III..2 it now follows that lim ^ΦίAΦ2B)^o,b e^ists and equals

(ΦiAΦ2B)+,b f°r a^ A,BeJί+. By multilinearity the same result holds for all
A,B<=Jί. D
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111.6. Corollary. If for some (standard) boundary conditions b,b' <>μ b = Oμ b for
allμ>0and Hm^Cfl^O V/E^(IRd) then Oo,* = Oo*

Proof. Follows directly from Theorem III. 5. D

111.7. Theorem. In two space time dimensions the infinite volume limit exists for
b = (H)D, (H)P. The resultant theories have the cluster property and thus the
associated Wightman theories have a unique vacuum moreover <( )HP = Op an^ ( )HD

Proof. If Iim<φ1(/)>μ = 0 the limit lini <\ exists by Theorem III. 5. That

lim<01(/)> u P = 0 follows from the existence of a local current (see Theorem
μ|0 μ'

VII. 1). Since the Schwinger functions for periodic be are continuous in σ (in fact
real analytic see [7]), one can deduce that they coincide with those obtained from
HP. boundary conditions [21].

From correlation inequalities one has :

<Φι(/)>μ(H)D ̂  <Φι(/)>μ(H)p (respectively) .

So, the first part of the theorem is proven.
The second part is based on Lemma IIL3 and the fact that (exponential)

clustering is known for the theory with periodic be andμ>0.
When we remark for \B\ even

for \B\ odd

respectively, clustering is also proven for (H)D at μ = 0.
Since both HD and D b.c. coincide with weak coupling b.c. [19a]

Remark. Frohlich states that for μ>0, D=P = space time averaged free [9]. It
would then follow by Corollary III.6 that those theories also coincide at μ = 0.

IV. The Generator of Symmetry Transformations on the Local Algebras

The discussion of the local algebras J/Λ takes place in Fock space. The vector Ω
denotes the Fock vacuum, @ = finite particle vectors with wave functions in £f.
For simplicity, we consider here the case of two component fields, although the
discussion generalizes easily to n-component fields (see Sect. VI). The symmetry
transformation is then given by:

&SΦ i (x) = cos sφ 1 (x) + sin sφ2(x)

and similarly for π1 2.
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We recall [13,24] that 3) is a dense set of entire analytic vectors for φ1>2(Λ

/. Definition.

We define /Lθ, /tsuppθ such that θ(x)= 1 for xeyl d and supp$C/lsuppθ. We note
that j(9) is a well-defined operator, and indeed 3) is a dense set of analytic fnof
enure) vectors for j(9). This follows by standard estimates [24] : One writes j(9)=j1

"K/ΐ" ^h +J2 where " + " denotes adjoint and

91/92\/2π μ(p] \/ μ(q)

μ(p)

Then

^ 1
= 2|/2^

1
= 2γϊκ

- 1 1 !

§tp + a)\]/Mσ(p^τ q) \\

[V μ(p)

^(p + <?)(p+<2) [

Q/'vΛr, ! !

jAΓwv™ Mp) 2

<00 .

|/μ(p)
l/μ(q) 2

1 1

μ(p) μ(q)

(5)

j2= dΓ(K], where K is the operator on the one particle space with kernel.
]/2π

μ(p)

(and mapping particle 2 into particle 1).
We write

1
-1 +

' w r/ V 1 r / 2 L \ | / μ(p)

= %-p) + X1(^f,p).

Note that Kj^ is a Hubert-Schmidt operator, since

-1

1 1 1

μ(p)
eL2
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Thus K = M$ + K19 where M$ denotes the operator multiplication by B(x). Thus:

|/2π

We have thus shown :

Number Operator Estimate

Equivalently,

Since by higher order estimates, Nκ ^ a(H(g) -f έ>)κ, the number operator estimate is
sufficient when uniformity in g is not required. However, we will also need an
estimate uniform in g, and for this we need a local number operator estimate. For
this, one restricts the x-space kernels to finite regions. For j'2, we consider K in x-
space. Since 5(x) has compact support dΓ(M$) is directly estimated by a local
number operator JV loc. To estimate dΓ(Kγ\ we label unit intervals such that

Consider dΓ(χAιK1χA ) where χΔι is the characteristic function of Av

If Nij = d Γ ( χ l

Δ ι @ χ ' Δ j ) with χ'Δι of compact support and γ'Δι = \ on AΓ an estimate
similar to (5) gives

We then remark that

2 " 1

l /2 / \ l / 2

Since differentations only improve the behavior of Kv(p,q) we see that

Using the Nτ

loc estimate, we obtain

The operator jί is estimated in the same way as d^K^. We thus have.

Local Number Operator Estimate

(uniform in g ) .
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We note that the periodic current j(θ)(F) is defined in the same way as j(S) with
φ, π replaced by the periodic fields φ(V}, π(V}.

The number operator estimate goes through as for j(θ)

Number Operator Estimate

Equivalently.

\\j(S)(V)(N(V) + IΓ 1 1| rg C (uniformly in V) .

The local number operator estimate also goes through for j(9). We remark, for
example, that ^dqdpKί(q,p)a+(q)a(p) is replaced by

£ A Σ AK^q^ Pι)a^(qk)av(pl)
k I

u , 2π A 2 π;where Δ = — and qk, pk=—k.

This can be written in x-space as

V/2

-V/2

where K^(x,y\V}= Σ κ ι(% + nV, y + mV).
m,H

Then

Σ llι^i(κ)^!I^Σ!!x,Λι^H^c

iJεV ij

We thus obtain

Local Number Operator Estimate

\(H(g\V) + bΓll2j(9\n(H(g) + bΓυ2\\ ^C (uniformly in V and g) .

We now begin a detailed discussion of the current and associated symmetry
transformations. We will write H = H(g)μ = 0, Hμ = H — μφί(g). We suppose

IV.2. Proposition [13,8]. φ//), π//X j($) are essentially self-adjoint on
IfsuppBcΛ then eisme^Λ VseR Also, -

Proof. Essential self-adjointness follows since ̂  is a dense set of analytic vectors
for φ, πj. For s sufficiently small we may calculate (ψl9 e

lφ(f^elsj(^ψ2) for φ l 5 φ2

e^
by expanding the exponentials. If supp/ is contained in the complement of A we
conclude that eism commutes with eίφ(f\ Similarly for eίκ(f\ By duality it follows
that elsj(^e^f

Λc = ̂ Λ. It then follows for all seIR by the group property.
Again by expanding exponentials, and using 9(x)= 1 for x<=A$ it follows that

eίsj(») implements the automorphism ocs on s#Λ& for small s. The result then follows
for all s by the group property. Π
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In order to guarantee that the infinite volume vacuum is in the domain of the
current we must average j(9) in time. That is, we must consider

j(η)=$dtη(t)eίtHj(9)e-itH.

The following propositions are used to show that 7(77) also generates the symmetry
automorphism (Theorem IV.6).

By a higher order estimate and the number operator estimate we have
llPKH + ir1!!^!^

The estimate \\j(9)(N + 1) ~ 1 \\ < oo implies that j(9) may be extended from finite
particle vectors so that @(j($)) 3 2(N\ This means that ®(j(9))i@(H0). Since H is
essentially self-adjoint on 2(H^nί%(HJ(g)) it follows from \\j($)(H+ΐ)~l\ <oo
that the domain of essential self adjointness of j(9) can be extended to include

So jt = eitHj(9)e ltΐί is well defined and in fact essentially self adjoint on
the domain of H, since j(3) is. This last estimate also implies that εj(9) is a Kato
small perturbation of H for ε small enough. Then H + εj(9) is self-adjoint on

In the same way, H + εjt is self adjoint on

IV. 3. Proposition. e~
ίsH

e

is(H+^} implements αsε on jtf(Λ) ifAs+tcA^(We recall that
Λd is the set of points within a distance d of A and Λ^ is the set on which 9= I.)

Proof. Since H + εjt is self adjoint on Q)(H] the Trotter product formula holds and

Then for

Now since eisj(9} implements αs and eltH implements τ( (which commutes with αs) it
follows that eιsjt implements αs and therefore

IV.4. Proposition. e~
isHeis(H+ε%ηtχjtκ) implements asε on ^Λ if As+tmaχCAB and

K

Proof. By induction based on

By Proposition IV.3 this implements

™ ( α i α ' I = α

 + =α if
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We note \h&i jt(H+l}~1 =eitH]($)(H+l)~le~itH is strongly continuous in ί.

on ®(

We define j(η) = \ dtη(ήj(t) for

Since + i[H, /(w)] = ± /(^) where η = — η ( f ) and | |/(f/) (H + 1)~ 1 \\ < oo, it is a
• £/f

standard result that j(η) is essentially self-adjoint on any core for H [24],

IV.5. Proposition. e

ίs(H + εΣAη(tκ}jt-} ><? Λs(H + εj(η))
strong

Proof. H + εΣAη(tκ)jtκ gtron >H + εj(η) on 2(H) and H + εj(η) is self-adjoint on

It is a standard result [23] that these properties imply the desired strong con-
vergence. Π

We thus conclude that e-^H

e

is(H + εJ(^ implements asε on jtfΛ if Λs+ TCΛ$ where
suppηC[-T,T], η^O.

IV. 6. Theorem. Lei supp^C[— T, T], ?/§;0. Lei Λ = set of points within a distance
T+l of supp & and let Λ be such that ΛTCΛ^ then eίsj(η)e^^ and eιsj(η) implements as

on s#.

Proof. Take s small then use the group property. εj(η) = [H + ε/(^)] — H on
and since εj(η) is essentially self-adjoint on Q)(R} the Trotter product formula
holds, and so eίsεj(η)= strong lim[e~ί(s/n)/ίel'(s/π)(H + εj(>ί))]n.

-

The operator in brackets implements α(s/,ί)f, on ^/(/l). Thus eιsεj(η) implements αsx

on £0Λ.
To show e^^ej/^ we use duality. Let Aes#Λ where Λ'CΛC. Then since eίsj(d)

implements the identity automorphism on j/^, the same argument as above shows
that e~

isH

e

ίs(H + εJ(n)) implements the identity automorphism, as does eίsj(η}. That is,
(η) = A. Thus eίsj(η)εjtf' = j/. D

We have thus attained our first main result, that j(η) is the local generator of
the automorphism αs.
We now proceed to investigate the case of a non-zero external field μφ{(g)\ Hμ

= H + μφ1(g).
Since \\φl(g)(N+ 1)"1!! < oo, it follows by a higher order estimate that

\\μφl(g}(H + i}~i\\<\ for μ sufficiently small.
Thus Hμ is self-adjoint on Q)

Define

As before, jμ(ή) is essentially self-adjoint on any core for Hμ, in particular on
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IV.7. Proposition. J μ ( * l ) - * J ( r i ) on ®

Proof. Since H - >H on 2(H) it follows that e

itH » -^^ eitH . Also, He~itH»
μ μ-*0 strong

= e-hH^Hlt-μφe-"H '. Since ||0e~"H"/J|^||ψ(J?/ίl + C)-1|| \\(Hμ + Qf\\^C un-
~ ~iformly in μ as μ^O, it follows that He~itH»->He~itH on @

It follows that yfWΉ/^H/ί+lΓ 1 (//+ l)e""H- converges to ./, on ®(H) as
μ->0.

Also, l l / f/H g ||/(5) (#„ + C)- ' || ||(/fμ + C)/|| g C' uniformly in μ and ί.
Finally, ||/fa)./ -jM/Ίί g f </i|»/(r)| !l./f/-;,/|l. Since || jf ,/-/,/ ΉO pointwise in /
as μ-^0 and is uniformly bounded, it follows by dominated convergence that
ϊdt\η(t)\\]Jΐf-jtf\\^0. D

IV.8. Theorem. e

ίsjμ(η}-^+eίsj(η) and eίsjμ(η)ej/7 (where A is defined as in Theorem
strong 71 J

IV.6).

Proof. The strong convergence of eίsjμ(η} follows from Proposition IV.7 and the fact
that j(η) is essentially self-adjoint on ^(H). That eιsjμ(η]e^χ follows by duality as in
Theorem 1V.6, since j(9) implements the identity automorphism on Λsupp$c. D

We have thus attained our second main result, that eιs^μ(η] converges strongly to
eisj(η\ Finally, we must investigate the periodic current.

IV.9. Theorem. eijv(f} v"co > e

ijμ(f).
strong

Proof. It is sufficient to show j£(/)-*/(/) on a core for/*(/). One takes C™(H) and
the proof follows Lemma III.4. of [17]. Π

V. Convergence of States on sέ and Absence of Spontaneous Symmetry Breakdown

Before discussing the convergence of periodic states (based on Euclidean methods)
we recall the general results concerning local norm compactness [15,17]. The

algebra ^(Λ) is defined as the C*-algebra generated by e

ί(φ(f) + π(g)}

suppf,suppgCvi and j/=norm closure of \J <s/(Λ), and similarly for £#(Λ\vγ The
o o . .

isomorphism pv of s#(Λ) on to ^(Λ)(V} is determined by

yί{φ(f) + π(g)} _
e

where ΛcV.
The Hamiltonian H(g)(V), with g = χv has a unique ground state Ωv in ̂ v. The

state ωv is defined on ̂ (^} - the bounded operators on ̂  -by ωv(} = (Ωv, Ώv}.
(We use the embedding ^FVC^ to consider Ωve^.) The state ώv is defined on
j/(Λ) if A C V by ώv = ωv - pv.
As F-> oo the states ώκ are defined eventually on a dense subalgebra of j/.

V.I. Theorem [17]. Let ω be a state on s$ which is a weak* limit of the ώv. Then ω is
locally Fock ie for each bounded region ΛglR 2 ω\s#(Λ) is normal. D

With techniques used in Theorem V.I one can deduce the following result.
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V.2. Proposition [17]. Let ω be a weak* limit of the ώv. Suppose Aves/(V}(A)
converges weakly to Ae^(A) as F-»oo and also

Then there exists a sequence (Vk)keN such that ωVk(Av^)-*ω(A).

There is one other useful result :

V.3. Proposition. Suppose {ωμ} is a set of states on j/ such that {ωμ} \j/(A) lies in a
norm compact subset of the dual of stf(Λ). Ifω is a state on s$ which is a weak* limit
of {ω..} then there is a subsequence ω.. - > ω on s/(A). If ω is the unique weak*

μ "n norm

limit point of {ωμ} then ωμ - >ω on jtf(Λ).

The above proposition follows from the general fact that if a set is compact
with respect to one topology then it is compact and therefore closed with respect
to a weaker Haussdorf topology. Thus the norm closure is equal to the weak*
closure [on <$$(Λ}] and any weak* limit point is a norm limit of a subsequence. Π

Using Euclidean methods [7] one knows that the periodic Schwinger functions
converge as F-^oo for external field μ>0. By analytic continuation [18] and using
the methods of Proposition I.I of [16] it follows that ώμV(eίφ(fl}...eiφ(fn}) converges
for /fe^(lR2). Let ωμι,ωμ2 be weak* limit points of ώμV. Then ωμι,ωμ2 agree on
operators of the form eίφ(fi}...eiφ(fn\ Since ω ,ωμ2 are locally normal and
{eiφ(fύ. . ,eiφ(fn)} is strongly dense in s/(Λ) it follows that ωμι, ωμz agree on jtf(Λ). It
follows that ώμV has a unique weak* limit point.

Using similar methods as in Theorem V.I one can deduce that for A a bounded
region of R2, {ωμ\£#(Λ}} lies in a norm compact subset of the dual

V.4. Proposition. // ω+ is a weak* limit of ωμ as μ— »0 then there exists a
subsequence {μn}neN such that

= o(/h

Proof. By Proposition V.3 there exists a subsequence ωμn which is norm convergent
on jtf(A). Since each ωμn\stf(Λ) is normal, the norm limit ω+ is normal on

+- ωj (eij»» (/)) .

The first term in the r.h.s. converges to zero because eljμ(^ converges ultrastrongly
to elj(f) and ωJr\^(A) is normal. From the norm convergence of ωμj jtf(Λ) we see
that the second term also converges to zero. Π

Remark, for N = 2ωμ is weak* convergent to ω+ and subsequences are not needed.

V.5. Proposition. Let Ω+ be the vector associated with ω+ by the G.N.S.
construction and π+ the corresponding representation ofjtf, then ,/or/eC^(IR2X Ω +

is in the domain ofπ + (j(f)).
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Proof. The periodic local number operator estimate gives

Thus

f)Ω II-

=

(ie_
s2

ore from I

.itirm V a

iff \ h } i μ ( f } PTT , i V^uίF) ' υ)JV\J )*uuVHμ(V) + b μv ; μ

1 .μ . .μ b

Hμ(V} + b yl V Hμ(V) + b UμV

1 . 1
Γ / ^ ( j / ) 4 " oi^ ( f\\

\H..,(V^ -\-bpj (Hll(V\-\-b)jv μ ( κ ) /2 v μ ( K ) /2

I2) f2 — eίsJ^ — eίsjv\
1 ^ _ mμ M- <^Γ2VP

ωF 2 ^^ / « .
\ ώ /

^rrίΓϊΠQΪtir»τΊ Λ7 ^ r^^ 1 1 "^ (

. > . s '
ίτn-n1ipQ rf^i 1 1 <C Γ^ V« I

^ C uniformly in V.

^C 2Vs which together with

Since by Theorem IV.6 j(η) generates the automorphism αs on jtf(Λ) (for
suitable η) we have, for

ω , ω ) = (Ω + 5 e
ίsπ +

Thus

have
ds

). We then

V.6. Theorem. ω+ is invariant under the automorphism group. In particular

Proof. The constant C in Proposition V.5 is in fact a norm |||/||| on /which is
continuous in the topology of compact support test functions, as follows from the
discussion of the number operator estimates. We obtain lb'(/)Ώ||^ I l l / I l l which
shows that

$dxh(x)U(x)j(3η)Ω=j((h*9)η)Ω= j dx9(x)U(x}j(hη)Ω if J dxh(x)=l .

Thus j'(x)=U(x)j(hη)U~1(x) plays the role of j(x) in the generalized Coleman
Theorem VII. 1. That theorem then implies that ω+ is invariant under as and so, in
particular (Ω+,01(/)β+) = 0.

By Theorem III.7 we have existence of HD, D, HP, P boundary conditions for
the μ = 0 theory, as well as clustering.

VI. Absence of Spontaneous Symmetry Breaking
for the TV-Component P(\φ\2) Model

We consider the n-component P(\φ\2) + μφl model, and use the notations of the
preceeding sections.
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VI.I. Theorem. Ifcoμ is translation invariant, satisfies the spectral condition, and is a
weak* limit point of finite volume states satisfying higher order and Nτ

loc estimates,
then all the weak* limit points of ωμ as μ—>0 are SO(n) invariant.

Proof. Let us denote by gk(s) the rotation of angle s in the plane (xk+1,xk\ the
orientation being such that the rotation of ek+1 to ek is positive ({ek}

n

k=1 is a basis
of IR" and ek is along xk). Then by a theorem of group theory [31], we know that
each g of SO(τι) may be written as g = g(n~~i}...g(1} where g(k] = gί(s\)...gk(sk

k).

are called the Euler angles of the rotation g.
One can construct n operators jί (5)... jn(9) which are the time components of

the "currents" associated with the rotation subgroups gί,...,gn:

Λ(θ) = ί dxB(x) Lφk(x)πk+1(x) - φk+1(x)πk(x)-] , Be C^(IR).

By TV-estimates those jk(S) are self-adjoint, and by Nτ

loc estimates they obey local
number operator estimates jk(9) ^ C(H(g) + b) [H(g) is the Hamiltonian associated
with the finite volume state]. Using once more the Nτ

loc estimate one proves the
local Fock property for infinite volume state ωμ. If ω+ is one weak* limit point of
the ωμ as μ-»0, π+ the corresponding representation of s$ associated with ω+ by
the G.N.S. construction and Ω+ the associated vacuum, one can prove as in the
preceeding section (in particular by using higher order estimates) :

where α* is the one parameter group of automorphisms corresponding to rotation
subgroup #.(s). By the generalized Coleman theorem (Ω + al

sπ

The proof is then completed by the fact that each rotation g of SO(n) can be
written as a product g = g(n~l\..g(i\

Remark. A typical application of this theorem is the case P = λ:(φφ)2 :n = 3 and
periodic boundary conditions. For this case the infinite volume state ωμ may be
constructed by the method of [7].

One can also consider the general case: P a semi-bounded polynomial, no
restriction on n and periodic boundary conditions, since the spectral condition has
recently been proven for this theory [22].

VII. Generalized Coleman Theorem

We consider the following general framework for a field theory in two space-time
dimensions, with an internal symmetry group.

1. Jf is a Hubert space carrying a unitary representation U(a) of the space-
time translation group, αeIR2, satisfying the spectral condition H2 — P2 ^0, H^O.
There is a (not necessarily unique) vacuum vector Ω.
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2. j/ is an algebra of operators (taken to be bounded local observables or to be
unbounded fields). The vector Ω is in the domain of all AES/.

3. There is a one-parameter group αs of transformations of <£/, which commute
with the space-time translations.

4. j(x) is a (not necessarily tempered) operator valued distribution. We define
the smoothed out current

j(x)= $dx'h(x-x')J(x')>

where heC%.j(x) is assumed to have the following properties:

a) translation covariance : for any space-time translation a,

b) the domain ofj(x) contains the vacuum Ω and j(x)Ω=j+(x)Ω;
c) relative locality: for each AES$ there exists a diamond DclR2 such that

(j(x)Ω, AΩ) — (A + ΩJ(x)Ω) = Q if xeDc = set of points space-like to all points in D.
This also holds with A replaced by 7(3;)

d) for all

(Ω, asAΩ) = J dxl(j(x, t)Ω, AΩ)-(A + Ω j(x,
0

Within this framework we prove the theorem

VII. 1. Theorem. For all seIR and all AEΛ?, (Ω9asAΩ) = (Ω,AΩ).

Thus the state (Ω, Ω} on <$/ is invariant under the symmetry transformations.
This is a generalization of the Coleman theorem "There are no Goldstone bosons
in two space-time dimensions" (see [11]). Notice that Lorentz invariance plays no
role (except in the form of the spectral condition) and indeed we do not suppose; is
the time-component of a conserved current (the "space component" plays no role).
The assumption that αs commutes with spacetime translations suffices, instead.
This is particularly useful for models in two space-time dimensions, since the
space-component of the current is more singular than the time component.
Furthermore, we do not need uniqueness of the vacuum, nor its cyclicity with
respect to j/.

For the application to Theorems III.5 and III. 7 we need only ^φ1(f)y+ =0 and
for this the "Goldstone Theorem" VII.2 suffices. However, for general n-
component models the full Theorem VII. 1 is required to show the absence of
symmetry breakdown.

VII.2. Goldstone Theorem. Let E0 be the spectral projection onto vectors with
P2=Q. Then

(Ω, asAΩ) = ίdx[(£o/(x, ί)Ω, AΩ) -(A + Ω, EJ(x, ί)Ω)] .
d

Ts

Proof. The proof is based on the Jost-Lehman-Dyson representation and is
standard [25]. We remark that in place of current conservation we use the
commutation of α, with time translations. Π
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We note that E0 may be replaced by E'0 = E0 — £1? where Eί is the projection
onto vectors invariant under space-time translations (vacua). This follows from the
following lemma, taking f(x) = (j(x)Ω,AΩ) — (A + ΩJ(x)Ω) [in this case F(x) in the
lemma has compact support].

VII.3. Lemma. Let f(x) = j dμ(p)eίpx where μ is a finite complex measure. Suppose
that for each g(t)e Q), F(x) = j dtg(t)f(t, x) is integrable in x. Then μ has no support at
f=0 (and in particular no support at p = Q).

Proof. Write μ=v(p0)δ(f) + μ'(p) where v is a measure on p0 and μ' has no support
at f=Q. Then F(x) integrable implies F(f)=v(g)δ(f) + §g(p0)dμ'(p) is bounded and
continuous, and thus as a measure cannot have support at f=Q. Thus v = 0. D

ΛΛ
Notation. We introduce the function 9r(x} = & - with $(x)eC^, suppθC[-2,2]

and B(x)=l for xe[-l,l]; reIR+.
Then we may write, using Theorem VII.2 and Lemma VII.3

(β, asAΩ] = lip {(Fo/ ̂ Ω, AΩ) -(A +

0

 r~^co

VIL4. Proposition. If there exists a constant C<oo such that, for all relR+,

then for all s

Proof. (See also [11].)

By weak compactness there exists a sequence EfJ(9rJΩ = ιpn which converges
weakly to a vector ψ. Then

(Ω, ocsAΩ) = lim {(ψ^ AΩ) -(A + Ω, ψn)} = (φ, AΩ) -(A + Ω,ιp).
0 "^^

Since αs commutes with space-time translations, we can replace A by
U(a)AU(a)~1, αelR2 and we obtain

(ψ, AΩ) -(A + Ω,ιp) = (ψ, U(a)AΩ) -(A + Ω,U(- a)ιp) .

Comparing the support of the Fourier transform with respect to a on both sides,
and using E1ψ = Q we conclude

TU d
Thus —

as
By the group property it follows that (Ω9v.sAΩ) = (Ω,AΩ). D

VII.5. Theorem. In two space-time dimensions, there exists a C<oo such that
all reR+.
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The proof of this theorem, which in turn demonstrates the Theorem VII. 1, is
based on the fact that δ(p2} is too singular to be a distribution in two dimensions
[3]. We need

VII.6. Lemma. Let F(x) be defined by

Then F(x) has the representation

00 00

F(χ)= Je ί α ( ί~x )P1(α)dα+ j eia(t + JC)P2(α)dα,
0 0

where Pί and P2 are analytic, in £f, and odd.

Proof. Because of the positivίty of the Hubert space metric, F(p) is a positive
measure on (p2 — 0, p0>0}, the forward light cone. Introcuding the variables

the forward light cone becomes pu = 0, pv>0 and pv = 0, pw>0. Then

F = J e^ + pw) [φj dVι(pv) + δ(pv)dv2(pj] ,

where supp v ;£lR+ —0

F(x)-F(-x)= J etevd)u1(α)+ J e^dμ^u) = G(v) - H(M) .
— GO — oo

The signed measures μ. are defined by

dμf(α) = dvf(α) , α>0

= — ίiv.(α), α<0.

By locality (Property 4c) F(x) — F( — x) = 0 for xeDc which becomes

G(v) + H(w) = 0 if 7 or Ί for some ^elR+ .
v< — a u< —a

We conclude that

H(M) = C1 if u>d and H(u) = C2 if w<-d

G(v)=~C1 if v<-d and G(v)=~C2 if v>d.

By the antisymmetry of F(x) — F( — \) we have C t = — C2. Then we can write G(v)
= C1ε(v) + G(v), where G has compact support and

ε(v)=l for v>0

= ~1 for v<0.
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The Fourier transform of G is μ1 but the Fourier transform of G is analytic while

the fourier transform of ε(v) equals lim 2i -^—-^ which is too singular to be a

measure.2

We conclude that Cl =0. Thus G has compact support, and being C00 by the
smoothness of j, we conclude that the fourier transform of G is analytic, in 5 ,̂ and
odd. Similarly for H(u\ D

Proof of Theorem VIL5. From Lemma VII.6 we have

||EΌ/(θΓ)Ω||2 = ί dxdy9r(x)3r(y)F(x -y)
CO 00

0

OL

o

00

which converges as r->oo to P\(ty $ du\8(a)\2a + P'2(Q) § da\§(-oc)\2a (by domi-
o o

nated convergence) which is <oo. Π

Appendix: AΓ

1

τ

oc Estimates

For any τ^l, there are constants a,b (ίndependant of g and V and depending on ζ
only through diam supp ζ) such that :

(Al)

(A2)

where H(g) = H(g) — inϊ spectrum H(g}.

Proof. We only sketch the proof following [29]. Let P ( ξ ί , ξ 2 ) be defined by
P(φi,φ2) = λ:((φ)2)2:—σ:(φ)2:—μφΐ. Let h be a function of compact support
satisfying - I g f c ^ l and suppose: Q^P(ξ1,ξ2)g(x) + P1(ξί,ξ2)h(x\ P1(ξl,ξ2) is a
polynomial (we only consider degPφdegPJ.

Elv(g,h) and Eιv(g) are defined as above.

2 Defining Tδ = 2i——— take hn(p) a sequence of antisymmetric functions in ̂  with

1
hn

 = 1 f°r ~ = P = 1 ̂  0 = ̂ n—1 for
n~ ~

hn = Q for

Then \Tδ(h )|^ln Since Γ, >ε(p) it follows that \ε(hn)\^2\nn >oo. But for a measure
1 „, ^°
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By using methods of [16] and of [29] we have: (φj bounds)

\Ev(g,h)-Ev(g)\^MD (A3)

M is a constant, D = (diam supp h) + 1

\EίV(g,h)-EίV(g)\^MD. (A4)

(A 2) becomes:

where C is independent of Fand g and depends only on ζ through diam supp ζ.
Ev(g) — EίV(g) is estimed by application of the Duhamel formula:

i
e-(2T+l)Hιv_e-THιve-HVe-THιv _ Γ Q- ΓHivg-sH^nyτ \g-( l -s)H1 Vg- ΓH^

0

the α ;̂. and av of N"[oc κ are then pulled through.
The terms produced are estimated by using cutoff-dependent bound (for

instance Higher order estimates) and with the "φj bounds" (A3) and (A4).
The remaining estimates on kernels carries over for periodic boundary

condition: they are based on Lemma 4.1 of [29] which becomes:

V V
/^ = 0 and supp ηi9 supp η.g

/is the same as in Lemma 4.1 of [29] and fv(x) = ]Γ f(x + nV). Π
n = oo
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